
Computational detection of non-coding 
RNAs in genomes 

 

 

Yen-Hua Huang 

 

 
This dissertation is submitted for the degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

 
The Wellcome Trust Sanger Institute and Churchill College, Cambridge 

  





Declaration 

This dissertation is the result of my own work and includes nothing which is the outcome 

of work done in collaboration except where specifically indicated in the text. 

 

The work in this thesis has not been submitted in whole, or in part, for a degree, diploma, 

or any other qualification at any other university. 

 

 

 

 

Yen-Hua Huang 

March 2008, Cambridge, UK 

 

  



Abstract 

Noncoding RNAs (ncRNAs) have become implicated in a variety of regulatory 

mechanisms as well as structural roles, suggesting that functional ncRNAs may be more 

prevalent in genomes than previously supposed. Nonetheless, in silico ncRNA finding is 

difficult, even though a mass of genome sequence is publicly available. Few computational 

approaches are really reliable for genome-wide ncRNA finding. This thesis is devoted to 

assessing available approaches and trying new solutions for finding ncRNAs in genomes. 

In the first half of this thesis, reasons that may contribute to the slow progress of 

genome-wide ncRNA finding are explored. A comprehensive analysis on a genome-wide scale 

of the credibility of currently used signals for classifying ncRNAs is conducted. Two factors, 

conservation of ncRNAs in human-mouse syntenic regions and abundance of covariations 

between human-mouse synteny-conserved ncRNAs, are evaluated. The result reveals that 

current comparative-genomics-based methods may not be able to find ncRNAs effectively in 

mammalian genomes. In addition, possible genomic features that could distinguish real 

ncRNAs from pseudogenes are investigated. Two different criteria, distribution of bit scores 

and physical clustering in genomes, are applied to filter out tRNA pseudogenes and to enrich 

bona-fide tRNA genes. Physiological roles of the tRNA genes in human-mouse 

synteny-conserved clusters are discussed and the degradation patterns of tRNA pseudogenes 

are analyzed. 

In the second half of this thesis, computational techniques are applied to model signals 

that may be potentially useful for genome-wide ncRNA finding. A sparse Bayesian learning 

algorithm, Eponine, is applied to model the transcription start sites of mammalian ncRNA 

genes that are transcribed by RNA polymerase III. In addition to modelling cis-regulatory 

elements for transcription, a new computational module, which extends the capability of 

  



 

Eponine to learn motifs consisting of both primary sequences and RNA secondary structures, 

is created. The capability of this new module is demonstrated by applying it to analyze several 

known cases of ncRNA motifs. The strength and the weakness of applying this new 

computational approach for finding ncRNAs are discussed. 
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Chapter 1.  Introduction 

Over the past decade, numerous novel non-coding RNAs (ncRNAs) have been discovered. 

As opposed to classic ncRNAs including transfer RNAs (tRNA), and ribosomal RNAs (rRNA), 

these novel ncRNAs are not directly involved in producing proteins. Instead, they are implicated 

in a wide variety of regulatory mechanisms, including transcriptional regulation, chromosome 

replication, RNA processing and modification, modulation of messenger RNA stability and 

translation, and even protein degradation and translocation (for review see Storz 2002). 

Although a vast amount of genomic sequence is publicly available, it is unknown how many 

ncRNAs there are in different organisms. Much evidence suggests that there are still many 

unannotated ncRNA genes in mammalian genomes. For example, a survey on human 

chromosomes 21 and 22 suggests that much of the human transcriptome could be transcripts of 

ncRNA genes (Kampa et al. 2004). Based on functional annotation of experimentally defined 

transcription units, it was claimed that as much as one-third of the mammalian transcriptome 

might consist of ncRNA genes (Okazaki et al. 2002). In addition to ncRNA genes, there might be 

other functional RNA elements that are hitherto undiscovered. For example, some cis-regulatory 

RNA motifs are known to regulate prokaryotic and eukaryotic gene expression at the 

post-transcriptional level, however their abundance, distribution, and possible classifications are 

generally unknown (for review see Kozak 2005). 

Systematic ncRNA finding in complex organisms such as vertebrates is difficult. Although 

experimental approaches can collect thousands of transcripts efficiently, ncRNAs, as well as 

mRNAs, with low expression levels or with temporal expression patterns may be absent from 

experimental preparations. At the same time, most gene finding algorithms have been designed 

to predict protein-coding genes, not ncRNAs. Algorithms for ab initio prediction of 

protein-coding genes take advantage of propensities in base composition of protein-coding 
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regions. These propensities, including usage of amino acids, usage of synonymous codons, and 

usage of hexamers (for review see Rogic et al. 2001), cannot be used to distinguish ncRNAs 

from random genomic sequences. Although signals that are not specific to protein-coding genes, 

such as patterns of splice sites and polyadenylation signals, have also been used by many ab 

initio gene finders, many of these signals do not exist in genomic loci of single-exon ncRNAs, 

non-polymerase-II transcribed ncRNAs, and non-polyadenylated ncRNAs. Recently attempts 

have been made to use the information from comparative genomics to boost the accuracy of ab 

initio gene finding in vertebrate genomes (for review see Brent 2005). However, the 

development of similarity-based gene finders has also focused on the prediction of 

protein-coding genes. 

Compared to computational protein-coding gene finding, computational ncRNA finding has 

been a relatively neglected field until recently. Before discussing the reasons that may contribute 

to the slow progress of genome-wide ncRNA finding (see section 1.4. ), some basic knowledge 

of the biological importance of ncRNAs is required and is therefore introduced in the next 

section. 

1.1. What are ncRNAs 

An RNA (ribonucleic acid) molecule is a chain of ribonucleosides that are covalently linked. 

The only compositional difference between RNA and DNA (deoxyribonucleic acid) molecules is 

the use of ribose sugar in RNA, instead of 2’-deoxyribose sugar in DNA (Figure 1-1), and for 

one of the four bases the use of uracil instead of thymine. 
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Figure 1-1. Organization of repeating units in RNA and DNA respectively. 

As early as the 1960s, it was known that cells contained RNA genes that did not code for 

proteins. The transcripts of these RNA genes are called ncRNAs. Classic ncRNAs, such as 

tRNAs and rRNAs, were considered as adaptors and scaffolds respectively for protein 

production. For a long time, DNA attracted much more attention than RNA, because the latter 

did not seem to possess specifically useful features. For example, RNA molecules are more 

easily degraded in solution than DNA molecules. In addition, an initial impression was that RNA 

might not provide as much structural flexibility as DNA, since RNA helices appear to be more 

rigid than DNA helices due to the physical constraints rendered by the 2’-hydroxyl group of the 

ribose sugar (see Varani and Pardi 1994). 

Nonetheless, RNA-unique features do enable ncRNAs to be functionally active molecules. 

Firstly, the 2’-hydroxyl group on the ribose sugar, which is the culprit for RNA’s easy 

degradation in solution, blesses RNA with high chemical reactivity. As a result, RNAs can 

catalyse chemical reactions without the assistance of proteins. For example, group I and II 

introns can perform the functions of spliceosomes by RNA alone (Cech et al. 1981; Kruger et al. 

1982). The ability of RNA to catalyze chemical reactions has made many people believe that 
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there

olecules can be 

func

found (Okazaki et al. 2002; Ota et al. 2004; Carninci et al. 2005; Ravasi et al. 2006). These 

 was an ancient RNA world before the current DNA-and-protein-dominant world (for 

review see Joyce 2002). Recent evidence also suggests that ncRNAs may be responsible for core 

mechanisms, such as catalyzing the formation of peptide bonds in protein synthesis in all 

organisms (Nissen et al. 2000; Schmeing et al. 2002), and catalyzing the splicing of pre-mRNAs 

in eukaryotes (For review see Will and Luhrmann 2001). 

Secondly, single-stranded RNA molecules can fold into high-order structures (see section 

1.2. for details). Some people believe that the complexity of RNA structures is comparable to 

that of proteins (see Klosterman et al. 2004). A variety of regions in RNA m

tional elements that interact with other molecules. For instance, both the double-stranded 

regions and single-stranded regions in folded RNA molecules have been reported as important 

protein-binding motifs (see Varani and Pardi 1994). 

In recent years, novel regulatory functions have been found to be associated with ncRNAs. 

For example, conservation of a microRNA (miRNA), let-7, and conservation of its targets were 

found in diverse animals (Pasquinelli et al. 2000; Slack et al. 2000). miRNAs, which are 20-26 

bases in length, can regulate expression of other genes by inducing translation repression or 

degradation of target mRNAs (for review see Bartel 2004). With pure experimental approaches 

and also strategies assisted by in silico comparative genomics, many novel miRNAs have been 

discovered (see Grosshans and Slack 2002; see Bentwich et al. 2005) and the number of unique 

miRNAs is still growing (Griffiths-Jones et al. 2006). 

One stereotype about ncRNA genes is that they are much shorter than protein-coding genes, 

because the lengths of all classic ncRNA genes are shorter than 400 bases. The same rule seems 

applicable to other novel ncRNAs such as miRNAs. Nonetheless, evidence suggests that short 

ncRNA genes might not cover all the hidden ncRNA mass in mammalian genomes. In addition 

to short and structural ncRNA genes, thousands of mRNA-like ncRNAs (nc-mRNAs) have been 
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nc-mRNAs can be several kilo bases in length and their gene structures may contain introns. 

Little is known about their functi

ion regulation (for review see Kozak 2005), etc. For example, rho-independent 

transcriptional terminators, which are believed to be composed of a stable hairpin and a 

the 3’ boundaries of polycistronic transcription units in E. coli 

and 

ons except that they do not appear to code for proteins. Existing 

evidence suggests that nc-mRNAs may be implicated in important regulatory mechanisms. One 

example is H19, which encodes a 2.3-kb nc-mRNA that appears to influence growth (for review 

see Arney 2003) and may behave as a putative tumour suppressor gene (Matouk et al. 2007). 

Besides, some mammalian nc-mRNAs, which have been shown to be antisense to normal 

transcripts of protein-coding genes (Katayama et al. 2005), seem capable of interfering with 

transcription or mRNA stability of protein-coding genes. However, it is still unknown whether 

these noncoding transcripts can escape the surveillance of the nonsense-mediated decay (NMD) 

system which can eliminate aberrant transcripts with premature stop codons (for review see 

Weischenfeldt et al. 2005). The discovery of nc-mRNA transcripts has brought us more 

questions than answers to the roles of ncRNAs in vertebrates. 

In addition to recently discovered regulatory roles of many ncRNA genes, RNA motifs in 

transcripts have long been known as important regulators of gene expression. Cis-regulatory 

RNA motifs can regulate transcription termination, mRNA decay (for review see Steege 2000), 

translat

uridine-rich region, can determine 

in B. subtilis (Farnham and Platt 1981; Ingham et al. 1999). Recently, novel ncRNA motifs 

in bacterial transcripts have also been found to form switch controls of gene expression, which 

can respond to concentration changes of small metabolites (Mandal et al. 2003; Nahvi et al. 

2004). Cis-regulatory RNA motifs are also implicated in the efficiency of translation initiation 

(for review see Lopez-Lastra et al. 2005) and the decay of mRNAs (Ringner and Krogh 2005) in 

eukaryotes. The word ncRNA is actually a common name for diverse classes of 

non-protein-coding genes and versatile functional elements in transcripts. For simplicity, both 

 



6 Chapter 1. Introduction
 

ncRNA genes and intragenic RNA motifs are generally referred to as ncRNAs in the rest of this 

thesis. 

or genome-wide ncRNA 

finding (Rivas et al. 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 2005). 

tatus of genome-wide ncRNA finding 

(see section 1.4. for details),

structures are introduced in section 1.3.  

1.2.

1.2. RNA structures 

One of the most important characteristics of many ncRNAs is their capability to fold into 

high-order structures. It is widely believed that conservation of structure is more important than 

of primary-sequence motifs for ncRNA function. Features of RNA structures, such as folding 

stability and multi-species conservation of structures, have been used f

Consequently, before further discussion of the current s

 it is necessary to give an overview of RNA structures and available 

algorithms for RNA structure prediction. 

RNA folding seems to be a hierarchical process: initially secondary-structure motifs form in 

the primary sequence, and then tertiary structures are formed through interactions between 

secondary-structure motifs (see Onoa and Tinoco 2004). Although the details of RNA folding 

may require further refinement, this hierarchical view has been a useful guideline for studying 

and predicting RNA structures. RNA secondary-structure motifs are introduced in subsection 

1.2.1. and RNA tertiary-structure motifs are introduced in subsection 1.2.2. Algorithms for 

predicting RNA 

1. RNA secondary-structure motifs 

Similar to DNA double helices, RNA can form anti-parallel helices (see Westhof and 

Michel 1994). By and large, RNA helices are held together by the hydrogen bonds formed 

between Watson-Crick base pairs. In addition to standard types of A-U and G-C pairs, G-U type 

pairs are frequently seen in RNA helices and are regarded as valid wobble pairs. Base pairs other 
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than A-U, G-C or G-U are regarded as non-canonical in RNA helices. Non-canonical base pairs 

are not letely prohibited from real-world RNA secondary structures and may play key roles 

in tertiary interactions (for review see Gutell et al. 1994). They may also serve as specialized 

sites for interacting with other macromolecules, such as proteins (for review see Hermann and 

Westhof 1999). 

Whereas DNA double helices preferably adopt B-form structures in solution, RNA helices 

adopt mainly A-form structures. Due to the presence of a 2’-hydroxyl group of each RNA ribose 

sugar, each ribose should assume the 3’-endo conformation to avoid steric clashes beween the 

2’-hydroxyl group and the C8 atom (of the purine) or C6 atom (of the pyrimidine) that are 

attached to the ribose (see Neidle 2002). No B-form RNA helices have ever been reported. 

Cons

comp

equently, the thermodynamic parameters for RNA helices are different from those of DNA 

helices. 

(A) (B) 

 

 

RNA helices can be formed either intra-molecularly or inter-molecularly, although 

inter-molecular helices are not further discussed in this thesis. Only the features of the secondary 

structures formed intra-molecularly are of interest, because inter-molecular interactions are 

currently not used for genome-wide ncRNA finding. 

Figure 1-2. Elements of RNA secondary structures 
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When an RNA molecule fold back on itself, a number of paired regions may form. All the 

base pairs form

 structure is referred to as a stem. 

RNA secondary structure, a series of names can be used to 

describe them according to their respective relations to the nearest neighbouring stems. A 

“hairpin loop” is the terminal unpaired region of a stem (Figure 1-2, hairpin loop). A “bulge 

loo tide is on one strand of a stem, while all 

rib  

loo o stems, is formed when there is at least one unpaired 

ribonucleotide on each strand (Figure 1-2, interior loop). 

A hairpin loop together with its nearest stem is referred to as a hairpin. The formation of 

hairp

ed intra-molecularly at the secondary-structure level are supposed to obey the 

nested rule: for any two base pairs, i-j and k-l, where i < j, k < l, and, i < k, the order of the 4 

bases should be either i < k < l < j (Figure 1-2, A) or i < j < k < l (Figure 1-2, B). A region of 

continuous base pairs in an RNA secondary

For the unpaired regions in an 

p” is a region where at least one unpaired ribonucleo

onucleotides on the opposite strand are base paired (Figure 1-2, bulge loop). An “interior

p”, which linearly separates tw

ins is possibly one of the most fascinating features of ncRNAs. One of the best known 

examples of hairpins is that of tRNA which has a canonical cloverleaf-like secondary structure 

(Figure 1-3). 
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 for RNA molecules 

to fold into functional tertiary structures. Well known RNA tertiary-structure motifs include base 

etc. (see Tamura et al. 2004). Predicting the 

complete tertiary structure of ncRNAs is not investigated in this thesis, because determining it 

using pure computational approaches is very difficult and it is not essential for the algorithms 

devoted to simply finding ncRNAs in genomes. 

There are a number of reasons for the prediction of ncRNA tertiary structures being difficult. 

Firstly, the interactions between interacting strands of RNA molecules do not always adhere to 

the Watson-Crick base-pairing rule (for review see Leontis and Westhof 2003). Secondly, the 

interaction rules governing the formation of tertiary-structure motifs have still not been studied 

in detail. Thirdly, the computational complexity of predicting RNA tertiary structures is much 

high

Fi

1.2.2. RNA tertiary structures 

Specific combinations of RNA secondary-structure motifs are necessary

gure 1-3. The cloverleaf-like secondary structure of a tRNA 

This diagram of the cloverleaf-like secondary structure of a human Lys-tRNA is plotted by RNAplot of 
ViennaRNA package (Hofacker 2006). The human Lys-tRNA sequence is retrieved from 
NCBI35:Chr11:59080478-59080550. 

triples, kissing hairpin loops, ribose zippers, 

er than that of predicting RNA secondary structures (see subsection 1.3.3.3. ). Therefore 
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only those tertiary-structure motifs that can be simultaneously predicted by existing 

secondary-structure prediction algorithms are covered in the next two subsections (1.2.2.1. and 

1.2.2.2. ). 

1.2.2.1. Co-axial stacking 

A quasi-continuous helix can be formed when two adjacent stems stack co-axially. For 

instance, in the final inverted L-shaped conformation of tRNAs, there are two co-axial stackings: 

one is between the acceptor arm and the T arm (Figure 1-3) and the other is between the D-arm 

and the anticodon arm (Figure 1-3). 

Co-axial stacking is an important force to guide secondary-structure motifs of an RNA 

molecule to

tructures (Walter et al. 

onsideration can be useful for 

improving the predictions of RNA secondary structures (Walter et al. 1994). 

 fold into functional tertiary structures. Co-axial stacking proved to enhance the 

stability of RNA secondary structures (Walter et al. 1994). Besides, co-axial stacking may be 

important for stabilizing the multi-loop junctions in RNA secondary s

1994). Evidence suggests that taking the co-axial stacking into c

1.2.2.2. Pseudoknots 

 

A pseudoknot is defined as a double-stranded region, which is formed between the loop 

Figure 1-4. Non-nested base pairs in a pseudoknot 
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region of a hairpin and the single-stranded region outside this loop (Figure 1-4). The first 

experimental example of pseudoknots was found at the 3’ end of turnip yellow mosaic virus 

 stems at the 

seco

portant roles, such as forming the 

catalytic core of ribozymes, binding of regulators for translation, and inducing ribosomal 

frameshifting in m

stances, such as fluctuations 

of li

or details see subsection 1.3.1.2. ) and in 

(TYMV) RNA (Rietveld et al. 1982). The nested rule of base pairs in

ndary-structure level (for details see subsection 1.2.1. ) is broken by the formation of base 

pairs in pseudoknots. Developing prediction algorithms that consider pseudoknots is 

considerably harder because of this. A pseudoknot is sometimes categorized as a 

secondary-structure motif, because it can be decomposed into individual hairpins. However, due 

to the relationships between base pairs in a pseudoknot, pseudoknots are sometimes classified as 

tertiary-structure motifs. 

Pseudoknots have been found to play diverse and im

any viruses (see Staple and Butcher 2005). 

1.2.3. The dynamic aspect of RNA structures 

Instead of regarding RNAs as static molecules consisting of static stem-loop structures, a 

“dynamic” view should be considered. One RNA molecule can potentially fold into various 

conformations (see Flamm et al. 2000). In response to certain circum

gand concentrations (Mandal et al. 2003), or particular ionic strength (Olson et al. 1976; 

Rangan and Woodson 2003), RNA molecules may fold into alternative structures. Besides, 

interaction of RNA molecules with other macromolecules can induce conformational changes 

(Rould et al. 1991; Cavarelli et al. 1993). Post-transcriptional modification of ncRNAs can also 

affect the stability of RNA structures (for review see Helm 2006). Prediction strategies for 

ncRNAs should therefore take into account the potential for RNA molecules to adopt alternative 

structures under different conditions. This is considered further when developing loop-dependent 

rules for predicting RNA secondary structures (f
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locat

onsistent across all research fields. For example, “RNA motifs” in structural biology 

specifically refer to combinations of non-Watson-Crick base pairs that enable the phosphodiester 

ds (see Leontis and Westhof 2003). 

1.3. Prediction of RNA structures 

004). Besides, 

ncRNAs can be larger than the size at which current nuclear magnetic resonance (NMR) 

methods can work effectively (see Lukavsky and Puglisi 2005). 

Given these limitations, computational methods can be valuable, especially when the 

lengths of the ncRNAs of interest are longer than 100 bases, which is the upper limit for NMR 

RNA structure determ w see Riek et al. 2000). The pre iction of RNA structu

is of

ing local hairpins for creating models of RNA motifs (for details see subsection 4.2.1.1. ). 

1.2.4. The definition of “RNA motifs” used in this thesis 

In the remainder of this thesis, “RNA motifs” are used to describe combinations of 

primary-sequence motifs and stem-loop structures, where stem structures consist mainly of 

Watson-Crick base pairs. However, it should be noted that the exact meaning of this term might 

not be c

backbones of interacting RNA strands to form distinctive fol

Although experimental approaches are available for determining structures of RNA 

molecules (for review see Neidle 2002), there are certain limitations. For example, X-ray 

crystallography can provide high-resolution structural information, however the process of 

crystallization is a slow process and not very predictable (see Ke and Doudna 2

ination (for revie d res 

ten narrowed down through first predicting RNA secondary structures. One reason is that 

RNA tertiary structures seem to be held by tertiary interactions between secondary-structure 

motifs. It is generally believed that with reliable predictions of secondary structures, it should be 

possible to infer the tertiary structures, although as discussed in 1.2.2. predicting complete RNA 

tertiary structures is not the objective of this thesis. 

  



1.3. Prediction of RNA structures 13
   

Intuitively, predicting RNA secondary structure is similar to finding the alignments between 

two nucleic acid sequences, except that in this case the aligned strand is composed of 

complementary bases rather than identical or similar bases. Various algorithms have been 

designed for predicting RNA secondary structures. These algorithms can be generally 

categorized into three classes: minimization of free energy, phylogenetic comparative analysis, 

and probabilistic models. These algorithms are introduced in subsections 1.3.1. , 1.3.2. , and 

1.3.3.  

1.3.1. Minimization of free energy (MFE) 

1.3.1.1. Base-pair dependent energy rule 

Energy minimization is one of the favourite ab initio methods for predicting RNA 

secondary structures. The first algorithm that was introduced is the base-pair dependent energy 

rule (Nussinov and Jacobson 1980). In this energy model, formation of hydrogen bonds for each 

base pair is assumed to be independent from its neighbouring base pairs. The overall energy is 

expressed as of the sum of energies of individual base pairs in an RNA molecule: 

E(S) = ∑
Sinji

jie
.

),(  [1.1]

he 

recu

W(i, j) = optimal [1.2]

where W(i, j) is the minimum folding energy for the region from base i to base j in a given 

RNA sequence. In [ an pair with base j, e(i, j) r  pairing ene

(presumably some negative values), positive infinity otherwise. “k” is sometimes called the 

branching site, because sequence i to j is divided into two parts: i to k – 1, and k to j. In real 

hairpins, short-range base pairs are not permitted due to sterical hindrance. If (j – i) is smaller 

The optimal solution can be found by using a dynamic programming algorithm. T

rsion for this can be written as 

⎩
⎨
⎧

≤<+−
+−+

jkijkWkiW
jiejiW
),,()1,(

),()1,1(
 

1.2], if base i c eturns the rgy 
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than 4, W(i, j) returns positive infinity. The time complexity of the recursion is O(N3), where N is 

the length of each sequen lso be used to find the structure with the maxim

number of base pairs for any given RNA molecule, if used with an energy function e(i, j) that 

returns 1 when base i and base j are paired, and 0 otherwise. 

However, based on b l data, it has been generally accepted that the thermodynam

stability of a base pair depends on the identity of nearest neighbours (for review see Borer et al. 

1974). This rule is also termed as the individual nearest-neighbour (INN) rule (Gray 1997). 

Clearly, the base-pair dependent energy rule is not compatible with t  INN rule, because 

energy term, e(i, j), considers only the energy contributed by formation of hydrogen bonds 

between base 

ce. W(i, j) can a um 

iochemica ic 

he the 

i and j, but not the energy contributed by the stacking of neighbouring bases.  

1.3.1.2. Loop-dependent rule 

The first free-energy formulation that takes dependence of base pair energy on nearest 

neighbours into consideration is the loop-dependent rule. The main idea is to decompose an 

RNA secondary structure into combinations of individual hairpins (Zuker and Stiegler 1981): 

E(S) = )(),( extLejie +
. Sinji
∑  [1.3]

, where Lext is the structure that may fold by sequence outside the range between i and j. 

⎪

++
<≤

),1(),( jkWkiWoptimal
jki

The optimal solution can be found by using a dynamic programming algorithm. The 

recursion is: 

W(i,j) = optimal ⎪⎨

⎧
−

+

),(
)1,(
),1(

jiV
jiW

jiW

 [1.4]

⎪
⎪

⎩
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V(i,j) = optimal 

⎪
⎪
⎩

⎪
⎨

⎧

),(
),(

),(

jiVM
jiVBI

jih

 [1.5]

 

VBI(i,j) = ),(),,,(
2

lkVlkjiebioptimal
ljik

−++ )1,1(),( jiVjis⎪

jlki
+

>−+−

 
<<< [1.6]

 

VM(i,j) = )1,1(),1(
1

−++++
−<<

jkWkiWoptimala  [1.7]

W(i, j) is similar to the energy term in the recursion for the base-pair dependent energy rule 

(see subsection 1.3.1.1. ). V(i, j) is the minimum energy for sequence i to j, when base i can pair 

with base j. There are several cases for V(i, j): 1) base pair i-j closes a hairpin loop and h is the 

energy for this loop; 2) base pair i-j stacks on base pair (i+1)-(j-1) and s is the stacking energy; 3) 

base pair i-j closes a bulge or internal loop and the energy for this loop is VBI; 4) base pair i-j 

closes a multi-loop and VM is the energy for this situation, where a is the energy penalty for 

opening a multi-loop. In VBI [1.6], ebi denotes the loop region closed by base pair i-j and 

containing base pair k-l. 

The computational complexity of [1.7] is O(N

jki

ditional constraint, where (k - i + j – l) must be 

no greater than some fixed number, can be added. Lots of extensions have been made to include 

ismatched pair stacking, coaxial helix 

stack

3), and the complexity of [1.6] is O(N4). In 

order to limit the time complexity of [1.6], an ad

additional energy terms, such as single-base stacking, m

ing (Walter et al. 1994; Rivas and Eddy 1999), empirical rules, and pseudoknots (Rivas and 

Eddy 1999). 

The general problem of predicting pseudoknots has been proven to a non-deterministic 

polynomial (NP-complete) problem (Lyngso and Pedersen 2000). Several algorithms are now 
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available for predicting optimal pseudoknot-inclusive structures under certain constraints (Rivas 

and Eddy 1999; Dirks and Pierce 2003; Matsui et al. 2004). However using these algorithms, 

predictions of some complex cases, such as interlaced pseudoknots, are not guaranteed to be 

optimal. Besides this, the computational complexities in time and space can be as high as O(N5) 

and O(N4) respectively. Therefore, only simple pseudoknots in short RNA sequences can be 

predicted within a reasonable period of time using these approaches. 

1.3.1.3. Considerations when using MFE based approaches 

One concern about using MFE based approaches to predict RNA secondary structures is its 

high error rate. It is suggested that only 50% – 70% of base pairs in RNA secondary structures 

can be correctly predicted by using minimization of free energy (Eddy 2004). Several reasons 

account for this situation. Firstly, thermodynamic parameters are not complete. Not all possible 

combinations of sequences in loops, stacked bases, etc. have been experimentally evaluated. 

Secondly, structures with minimal free energies are not necessarily the biologically functional 

ones (Konings and Gutell 1995; Fields and Gutell 1996). In order to address this problem of 

alternative structures, programs such as MFOLD (Zuker 1989) were designed to predict multiple 

alternative, but less stable, secondary structures for one RNA molecule. MFOLD can also use 

experimental results as folding constraints (Zuker 1989). Further experiments can be designed to 

test predictions and feed back into the prediction process. This iterative process is very useful in 

the determination of RNA secondary structures. 

1.3.2. Phylogenetic covariation analysis 

Unlike MFE based methods, which can be used on a single sequence, phylogenetic 

covariation analysis depends on alignments of multiple related sequences. These could be either 

expressed ncRNA or genome sequence and could be from different species or from paralogous 

regions within a single genome. The approach takes compensatory mutations (covariations) 
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found within these alignments as indicators of conserved double-stranded regions. The basic 

assumption is that the functions of ncRNAs depend more on high-order structures than on 

primary sequences. Therefore compensatory mutations that preserve the pairing potential in 

helices can support the existence of conserved structures. Conversely, if the mutations that are 

found in naturally existing hom

ber of covariations in ncRNA homologues is small, the 

information content may not be sufficient to validate putative stem regions. This paradox is also 

applicable to other algorithm

ches for RNA sequence analysis 

ologues can destabilize the putative helical regions, the structures 

are unlikely to be truly functional in vivo. 

Phylogenetic covariation analyses have been successfully applied to the elucidation of the 

structures of rRNAs, class I and class II introns, and snRNAs (James et al. 1989). Putative 

covariations can also be used as constraints in running programs using MFE to refine the 

predicted structure (Shanab and Maxwell 1991). This approach has been demonstrated to be one 

effective approach for determining the higher-order structures of large RNAs (Gutell et al. 1994) 

A phylogenetic covariation analysis for RNA secondary structure prediction depends on 

appropriate alignments of homologous sequences. If functionally related ncRNAs are really 

divergent, too many mutations may prevent us from obtaining optimal alignments for structure 

predictions. On the other hand, if the num

s that use comparative genomics for ncRNA finding. The suitability 

of using comparative genomics for genome-wide ncRNA finding is further investigated in 

subsection 1.4.2. and in chapter 2. 

1.3.3. Grammatical approa

Ideas from computational linguistics have been applied to RNA secondary structure 

analysis. One important example is the application of stochastic context-free grammars to RNA 

structure (RNA SCFGs) (Eddy and Durbin 1994; Sakakibara et al. 1994), which provide a way 

to perform probabilistic modelling of RNA secondary structures. SCFGs are a stochastic version 
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of context-free grammars, which correspond to the second level of the Chomsky hierarchy of 

transformational grammars (Chomsky 1959). Other grammar-based approaches have also been 

proposed to model limited types of RNA tertiary-structure motifs. Before further discussing 

grammar-based RNA analysis, I introduce some basics of computational linguistics. 

In computational lingu

gramm

S Æ aS |

istics, an important task is to determine whether an observed string is 

atically correct. The Chomsky hierarchy of transformational grammars (Chomsky 1959) 

provides a general theory for modelling strings of symbols. A transformation grammar can be 

considered as a device that can generate strings of symbols. A transformational grammar consists 

of several components: 1) a finite set of terminal symbols; 2) a finite set of nonterminal symbols; 

3) a finite set of production rules. Terminal symbols correspond to the actual symbols that may 

appear in a string that can be observed in a particular language. Nonterminals can be transformed, 

by a production rule, into a new string of terminals and/or nonterminals. Transformational 

grammars are also called generative grammars because of their capability of generating strings of 

symbols. Here is an example of a simple generative grammar in which there is only one 

production rule: 

ε . 
 

 is a nonterminal; a is a terminal;S ε  is a special terminal to represent an empty string; “Æ” 

means transformation; a vertical bar means “or”. This production rule says that a nonterminal S 

can be transformed into aS or ε . Such a simple generative grammar is capable of generating 

strings consisting of a’s of any length. 

y incorporating more nonterminals and more terminals into a generative grammar, a string 

of symbols with a more complicated structure can be modelled. An important feature of the 

Chomsky hierarchy is its capability to model a variety of strings with different levels of 

struc ural complexities. In computational linguistics, “structure” is used to indicate the 

B

t
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correlations between different symbols in a string. In order to model structures of different 

complexities, Chomsky described four levels of restrictions on the production rules. Accordingly, 

transformational grammars are classified into four classes, which form the Chomsky hierarchy of 

transformational grammars. The Chomsky hierarchy can be expressed in a set inclusion form: 

regular  context-free  context-sensitive  unrestricted. 
 

The ordering in this hierarchy indicates the relative descriptive power of the grammars. The 

grammars on the left-hand side are more restricted than the ones that are on the right-hand side. 

Regular grammars, which are the most restricted and lowest level of the Chomsky hierarchy, 

allows production rules only in the form of “W Æ aS”, “W Æ a”, or “W Æ

⊂ ⊂ ⊂

ε ”, where W and S 

can be any nonterminals and terminals, respectively. ε  is an empty string. Regular grammars 

er 

that can be folded in an RNA molecule. In the next two subsections, I introduce the 

dary structures and for finding related 

RNA

 

 

 

 

can generate any strings. However, regular grammars are unsuitable for describing high-ord

correlations, such as the nested pairwise correlations (Figure 1-5 A) in the secondary structures 

grammar-based approaches for determining RNA secon

 sequences in sequence databases, respectively. 
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(A) 

 

(B) 

 

Figure 1-5 Two representations of the pairwise correlations in an RNA molecule with two non-interlaced hairpins 

pairwise correlations in (A)  
(A) The nested pairwise correlations formed in an RNA molecule with two hairpins (B) The parse tree of the nested 

1.3.3.1. SCFG-based RNA secondary structure analysis 

Context-free grammars, which are a higher level in the Chomsky hierarchy than are regular 

grammars, have been used to model the RNA secondary structures. For instance, any stems in 

RNA secondary structures, such as the arms in figure 1-3, can be generated by the following 

production rule that adheres to CFGs: 

S Æ aSu | cSg | gSc | uSa | gSu | uSg |ε . (paired production) 
 

S Æ aS | cS | gS | uS, or (left unpaired production) 
 

S Æ S

Bulges or loops in RNA secondary structures can be generated by  

a | Sc | Sg | Su. (right unpaired production) 
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Taking the RNA secondary structures in Figure 1-2 as the example, the hairpin loops can be 

generated by left unpaired productions; the bulge shown on the right-hand side of Figure 1-2 B 

can be generated by right unpaired productions. 

For the cases where there are multiple hairpins folded by an RNA molecule, as in the case 

in Figure 1-5 A, a rule of bifurcation is required: 

 
S Æ SS. (bifurcation) 

The secondary structure of an RNA molecule can be represented as a so-called parse tree 

(Figure 1-5 B). 

h  

 

production rules (Durbin et al. 1998). 

sequence can be generated by this gramm

RNA seque

structure) is the m

form of RNA CFGs. In stochastic SCFGs, probabilities can be assigned to different production 

rules. Fo

but should be generated with a lower frequency 

probabilities of different production rules, including bifurcations, paired production, and 

unpaired productions, can be estimated from the known secondary structures folded in 

well-studied RNA sequences. 

The RNA CFG described above essentially follows the base-pair dependent rule, which is 

used in the Nussinov’s algorit m for predicting RNA secondary structures. In terms of predicting 

the RNA secondary structure for an RNA sequence, a better energy rule, as suggested at the end 

of subsection 1.3.1.1, is the individual nearest-neighbour rule. An RNA CFG can also be 

extended to follow the INN rule by incorporating more nonterminals and modifying the original 

One problem with using an RNA CFG is that it is only possible to decide whether an RNA 

ar. In the cases where many parse trees exist for an 

nce given an RNA CFG, it is impossible to determine which tree (i.e. secondary 

ost probable one. One solution to improve this situation is using a stochastic 

r instance, in an RNA SCFG, non-Watson-Crick G-U pairs are accepted in RNA helices 

than Watson-Crick G-C and A-U pairs are. The 
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In se an RNA SC e RNA secondary structures, we need algorithms 

that can align sequences to the grammar. The thms include the 

Cocke-Younger-Kasami (CYK) e inside-outside

(Durbin et al. 1998) can be used to find the most probable parse tree for a sequence given a 

SCFG he inside-outside algori u in et al. 1998) can lculate the probability 

f a sequence with an RNA SCFG. For predicting RNA secondary structures, both the CYK and 

insid

The score of a sequence X is often given as a log-odds ratio, log (P(X τ

 order to u FG to determin

relevant algori

algorithm, th  algorithm, etc. The CYK algorithm 

. T thm (D rb  be used to ca

o

e-outside algorithms have the same the algorithmic complexity as the Zuker’s algorithm 

does (see subsection 1.3.1.2).  

∧

, |θ )/P(X|φ )) (Durbin 

et al. 1998). P(X,
∧

τ |θ ) is the probability of a sequence and the best alignment given an RNA 

SCFG. This probability, P(X,
∧

τ |θ ), is calculated by multiplying together the probabilities of the 

∧

productions chosen to generate the best alignment ( ) of X to the RNA SCFG τ θ . P(X |φ ), is the 

probability of generating X by a null (random) model φ . When base-2 logarithms are used to 

calculate the log-odds ratios, scores are reported in bits and are so called bit scores. 

1.3.3.2. RNA covariance models 

SCFGs can be applied to searching for the homologous members of a family of related 

RNAs in a sequence database. One approach is the “covariance model” (CM) (Eddy and 

Durbin 1994), which is so named because it can describe the compensatory mutations 

(covariations) in the consensus secondary structure of homologous ncRNAs. 

ily:  

Given an alignment of related RNAs that share a common structure like the one in Figure 

1-5 A, a very simple CM can be written as an ordered list of production rules to model this 

RNA fam
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 Stem 1 Stem 2 
S0 Æ S1S
 S2 Æ gS3c… S9 Æ gS10c… 

 S4 Æ aS5… S10 Æ cS11g… 

 7Æ

8 S1 Æ cS2g … S8 Æ aS9… 

 S3 Æ gS4c… S10 Æ uS11g… 

 S5 Æ uS6… S12 Æ uS13… 
 S6 Æ aS7 … S13 Æ uS14… 

S   ε  
  S

S14 Æ aS15… 
15 Æ ε  

 

In a CM, one nonterminal is needed for each singlet base and one nonterminal is needed for 

each base pair. Therefore the number of nonterminals in a CM is about linearly proportional to 

the l

The parameters of a CM can be estimated from a curated RNA sequence alignment, which 

should reveal the consensus secondary structure of a family of related RNAs. For instance, the 

probabilities of different singlet bases and base pairs are calculated per column in the sequence 

alignment, and are used as the parameters in the production rules of a CM. 

1.3.3

ength of the alignment. A pairwise production that is in the form “V Æ aWb” should have 16 

pair emission probabilities; a leftwise or rightwise production, such as “V Æ aW” or “V Æ Wa”, 

should have 4 singlet emission probabilities. In the rules above, only one production per 

production rule is listed and other possible productions are omitted (as indicated by “…”) for 

simplicity. In a practical CM that can be used to search for RNAs in a sequence database, further 

modification of the production rules is required. For example, additional nonterminals and 

productions for modelling insertions and deletions may be required in either pairwise production 

rules or singlet production rules. 

.3. Modelling high-order RNA structures using grammar-based approaches 

SCFGs are suitable for modelling the nested base pairs in RNA secondary structures. 

However, in higher-order RNA structures, the interactions between bases may not follow the 

nested rule. 
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In RNA tertiary structures, there m  ay be crossing interactions such as: 

 

Figure 1-6. A crossing interaction that may be found in RNA tertiary structures 

One example is RNA pseudoknots, as the one shown in Figure 1-4. In the standard forms of 

the grammars from the Chomsky hierarchy, context-sensitive grammars (CSGs) are required to 

mod

Attempts have been made to apply grammars, whose computational complexity lies 

between CFGs and CSGs, to the modelling of RNA pseudoknots and some limited forms of 

RNA tertiary-structure motifs. Crossed-interaction grammars (CIGs) (Rivas and Eddy 2000) are 

 rearrangement 

rules. It is the set of rules that make CIGs different from CFGs. The rearrangement rules apply to 

reorder the terminals only after all the conventional CFG-compatible nonterminals have been 

used to generate terminals. A rearrangement rule consists of a zero-length hole string  and a 

set of special nonterminals. The hole string 

el such structures. CSGs can reorder the nonterminals according to their local context and 

thus can generate strings of symbols that contain crossing dependence. However, the general 

problem of parsing strings that are generated by CSGs is a nondeterministic polynomial problem 

(NP-complete problem) (Durbin et al. 1998). 

an example. In addition to the production rules of CFGs, a CIG also has a set of

∧

∧  is used to indicate the possible points that can be 

inserted by another string. Special nonterminals, including × , (, and ), are used to specify how 

symbols should be rearranged. 
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Here is an example of how a complicated pseudoknotted structure can be derived (“⇒ ” is 

used to represent a rearrangement.): 

((a 

R

 

∧  a) ×  (b ∧  b ×  a ∧  a)) ⇒
R

 

a ∧  a ba ba  

aba aba. 

i 

et al. 2004; Chiang et al. 2006) have also been applied to RNA sequence analysis.  

6 4

5

pletely new field. Based on 

RNA secondary structure prediction algorithms described above (section 1.3. ), many ad hoc 

ne of the 

most successful cases is genom

×  ∧  ⇒
R

 
 

CIGs are not the only grammars that can be used to model high-order RNA structures. In 

recent years, the variant forms of tree adjoining grammars (TAGs) (Uemura et al. 1999; Matsu

∧  

A major consideration in applying these grammars to genome-wide RNA analysis is high 

computational complexity. The time complexity and storage complexity of parsing the CIG 

above is O(n ) and O(n ), respectively, where n is the length of the string. The time complexity 

of parsing a TAG variant, which has the capability of modelling RNA secondary structures 

including pseudoknots, is O(n ) (Uemura et al. 1999). If more complicated crossed interactions 

are allowed, the required computational complexity can be even higher (Rivas and Eddy 2000; 

Chiang et al. 2006). 

1.4. Current state of genome-wide ncRNA finding 

Computational detection of ncRNAs in genomes is not a com

ncRNA finders have been designed to predict specific classes of ncRNAs in genomes. O

e-wide tRNA finding. For example, tRNAscanSE can identify 

99%-100% tRNA genes in genomic sequences with very low false positive rate (Lowe and Eddy 
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1997). In addition, many programs can predict miRNAs in genomes with impressive specificities 

and sensitivities. (Ohler et al. 2004; Nam et al. 2005; Xue et al. 2005). In general, once a few 

sequences of a particular ncRNA family are available, probabilistic models that describe the 

statistical features of both primary-sequence and structural motifs can be derived (Eddy and 

Durbin 1994; Sakakibara et al. 1994; Gautheret and Lambert 2001). One widely used 

probabilistic model of structural motifs is the covariance model (CM) (see subsection 1.3.3.2. ). 

Besides, even when only a single ncRNA sequence is known, some algorithms have been created 

to search sequence databases for homologs with similar primary-sequence and 

secondary-structure motifs (Klein and Eddy 2003; Bafna and Zhang 2004; Havgaard et al. 2005). 

While genome-wide searches for ncRNAs of known structural features are relatively 

strai

features have been found that can be used for 

iden

ms effectively. These three issues are 

discussed in more details in subsections 1.4.1. , 1.4.2. , and 1.4.3.  

ghtforward, ab initio genome-wide ncRNA finding is still very challenging. A probabilistic 

model of a particular class of ncRNAs is unlikely to be useful for finding other classes of 

ncRNAs, because different classes of ncRNAs do not seem to have many common structural 

motifs that can be predicted by available secondary structure prediction algorithms. 

Some alternative approaches based on assumptions of RNA structural features have been 

developed (Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 

2005; Pedersen et al. 2006). However, none of them have proved to be effective for finding 

different classes of ncRNAs in real genomic sequences. For example, a recent report about 

finding ncRNAs in the human genome indicates that existing algorithms may exhibit fairly high 

false discovery rates of 50%~70% (Washietl et al. 2007). This situation can be partly attributed 

to three factors: 1) few statistically useful 

tifying ncRNAs in genomes; 2) some algorithms have been developed based on assumptions 

rather than on statistics collected from real data; 3) there are few appropriate data sets of 

functional ncRNAs for testing and improving algorith
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1.4.1. Few statistically useful features for classifying ncRNAs 

o, ncRNAs may not always exist as independent transcription units. Though in 

vertebrates, the m

 mechanism required for 3’ end 

maturation of snRNAs (Fatica et al. 2000; Mo

Unlike protein-coding genes, no compositional propensities at primary sequence level have 

been found to be statistically useful for ab initio ncRNA finding in genomes. Intuitively, features 

associated with synthesis, maturation, or functions of ncRNAs should be useful for identifying 

ncRNAs, however, mechanisms involved in synthesis and function may vary from one class of 

ncRNAs to another class of ncRNAs. For example, the transcription of ncRNAs may not use the 

general machinery required for mRNAs. RNA polymerase II (RNA pol II) is not the only 

polymerase responsible for the transcription of ncRNAs. Though most snRNAs are transcribed 

by RNA pol II, U6 snRNA is transcribed by RNA polymerase III (RNA pol III) (Reddy et al. 

1987). Als

ost abundant snoRNAs, U3, U8, and U13 RNAs, are synthesized from 

independent transcription units by RNA pol II, most of the other known snoRNAs (U14-U22) 

are encoded within introns of protein-coding genes (Kiss and Filipowicz 1995). 

With respect to post-transcriptional processing of ncRNAs, there is again a diversity of 

mechanisms. Many classes of ncRNAs must be specifically processed in order to perform their 

unique functions. For example, the nascent transcripts of tRNAs require RNaseP for removing 

their 5’ leader sequences, endonucleases for cutting the middle of their 3’ trailer sequences, and 

exonucleases for removing their residual 3’ trailer sequences (for review see Nakanishi and 

Nureki 2005). For structural ncRNAs that are transcribed by RNA pol II, it has been shown that 

some of these ncRNAs require unique (non-polyadenylation) mechanisms for their 3’ end 

maturation. For example, snoRNAs may not undergo the standard

rlando et al. 2002). miRNA precursors must be 

processed by RNase-III enzymes, including Drosha and Dicer, in order to generate mature 

miRNAs (Lee et al. 2003).  
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In summary, biogenesis of ncRNAs does not seem to give as many common and useful 

signals for ab initio ncRNA finding in genomes as for protein-coding genes, which makes the 

development of algorithms more difficult and complex. 

1.4.2. Assumptions made in previous work 

The ability to fold into high-order structures is undisputedly the most obvious feature shared 

by most structural ncRNAs. Several structure-based assumptions have been used to develop 

algorithms for genome-wide ncRNA finding. Firstly, if stable structures were preferred for 

 than random sequences with similar sequence compositions. Secondly, if 

secondary structures, instead of prim

nctional 

constraints. In the worst cases where there are no 

ncRNA functions, maybe evolutionary stresses would select ncRNAs with significantly lower 

folding energies

ary sequences, were more important for ncRNA function, 

covariations should be numerous. Hypothetically, if sufficient covariations could be found, it 

should be possible to infer conserved secondary structures in syntenic regions between different 

genomes. 

The first assumption, i.e. that stable structures are preferred in evolution, is not universally 

applicable to all classes of ncRNAs. It is now generally believed that the stability of RNA 

secondary structures is insufficient for classifying ncRNAs in genomes (Rivas and Eddy 2000). 

Conversely, the second assumption, i.e. there are numerous covariations, has been widely 

applied to genome-wide ncRNA finding (Rivas and Eddy 2001; di Bernardo et al. 2003; 

Coventry et al. 2004). Although two comparative algorithms, RNAz and EvoFold, do not 

explicitly depend on existence of covariations (Washietl et al. 2005; Pedersen et al. 2006), the 

abundance of covariations still matters. When there are very few mutations in a set of alignments, 

it is difficult to distinguish conservation of high-order structures from other kinds of fu

mutations at all, the information content of a 

multiple-sequence alignment is equivalent to only one sequence. 
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Practical issues emerge when these algorithms are used to find ncRNAs in real genomes. 

Genomic alignments taken by these ncRNA-finding algorithms are generally generated by using 

primary-sequence alignment algorithms, but seldom by using structural alignment algorithms. 

However, primary-sequence alignment algorithms may mis-align sequences containing RNA 

secondary structures. There is no guarantee that these alignments (frequently generated by 

ClustalW) can reveal covariations correctly. In addition, no comprehensive survey has been 

performed to investigate whether covariations among orthologous ncRNAs contain sufficient 

information to be useful in prediction. In particular, the abundance of covariations between 

 is unknown. A comprehensive survey of 

cova

1.4.3. Few appropriate data sets for training ncRNA-finding 

algorithms 

Creating ncRNA-finding algorithm

data sets. tRNA finding is an extremely fortunate case, since there are hundreds of 

experimentally verified tRNAs (Sprinzl and Vassilenko 2005); however, there are many classes 

of ncRNAs where only a few verified se

transcription een reported for two decades (Brendel et al. 1986); however, of 

the d

ffective rules have been 

orthologous ncRNAs in vertebrate genomes

riations is therefore performed in chapter 2. 

s is often hindered by the lack of decent training and test 

quences are available. For example, rho-independent 

 terminators have b

ata set of 148 sequences that are frequently used for training and testing new algorithms 

(d'Aubenton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; de Hoon et al. 2005), 

only 66 have been checked by either biochemical or genetic approaches (d'Aubenton Carafa et al. 

1990). In addition, the creation of sets of mammalian ncRNAs is complicated by abundant 

ncRNA-like repetitive elements in genomes. For example, there are hundreds of U6 snRNA-like 

sequences in the human genome (Giles et al. 2004), but it is likely that only a few of them are 

truly functional (Domitrovich and Kunkel 2003). In fact, no obviously e
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deve

used to scan genomic alignments with 

at le

1.5. Objectives of this project 

z Attempts can be made to develop new algorithms combining primary-sequence and 

structural features. 

In chapter 2, I conduct a comprehensive analysis on a genome-wide scale of the utility of 

signals currently used for identifying ncRNAs. I assess two factors: the conservation of ncRNAs 

in syntenic regions and the abundance of covariations between the synteny-conserved ncRNAs 

(for the definition see the introduction of chapter 2). Besides, the conservation of the 

loped to distinguish functional ncRNAs from pseudogenes in mammalian genomes. 

Sometimes there are insufficient appropriate ncRNAs, even where there are numerous 

experimentally verified ncRNAs. For example, some genome-wide ncRNA-finding algorithms, 

such as RNAz and MSARI, take only ncRNA alignments with sequence identities greater than 

50% and 60% respectively for both training and testing (Coventry et al. 2004; Washietl et al. 

2005). These algorithms should work properly if they are 

ast 50% identity. However, there can be substantially less test data for classes of ncRNAs 

that are more divergent at primary sequence level. It turns out that the trained algorithms are 

evaluated on biased test data and their performance on certain classes of ncRNAs, for which only 

divergent sequences are available, is not well assessed. 

There are several issues that can be investigated with the aim of improving genome-wide 

ncRNA finding: 

z Signals that have been widely adopted by existing algorithms can be evaluated using 

data sets from real genomes to better assess their value. 

z Promising signals, other than structural features, for finding ncRNAs in real genomes 

can be tested. 
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a

useful information about the evolution of tRNA genes in mammalian genomes, and thus may 

g  for genome-wide ncRNA finding. 

T

fi

p

c

g

o

Modelling the cis-regulatory elements for the transcription of ncRNAs is another strategy 

potent

m

re

m

How many ncRNAs are still undiscovered in genomes? Given the huge number of genomic 

sequences, there is clearly a need for algorithms that can learn common structural motifs in a set 

of related sequences, which could then be used to construct probabilistic models of ncRNAs. 

Such algorithms might have potential for ab initio ncRNA finding. In the second part of chapter 

4, a ne

p

a

rrangement of tRNA-gene loci in mammalian genomes is explored. This study should provide 

uide us to choose suitable strategies

he synteny-conservation ratios of ncRNAs may determine the performance of the ncRNA 

nding methods based on a comparative strategy. In chapter 3, I explore the criteria that could 

otentially be useful for distinguishing functional ncRNAs from pseudogenes, Two different 

riteria, the distribution of bit scores and the physical clustering of tRNA genes in the human 

enome, are used to separate Rfam-predicted tRNAs into distinct groups, where the functionality 

f the tRNAs in each group are assessed. 

ially useful for genome-wide ncRNA finding. In the first part of chapter 4, I introduce the 

achine learning approaches that may be useful for modelling the transcription regulatory 

gions of ncRNAs. In chapter 5, a sparse Bayesian learning system, Eponine, is applied to 

odelling the transcription start sites (TSSs) of pol III type II ncRNAs. 

w module is created to extend the capability of Eponine to learn motifs consisting of both 

rimary-sequence and RNA structural motifs. In chapter 6, real applications of this new module 

re demonstrated and its strength and weakness are discussed. 

 



 

Chapter 2.  Constraints from comparative genomics

for ncRNA finding 

Among various approaches for ab initio ncRNA finding, comparative algorithms have 

been claimed to have good performance in identifying structural ncRNAs in test data sets 

(Rivas and Eddy 2001; di Bernardo et al. 2003; Coventry et al. 2004; Washietl et al. 2005; 

Pedersen et al. 2006) and simple genomes, such as bacteria and yeasts (Rivas et al. 2001

 

). One 

algo

For convenience, some terms are defined here. “Synteny-conserved ncRNAs” is used to 

indicate ncRNAs, in one organism, that are conserved in the corresponding syntenic regions of 

othe

There are several considerations when using synteny alignments as the target for 

rithm, RNAz, was also claimed to perform well in identifying structural ncRNAs in 

mammalian genomes (Washietl et al. 2005). One requirement for using these comparative 

algorithms is that the input data must be sequence alignments. 

Recently, some of these comparative algorithms have been applied to finding ncRNAs in 

vertebrate genomes (Washietl et al. 2005; Pedersen et al. 2006), where the alignments used for 

prediction were mainly derived from syntenic regions of multiple vertebrate genomes. In this 

thesis, such type of alignments is referred to as synteny alignments. However, the properties of 

synteny alignments that may contain ncRNAs are not necessarily comparable to the test data 

sets used to assess these comparative algorithms. This makes it uncertain whether these 

algorithms will have the same performance in finding ncRNAs, when synteny alignments are 

used. 

r genomes; if an ncRNA is not synteny-conserved, it is referred to as 

“synteny-non-conserved”; “synteny-conservation ratio” of ncRNAs refers to the ratio of one 

organism’s ncRNAs that are “synteny-conserved ncRNAs” to the total number. 

32 



Chapter 2. Constraints from comparative genomics for ncRNA finding 33
   

genome-wide ncRNA finding. Firstly, if many functional ncRNAs are synteny-non-conserved 

in the genom ents would 

risk missing a significant number of ncRNAs. To date, the synteny-conservation ratio of 

different classes of ncR rehensively surveyed. 

One 

comp

o far, no systematic survey has been performed to estimate the abundance of 

covariations in the orthologous ncRNAs in vertebrate genomes. 

es under investigation, finding ncRNAs using only synteny alignm

NAs in vertebrate genomes has not been comp

obstacle in carrying out such a survey is that classic ncRNAs, which are frequently 

related to repetitive elements in vertebrate genomes, have generally been removed before 

building synteny data sets (Schwartz et al. 2003; Frazer et al. 2004; Siepel et al. 2005). 

Secondly, if orthologous ncRNAs in the genomes under investigation are so conserved 

that only a few covariations are found, it may be difficult to determine whether the sequence 

conservation means the existence of RNA high-order structures or simply of primary-sequence 

motifs. The number of covariations in alignments of the orthologous ncRNAs may be 

expected to be greater for more distantly related organisms. This is why the sequence identity 

of a primary-sequence alignment is usually required to be within certain ranges for 

arative ncRNA finding algorithms. For instance, the desired ranges of sequence identity 

for running QRNA and ddbRNA are 65%-85% (Rivas and Eddy 2001) and 60%-80% (di 

Bernardo et al. 2003), respectively. Likewise, RNAz implicitly requires that the sequences of 

orthologous ncRNAs are divergent to a certain extent, because the false positive rate of RNAz 

was reported to increase when alignments of high identities were used (Washietl et al. 2005). 

However, s

This chapter is therefore dedicated to investigating the conservation patterns of ncRNAs 

in vertebrate genomes, especially in mammalian genomes. A detailed survey of the 

conservation patterns of both classic (such as tRNAs, rRNAs, and snRNAs) and non-classic 

(such as miRNAs, snoRNAs, etc) ncRNAs in mammalian genomes was performed, in order to 

provide a solid basis for using the mammalian synteny alignments in genome-wide ncRNA 
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finding. The conservation patterns explored in this chapter include: 

z The synteny-conservation ratios of ncRNAs. 

z The abundance of covariations between orthologous ncRNAs. 

In the first section of this chapter (section  based strategy for 

locating the respective syntenic regions of individual human ncRNAs was used. The 

conserva

regio

r within 

syntenic regions, these will be missed. Since the changes caused by evolutionary events may 

tion ratios of ncRNAs, gene-order conservation is 

of interest. 

m the observations of many clustered ncRNAs in diverse genomes, 

2.1), a protein-coding gene

tion patterns of multiple classes of human ncRNAs in these human-mouse syntenic 

ns were then investigated. The synteny-conservation ratios, as well as the abundance of 

covariations, of the ncRNAs in the human genome with respect to the mouse genome were 

then calculated. A survey of the abundance of covariations was also performed on the 

human-mouse synteny-conserved ncRNAs with respect to their best homologues in the 

zebrafish genome. Based on this data, the possible effects of using real genomic alignments of 

ncRNAs on the performance of several comparative ncRNA finding algorithms was explored. 

One caveat with respect to the syntenic-region locating strategy used in the first section 

of this chapter is the ignorance of gene-order conservation of ncRNAs. This means that, if 

there are local changes of the ncRNA copy numbers and/or of the ncRNA gene orde

help explain the observed synteny-conserva

In section 2.2, I examined the conservation/change of the physical arrangements of tRNA 

gene loci in mammalian genomes. This study is intended to explore if the pattern of 

gene-order conservation may give any insight into the origin of the substantial number of 

synteny-non-conserved ncRNAs observed in mammalian genomes. In particular, the 

gene-order conservation of clustered tRNA gene loci in mammalian genome is of interest. 

This idea was motivated fro
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from

lution of mammalian genomes. 

2.1

2.1.1.1. Recruiting human ncRNAs

 virus (Wilson et al. 1972), bacteria (Fournier et al. 1974), yeast (Beckmann et al. 1977), 

to primates (Chang et al. 1986). For instance, a tRNA gene cluster consisting of ~150 tRNA 

gene loci were found on human chromosome 6 (Mungall et al. 2003). The specific issues I 

intend to address in section 2.2 are as follows: 

z Are there synteny-conserved clusters of tRNA gene loci? 

z Are there many gene-order changes in the syntenic tRNA gene clusters? 

This study is useful to genome-wide ncRNA finding in several ways. First, it may 

provide a high-resolution view on how tRNA genes have evolved in mammalian genomes, and 

may therefore give insights on how alignments should be generated for the purpose of 

genome-wide ncRNA finding. Second, this study may potentially be useful for distinguishing 

the tRNA gene loci that are functional, from those that have become pseudogenes. Although 

the rules derived from the case of mammalian tRNA genes may not necessarily be valid for 

the cases of other classes of ncRNA genes, this study may provide an independent piece of 

evidence, which is not biased toward protein genes, to the evo

. The conservation patterns of vertebrate ncRNAs 

2.1.1. Materials and Methods 

 

The genomic loci of human tRNAs were retrieved from Ensembl release 29. Ensembl is a 

software system that aims to provide a comprehensive annotation of selective eukaryotic 

genomes (Birney et al. 2006). Different releases of Ensembl may use different versions of 

genome assemblies. The human genome assembly that is used in Ensembl release 29 is NCBI 

35, which was released by NCBI in April 2004. (http://www.ncbi.nlm.nih.gov/genome/guide/ 

human/release_notes.html) 
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The genomic loci of human tRNAs in Ensembl are annotated using tRNAscanSE, which 

is a tRNA finding pipeline that integrates several tRNA finding algorithms (Lowe and Eddy 

1997). The algorithms used by tRNAscanSE include tRNAscan (Fichant and Burks 1991), 

eufindtRNA (Pavesi et al. 1994), covels (Eddy and Durbin 1994), and coves (Eddy and Durbin 

1994). tRNAscan is a hierarchical and rule-based system to identify intragenic promoters and 

consensus secondary structures of tRNAs. eufindtRNA was designed to find intragenic 

promoters of tRNAs. Covels is a search algorithm that uses a covariance model (CM) (see 

otifs with high 

specificity in genom

ined codon types. 

subsection 1.3.3.2. ) to detect both primary-sequence and secondary-structure m

es, although it is very slow. In the tRNAscanSE pipeline, both the outputs 

of tRNAscan and eufindtRNA are combined into one set of candidate tRNA genes, which are 

further assessed by covels in order to remove false positives. The criterion for deciding true 

positives is the degree of conservation at both primary-sequence and secondary-structure 

levels (Lowe and Eddy 1997). The final structural alignments are generated by coves. In 

Ensembl release 29, there are 498 tRNA genes in the human genome, after excluding 

pseudogenes and the tRNAs with undeterm

Other human ncRNAs were retrieved from Rfam 6.1 (Griffiths-Jones et al. 2005). Rfam 

is a database of curated sequence alignments and CMs of different classes of ncRNAs. The 

CMs created by Rfam are also used to search for novel ncRNAs in the EMBL nucleotide 

sequence database (Kanz et al. 2005), which includes sequences of the human genome and the 

mouse genome. The sequences and the ncRNAs so predicted are also deposited in Rfam. 

Infernal (a system for “INFERence of RNA ALignment”, http://infernal.janelia.org/) is the 

software package used by Rfam to build CMs and to find ncRNA-like sequences in the 

sequence database (Griffiths-Jones et al. 2005). 

The coordinates of Rfam ncRNAs in the human genomic contigs were retrieved from 

Rfam.full, which was downloaded from the Rfam ftp site (ftp://ftp.sanger.ac.uk/pub/databases/ 
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Rfam/). The coordinates were converted to human chromosomal coordinates using software 

libraries provided by the Ensembl Project written in the Perl programming language referred 

to as Application Programming Interfaces (APIs). Although there have been newer releases of 

Ensembl since the analyses in this thesis were performed, NCBI 35 has continued to be used 

by a number of later releases of Ensembl (releases 30 ~ 36). This procedure of mapping 

ncRNAs to the human genome is exactly the same as that used for generating the ncRNA 

annotation of Ensembl releases 30 ~ 36. 

2.1.1.2. Searching for human-mouse synteny-conserved ncRNAs 

The alignments of human-mouse syntenic regions were retrieved from Ensembl Compara 

release 29 (Clamp et al. 2003) using the Ensembl Compara Perl APIs. The Ensembl Compara 

database is the component of Ensembl that contains comparative genomic information, 

including predictions of orthology relationships between protein-coding genes and synteny 

alignments among different genomes. The genome assemblies used by Ensembl Compara 

release 29 include human NCBI 35 and mouse NCBI M33 (http://www.ncbi.nlm.nih.gov/ 

genome/seq/NCBIContigInfo.html). 

The existence of synteny-conserved ncRNAs in candidate alignments was searched using 

cmsearch and Rfam CMs. cmsearch is a program of the Infernal package that can use a Rfam 

CM trained using a particular type of ncRNAs to search for new occurrences of ncRNAs of 

the same type. Given a sequence, cmsearch can align it to a Rfam CM and return high scoring 

matches. cmsearch reports matches with bit scores (for more details about bit scores see 

subsection 1.3.3.1). The regions with bit scores higher than corresponding family-specific 

thresholds pre-determined by Rfam (Griffiths-Jones et al. 2003) were considered to be ncRNA 

loci. 

In order to correctly include classic ncRNAs in genomic regions that are missing from 

available resources of genome-wide alignments, an approach was adopted which takes 
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advantage of the syntenic regions defined by human-mouse orthologous protein-coding genes. 

This approach allows the identification of missing synteny-conserved ncRNAs in initially 

unaligned syntenic regions. The basic idea is that, if the relation of a particular ncRNA to its 

5’ and 3’ flanking protein-coding genes has been preserved in evolution, a synteny-conserved 

ncRNA may also be found in the corresponding syntenic region defined by synteny-conserved 

protein-coding genes in the other genome (Figure 2-1, a). 

One issue when using this strategy to find the synteny-conserved ncRNAs is the 

ambiguity in assigning orthology to protein-coding genes retrieved from different genomes. 

For instance, ambiguity can occur whenever multiple protein-coding genes, which are 

paralogous to each other in one organism, appear orthologous to a particular gene in the other 

organism. Such many-to-one or even many-to-many relationships between protein-coding 

gene

hich are also the members of two consecutive UBRHPs, were 

used to define the boundaries of the corres

% identity. Certainly, the cost of this 

heuris  is an inevitable decrease in sensitivity; however hits with low percent identities (< 

s may cause difficulties in determining unique human-mouse syntenic regions for 

individual human ncRNAs. In order to control the complexity of finding the appropriate 

syntenic regions, best reciprocal protein homologs (UBRHs), where there is only one uniquely 

best hit in both directions between two genomes, were used in the following analyses. Each 

pair of UBRHs (UBRHP) consists of two homologous members from the human and mouse 

genomes, respectively. All UBRHPs between these two genomes were retrieved from 

Ensembl Compara release 29. The 5’ and 3’ flanking protein-coding genes nearest to a 

particular human ncRNA, w

ponding mouse syntenic region (Figure 2-1, a). 

Synteny-conserved counterparts of human ncRNAs in the mouse (UBRHPs-bound) 

syntenic regions were obtained by using WU-BLAST alignment algorithm to scan the 

UBRHP-bound mouse genome sequence with the human ncRNA sequence. The threshold 

used for filtering alignment hits was set to be at least 40

tic
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ex

Hu

“s

nc et of UBRHPs, and accordingly, UBRHPs-bound 

synte

igure 2-1, c); 3) the 

relat

er of the flanking UBRHP of a particular ncRNA was used as the 

for a synteny-conserved 

ncRN

%) are also unsuitable for using existing algorithms for ab initio ncRNA finding. The 

istence of synteny-conserved ncRNAs was further verified using Infernal and Rfam CMs. 

man ncRNAs that were found to be conserved in the syntenic regions were labelled as 

ynteny-conserved ncRNAs”; otherwise they were labelled as “synteny-non-conserved 

RNAs”. It should be noted that the s

nic regions, can change between releases of Ensembl, even if exactly the same genome 

assemblies were used. Such changes result from improvements in the annotations of 

protein-coding genes in Ensembl. However, the annotation of genes in the mouse genome 

(NCBI M33) was constant through Ensembl releases 29 ~ 31, so there were essentially no 

major changes in the set of UBRHPs-bound syntenic regions in the Ensembl Compara 

database of these Ensembl releases. 

Several complicated situations could be encountered when using the UBRHPs based 

approach to find synteny-conserved ncRNAs: 1) ncRNAs at either end of chromosomes may 

not be flanked by members of UBRHPs (Figure 2-1, b); 2) the members of two consecutive 

UBRHPs may be partitioned into two different chromosomes (F

ionships of UBRHPs-bound blocks between two genomes may be inconsistent due to 

some unknown evolutionary events (Figure 2-1, d). Each of these three situations makes the 

search process more difficult, and might thus cause false negatives in determining 

synteny-conserved ncRNAs. 

In order to reduce the false negatives caused by the first and the second situations, either 

the 5’ or the 3’ memb

anchoring point to extend the candidate sequence blocks for searching 

A in the second genome. The cases of the second situation are marked as 

“inter-chromosomal translocation” (Figure 2-1, c). 
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For the 

Figure 2-1. Physical relations of human and mouse synteny-conserved ncRNAs to UBRHPs-bound syntenic 
regions 

Red arrows: one pair of unique best reciprocal protein homologues (UBRHP) in the 5’ flanking region of one 

synteny-conserved ncRNAs. (a) The mouse members of two consecutive UBRHPs are on the same 

the 5’ or in the 3’ flanking region). (c) The mouse members of two consecutive UBRHPs are separated into 
two chromosomes. (d) The relationship of UBRHPs-bound blocks becomes incompatible between two 
genomes due to unknown evolutionary events. 

third situation, however, it is unknown how to determine the real evolutionary 

even

consecutive UBRHPs to define a suitable syntenic block for one ncRNA, next adjacent 

ncRNA. Magenta arrows: one UBRHP in the 3’ flanking region of one ncRNA. Yellow arrows: 

chromosome. (b) ncRNAs that are near the ends of chromosomes are flanked by only one UBRHPs (either in 

t leading to the finding of pairs of protein-coding genes that are out of order (Figure 2-1, d, 

the brown arrows). It is possible that, in these regions, there might have been 

inter-chromosomal rearrangements, pseudogenisations of duplicated genes, etc. Consequently, 

it is difficult to define a clear rule to avoid possible false negatives in such complicated cases. 

To partially address this problem, one additional measure was adopted. In recruiting two 
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UBRHPs was tried (Figure 2-1, d, the magenta arrows) if the initial UBRHPs was not on the 

same chromosome as their 5’ and 3’ flanking UBRHPs (Figure 2-1, d, compare the red and 

brown arrows). These regions were marked as “complicated regions”. 

In addition, I also considered cases where there might be segmental inversions in the 

UBRHPs in different genomes as an indicator of segmental inversions. The argument is that, 

s, the strand combination of the respective members 

d combination 

in th

UBRHPs-bound syntenic regions. I took the incompatibility of the strand combinations of the 

when there are no segmental inversion

from 5’ and 3’ UBRHPs in the first genome should be consistent with the stran

e second genome. 

2.1.1.3. Determination of covariations between orthologous ncRNAs 

To determine covariations between orthologous ncRNAs, cmalign was used. cmalign is a 

program of the Infernal package that can simultaneously align multiple sequences to a Rfam 

CM corresponding to a particular type of ncRNAs. Given a set of ncRNAs of the same type, 

cmalign returns an alignment augmented with secondary-structure annotation, as shown in 

Figure 2-2. Such an output was then processed to determine types of mismatches, which can 

either be covariations or just unpaired changes, between stem regions of orthologous ncRNAs. 

 

 

Figure 2-2. A multi-sequence secondary-structure alignment generated by cmalign 
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Mismatches in double-stranded regions were further categorized into three subtypes. An 

incomplete covariation is a case where only one base was changed at a base-paired position, 

such that a conversion occurs between a non-canonical pairing (G-U) and a canonical pairing 

(G-C or A-U) (e.g. red boxes in Figure 2-2). A complete covariation is a case where paired 

bases were simultaneously mutated to other types of valid pairing, such as G-C to C-G (e.g. 

magenta boxes in Figure 2-2), A-U, U-G, or U-A. A base change that results in a 

non-canonical and non G-U pairing is referred to as an unpaired change (e.g. green boxes in 

Figure 2-2). 

The reason for separating incomplete covariations from complete covariations is that the 

 indicating the existence of secondary 

struc

s thesis, the numbers of incomplete covariations and complete 

covariations were counted separately. 

2.1.2. Evaluating different approaches for finding human-mouse 

syn

former type of covariation is a weaker signal for

tures than the latter type. For instance, when the information of covariations is calculated 

using the standard mutual information (MI) measure (Chiu and Kolodziejczak 1991; Gutell et 

al. 1992), covariations consisting only of GC and GU pairings do not contribute. However, 

incomplete covariations still provide useful information for RNA secondary structure 

prediction (Hofacker et al. 2002; Lindgreen et al. 2006), and should be included in covariation 

analysis. Thus, in thi

teny-conserved ncRNAs 

2.1.2.1. Using the synteny alignments retrieved from public-domain resources 

By using the human-mouse syntenic regions that were retrieved from Ensembl Compara 

release 19, only 26.7% (133/498) of human tRNA genes predicted by tRNAscanSE were 

found to have synteny-conserved counterparts in the mouse genome (NCBI M30). By using 

the later releases of the Ensembl Compara database (19-31) where different assemblies of 
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hum

ios of classic ncRNAs between mammalian genomes. 

2.1.2.2. Using the UBRHPs-bound syntenic regions

an (NCBI 35) and mouse (NCBI M32 and NCBI M33) genomes were used, even fewer 

synteny-conserved tRNA genes could be found. The differences caused by using different 

Ensembl Compara database releases were due to the changes of strategies for building synteny 

used by Ensembl. One reason for these changes was to avoid Ensembl Compara containing 

alignment artefacts caused by repetitive elements. These results show that using existing 

resources for comparative genomics cannot be relied upon to give a correct estimate of the 

synteny-conservation rat

Fortunately, a useful insight was gained from the investigation of tRNA gene clusters in 

mammalian genomes. A relevant finding is the identification of multiple human-mouse 

synteny-conserved tRNA gene clusters (for details see section 2.2). As many as ~68% 

(338/498) of human tRNA genes predicted by tRNAscanSE were found to be in the 

human-mouse synteny-conserved tRNA gene clusters, although some of their respective 

synteny-conserved counterparts in the mouse genome might have been lost in evolution. 

These results suggest that the real synteny-conservation ratio of human and mouse tRNA 

genes is much higher than the highest number (26.7%) derived from syntenic alignments 

retrieved from the Ensembl Compara database alone. Using other public-domain resources of 

comparative genomics would be unlikely to make much difference, because the algorithms 

used for creating syntenic alignments in the different releases of the Ensembl Compara 

database have also been used by these other resources (Schwartz et al. 2003; Frazer et al. 

2004). I concluded that the synteny alignments provided by public-domain databases were 

inadequate for the purpose of generating a comprehensive set of human-mouse 

synteny-conserved ncRNAs. 

 

U e UBRHPs  are 

predicted by tRNAscanSE were found to be conserved in the mouse syntenic regions. These 

sing th -based approach, 74.5% (371/498) of the human tRNA genes that
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results at, for finding the human- ouse syn ic the 

UBRHPs-based approach is likely to be m more effective than using the ons 

retrieved from public-domain resources h as t l Compara release 29) of 

comparative genomics. 

2.1.3. Results 

2.1

 suggest th m tenic regions of class  ncRNAs, 

uch  syntenic regi

(suc he Ensemb

.3.1. The synteny-conservation ratios of human ncRNAs from Rfam 

Since the UBRHPs-bound syntenic regions strategy for finding human-mouse 

nteny-conserved tRNA genes proved successful, it was further used to identify other 

man-mouse synteny-conserved ncRNAs. 4,201 unique human ncRNA genomic loci were 

sy

hu

recruited from Rfam 6.1 for analysing their patterns of conservation in human-mouse syntenic 

regions. These ncRNAs correspond to 157 classes of ncRNAs (41% of 379 classes of ncRNAs 

am 6.1). 

lysing the patterns of conservation of ncRNAs in human-mouse sy

eny-conservation ratios vary greatly among the different classes. 

ample, 73.6% of human miRNAs were found to be synteny-conserved; howeve

iscellaneous ncRNAs were synteny-conserved (Table 2-1). Overall, 78.1% of the 

As identified by Rfam6.1 were o be conserved in the corres

syntenic regions. The overall initial e nteny-conservation ratio fo

ncRNAs is only 21.9%. 

lated synteny-conservation ratios of human and 

mouse ncRNAs might be affected by the quality of the mouse genome assembly, the assembly 

status for the UBRHPs-bound syntenic region corresponding to each human ncRNA was 

ined. 63.8% of the mouse s-bound syntenic regio re the 

non-conserved ncRNAs are supp  reside, were found to contain genome 

in Rf

Ana  these ntenic 

regions revealed that the synt

For ex r, only 

1.1% of m

human ncRN not found t ponding 

mouse stimated sy r human 

In order to evaluate whether the calcu

determ UBRHP ns, whe

synteny- osed to
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sequence fragments labelled either unfinished regions (UR) or whole genom (WGS) 

 2-2). It was found that in these WGS-containing regions e more 

y-non-conserved ncRNAs than synteny-conserved ncRNAs (compare Table 2-3 with 

 the synt

-conserved ncRNAs are in mouse S-containing syntenic reg P-value 

(Chi-square test) is far less than 0.001. This result suggests that there is an association between 

th

assembly. Consequently, the synteny-conservation ratio for the human ncRNAs that were 

retrie

 

e shotgun 

(Table  UR- or  there wer

synten

Table 2-2). On average, 63.8% of eny-non-conserved ncRNAs and 59.8% of the 

synteny UR-WG ions. The 

e inability to detect synteny-conserved ncRNAs and the quality of the mouse genome 

ved from Rfam should be higher than ~22%, because some synteny-conserved ncRNAs 

will have been missed in mouse UR-WGA regions. 

class mapped to NCBI 35 synteny-conserved synteny-non-conserved
IRES 8 3 (37.5%) 5 (62.5%)
ribozyme 3 2 (66.7%) 1 (33.3%)
miRNA 87 64 (73.6%) 23 (26.4%)
snoRNA 390 199 (51.0%) 191 (49.0%)
cis-reg 194 96 (49.5%) 98 (50.5%)
tRNA 842 370 (43.9%) 472 (56.1%)
rRNA 350 13 (3.7%) 337 (96.3%)
misc ncRNA 924 10 (1.1%) 914 (98.9%)
snRNA 1403 163 (11.6%) 1240 (88.4%)
Total 4201 920 (21.9%) 3281 (78.1%)

 

Table 2-1. Conservation of different classes of Rfam human ncRNAs in human-mouse syntenic regions  

“IRES” consists of IRES_Bag1, IRES_Bip, IRES_c-myc, IRES_FGF, IRES_L-myc, and IRES_n-myc. 
“ribozyme” consists of RNaseP_nuc and RNase_MRP. “rRNA” includes 5S_rRNA, 5_8S_rRNA, and 
SSU_rRNA_5. “cis-reg” consists of Antizyme_FSE, CAESAR, G-CSF_SLDE, GAIT, Histone3, IFN_gamma, 

and U14. Other ncRNAs, including 7SK, S15, SRP_euk_arch, Telomerase-vert, Vault, and Y., are grouped 
into “misc ncRNA” (miscellaneous ncRNA). 

IRE, REN-SRE, RRE, SECIS, Spi-1, TAR, and Vimentin3. snRNA consists of U1, U2, U4, U5, U6, U7, U12, 
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class synteny-non-conserved in mouse finished contigs synteny-non-conserved in mouse UR or WGS

IRES 3 (60.0%) 2 (40%)

ribozyme 0 (0.0%) 1 (100%)

miRNA 6 (26.1%) 17 (73.9%)

snoRNA 61 (31.9%) 130 (68.1%)

cis-reg 37 (37.8%) 61 (62.2%)

tRNA 167 (35.4%) 305 (64.6%)

rRNA 104 (30.9%) 233 (69.1%)

misc ncRNA 346 (37.9%) 568 (62.1%)

snRNA 464 (37.4%) 776 (62.6%)

Total 1188 (36.2%) 2093 (63.8%)

 

class synteny-conserved in mouse finished contigs synteny-conserved in mouse UR or WGS 

IRES 2 (66.7%) 1 (33.3%) 

ribozyme 1 (50%) 1 (50%) 

miRNA 29 (45.3%) 35 (54.7%) 

snoRNA 70 (35.2%) 129 (64.8%) 

cis-reg 66 (68.8%) 30 (31.3%) 

rRNA 6 (46.2%) 7 (53.8%) 

tRNA 165 (44.6%) 205 (55.4%) 

misc ncRNA 0 (0%) 10 (100%) 

snRNA 31 (19%) 132 (81%) 

Total 370 (40.2%) 550 (59.8%) 

These results show that human ncRNAs are more likely to be synteny conserved in 

mouse syntenic regions containing only mouse finished contig based sequence (FCS) than in 

regions that are unfinished (UR) or whole genome shotgun (WGS), but that the effect is small. 

The average synteny-conservation ratio only increases from ~22% (920/4201) to ~24% 

(370/1558) when only FCS is considered (see the statistics in the context of mouse finished 

Table 2-2. Distribution of the human synteny-non-conserved ncRNAs in the regions corresponding to mouse 

regions from whole genome shotgun sequencing) 

Table 2-3. Distribution of human synteny-conserved ncRNAs in the regions corresponding to mouse finished 
contigs or UR-WGS-containing regions (regions with unfinished gaps in contig-base sequencing and regions 
from whole genome shotgun sequencing) 

finished contigs or UR-WGS-containing regions (regions with unfinished gaps in contig-base sequencing and 
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contigs in Table 2-2 and Table 2-3). There is a much bigger variation of synteny-conservation 

ratio between categories. When ncRNAs are considered by category, an inverse correlation 

was found between the average copy numbers and the synteny-conservation ratios (Figure 

2-3). 

The previous comparison considers the effect of sequence quality on the apparent ncRNA 

synteny-conservation ratio. Another factor is assembly completeness. Among the ncRNAs that 

were investigated, surprisingly low synteny-conservation ratios were found between human 

and mouse 5S rRNA genes (5S rDNAs). One concern is that the mouse genome assembly 

(NCBI M33) may have missed bona fide 5S rDNAs. Prior to the large-scale sequencing of the 

human and the mouse genomes, 5S rDNAs were known to be exist as tandem repeats in both 

genomes (Little and Braaten 1989; Suzuki et al. 1994). It is possible that the strategy of whole 

ge

 order to clarify if there are tandemly arranged 5S rDNAs in the mouse genome 

assembly used in this chapter, a reliable mouse 5S rDNA (GenBank accession number: 

X71804) was used to search for all 5S rDNAs in NCBI M33. This mouse 5S rDNA sequence, 

which was published before any large-scale genome sequencing projects were finished, is one 

unit of the 5S rDNA tandem repeats in the mouse genome (Hallenberg et al. 1994). The result 

indicates that no such tandem repeats can be found in NCBI M33, while the 5S rDNA tandem 

repeats can be found in the human genome assembly NCBI 35. In addition, this mouse 5S 

rDNA is perfectly identical (100%) to the human 5S rDNA. Consequently, the evidence does 

not suggest that functional 5S rDNAs become synteny-non-conserved after the primate-rodent 

split.

During the preparation of this thesis, a new mouse genome assembly NCBI M36 is 

available and the 5S rDNA tandem repeats can be found in this genome assembly. This result 

nome shotgun sequencing may lead to the omission of tandem repeats, such as 5S rDNAs. 

In

 The apparent low synteny-conservation ratio of human and mouse 5S rDNAs is most 

likely an artefact caused by the missing of bona fide 5S rDNAs in NCBI M33. 
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suggests that the quality of the mouse genome assembly has been improved since the release 

of NCBI M33. NCBI M36 may be a suitable genome assembly for re-estimating the 

synteny-conservation ratios of human and mouse ncRNAs. 
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2.1.3.2. Effect of genome rearrangements on synteny conservation 

In order

Figure 2-3. Synteny-conservation ratios and average copy numbers for different categories of human ncRNAs 

 to assess any relationship between genome rearrangements and the estimated 

synteny-conservation ratios of ncRNAs, chromosome-compatibility and strand-compatibility 

were taken as the indicators of inter-chromosomal rearrangement and intra-chromosomal 

rearrangement (for the method see subsection 2.1.1.2. ). In the cases where the gene orders and 

the strand-relationship of the ncRNAs and their flanking genes have been conserved, the 

syntenic regions were assigned as e t r

, the syntenic blocks an and re categorised as 

(mapped by Rfam) 

volutionary-intac egions. 

From this analysis  between hum mouse we
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intact ions, inter-c mal translo d ‘complicated’ 

regions, i.e. where evolutionary processes are unclear (Figure 2-1, d).  The number of 

sy As in each of these regions is listed in 

Table 2-4. The synteny-conservation ratio of ncRNAs in the syntenic blocks with 

t syntenic 

blocks (

 a 

synte

 

 

 regions, segmental invers hromoso cations, an

nteny-conserved and synteny-non-conserved ncRN

inter-chromosomal translocations is not significantly different from that in the intac

Chi-square test, P-value >> 0.1). The synteny-conservation ratio of ncRNAs in the 

syntenic blocks of the complicated type appears significantly lower than that in the intact 

syntenic blocks (Chi-square test, P-value << 0.001), however this could be an artefact where 

some synteny-conserved ncRNAs were missed in these regions due to difficulties with the 

UBRHPs-based method in such regions. It is possible that the method used in this chapter to 

find synteny-conserved ncRNAs was vulnerable to certain types of genome rearrangements. 

For instance, if an event of genome rearrangement has changed the linear order of a ncRNA 

with respect to its flanking synteny landmarks (i.e. the protein-coding genes that can be used 

to define syntenic blocks), this ncRNA may be mistakenly classified as

ny-non-conserved one. It can be inferred that the calculated synteny-conservation ratios 

of ncRNAs might be underestimated due to genome rearrangements in “complicated” regions. 

The synteny-conservation ratio of ncRNAs in the syntenic blocks with segmental 

inversions, which are a type of intra-chromosomal rearrangements, is much higher than that in 

the intact syntenic blocks (Chi-square test, P-value << 0.001). No obvious explanation could 

be found to explain this surprising observation, however such an affect has been reported 

before. Inversions were found to reduce recombination dramatically (for review see Hoffmann 

et al. 2004). 
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synteny c s synten ved -n vedondition y-conser synteny on-conser  subtotal 

evolution  (2 ( 2379ary-intact 579 4%) 1800 76%) 

segmenta  (4 5 272l inversion 131 8%) 141 ( 2%) 

inter-chr l translocation  (2 ( 214omosoma 51 4%) 163 76%) 

complica  (1 1336ted 153 1%) 1183 (89%) 

2.1.3.3. Few covariations in human-mouse synteny-conserved ncRNAs 

The aligned sequences of the set of human-mouse synteny-conserved ncRNAs were 

assessed for covariations as previously defined (see subsection 2.1.1.3. ). 64% of 

human-mouse synteny conserved tRN f thologous snRNAs 

were found to not cont tions. In , no covaria ld be found in 70% 

of human-mouse synteny-conserved miRNAs a % of human-m  synteny-conserved 

snoRNAs. Since inco variations ar er signals th omplete ones (see 

subsection 2.1.1.3. ), es with only on plete covariation were combined with 

exactly conserved one se with no m in stem regions), as shown in columns 

“0-1” base involved in covariations in the following tables (see Table 2-5 and Table 2-7). 

As do not provide useful 

nu

synteny-conserved ncRNAs do not contain sufficient covariations for ncRNA finding. Even 

though the average identity of human-mouse synteny-conserved ncRNAs is 86%, which is 

only slightly greater than the upper limit of identities requested by some algorithms (i.e. 

ddbRNA and QRNA), c e not enriched in the m embers 

of each orthologous ncRNA pair. Much of the y-se dif tween 

human-mo onserved ncRN ttributed to mutations that were found in the 

Table 2-4. Nu f the human-mouse ns h - RNAs in 
regions whic dergone different e en

mbers o
h have un

 synteny-co
volutionary ev

erved and t
ts 

e synteny non-conserved nc

- As and 54% o  human-mouse or

ain any covaria  addition tions cou

nd in 51 ouse

mplete co e weak an c

the cas e incom

s (i.e. the utations 

On average, 73% of human-mouse synteny-conserved ncRN

mber of covariations (Table 2-5). These results suggest that the alignments of human-mouse 

ovariations ar ismatches between the m

 primar quence ference be

use synteny-c As is a
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single-stranded regions, and to mutation ay d  th ion

 

in covariations

s that m estabilize e stem reg s. 

Bases  0-1 2-10 11-23 Subtotal 
cis-reg 83 (86%) 13 (14%) 0 (0%) 96 (100%) 
misc ncRNA 5 (50%) 4 (40%) 1 (10%) 10 (100%) 
IRES 0 (0%) 2 (67%) 1 (33%) 3 (100%) 
miRNA 54 (84%) 10 (16%) 0 (0%) 64 (100%) 
ribozymes 0 (0%) 2 (100%) 0 (0%) 2 (100%) 
rRNA 0 (0%) 12 (92%) 1 (8%) 13 (100%) 
snoRNA 139 (70%) 60 (30%) 0 (0%) 199 (100%) 
snRNA 110 (67%) 41 (25%) 12 (7%) 163 (100%) 
tRNA 282 (76%) 74 (20%) 14 (4%) 370 (100%) 
Subtotal 673 (73%) 218 (24%) 29 (3%) 920 (100%) 

 

 Human-mouse Human-zebrafish 
cis-reg 0.6 (96) 0 (1) 
misc ncRNA 3.6 (10) 33.0 (2) 
IRES 7.7 (3) N/A 
miRNA 0.7 (64) 3.2 (20) 
ribozyme 5.5 (2) N/A 
rRNA 6.2 (13) 9.0 (4) 
snoRNA 1.2 (199) 3.5 (2) 
snRNA 2.2 (163) 2.1 (79) 
tRNA 1.4 (370) 1.1 (185) 

 

Table 2-6. Average numbers of bases involved in covariations per sequence of the human-mouse 

respective category of ncRNAs. 

 

synteny-conserved ncRNAs and of the human-zebrafish orthologous ncRNAs 

N/A: no synteny-conserved ncRNAs found. Each parenthesized value is the number of sequences for 

Table 2-5. Numbers of the human-mouse synteny-conserved ncRNAs that contain various numbers of 
covariations 
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Bases in covariations 0-1 2-10 11-33 Subtotal 
cis-reg 1 (100%) 0 (0%) 0 (0%) 1 (100%) 
Misc ncRNA 0 (0%) 0 (0%) 2 (100%) 2 (100%) 
miRNA 7 (35%) 12 (60%) 1 (5%) 20 (100%) 
rRNA 0 (0%) 3 (75%) 1 (25%) 4 (100%) 
snoRNA 1 (50%) 1 (50%) 0(0%) 2 (100%) 
snRNA 51 (64.6%) 25 (31.6%) 3 (3.8%) 79 (100%) 
tRNA 133 (71.9%) 52 (28.1%) 0 (0%) 185 (100%) 
Subtotal 193 (65.9%) 93 (31.7%) 7 (2.4%) 293 (100%) 

2.1.3.4. Only a few covariations in the human-zebrafish best-fit ncRNAs 

From the conclusion that there are insufficient covariations between human and mouse 

synteny-conserved ncRNAs (for details see subsection 2.1.3.3. ), it is reasonable to infer that 

successful detection o

Table 2-7. Numbers of the human-mouse-zebrafish orthologous ncRNAs that contain various numbers of 
covariations 

f ncRNAs through using comparative ncRNA finding approaches may 

requ

Gish 

1996

ire more distantly related species than human and mouse. Zebrafish was therefore used in 

order to investigate if comparing the human genome with other vertebrate genomes can 

provide significantly more covariations for the purpose of ncRNA finding. 

Initially, the zebrafish ncRNAs that are synteny-conserved to human-mouse 

synteny-conserved ncRNAs were searched in the human-zebrafish UBRPHs-bound syntenic 

regions; however, only 110 out of 920 human-mouse synteny-conserved ncRNAs could be 

matched to 58 non-redundant zebrafish ncRNAs. This is most likely due to the lost of synteny 

between these distantly related species. 

In order to recruit more human-zebrafish orthologous ncRNAs, WU-BLAST (

-2004) was used to perform a whole genome search for homologues for individual 

human-mouse synteny-conserved ncRNAs. The best hit for each ncRNA was used for further 

analysis. 31.8% (293/920) of 920 human-mouse synteny-conserved ncRNAs matched to 112 

non-redundant zebrafish ncRNAs. Taking the number of covariations from human-mouse 
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synteny-conserved ncRNAs as the reference, the number of covariations was found to increase 

in the human-zebrafish orthologous miRNAs and snoRNAs. However, there were not 

significantly more covariations in the human-zebrafish orthologous tRNAs and snRNAs than 

in the human-mouse synteny-conserved ones (Table 2-6). In fact, there were no useful 

covariations in 65.9% (193/293) of the human-zebrafish orthologous ncRNAs (Table 2-7). 

2.1.3.5. Using real genomic alignments to assess the performances of ncRNA finding algorithms 

parative ncRNA finding algorithms generally comes from 

benc

ances of RNAz, QRNA, and ddbRNA. In particular, an 

additional 20 bases from both the 5’ and 3’ flanking regions of human tRNA genes were 

included when generating the alignments. The reason for including (2 x 20) bases is that, 

including longer flanking sequences to generate alignments may result in a significant drop of 

identities and only a few of the generated alignments may have identities within the identity 

range preferred by the three algorithms under test. On the other hand, including flanking 

sequences shorter than 20 bases may not introduce noise into alignments and the property of 

the generated alignments is still similar to that of the alignments of curated tRNAs. 

 thousa a nd a ere 

generated by using ClustalW 1.83. Three algorithms, RNAz, QRNA, and ddbRNA, were 

The credibility of existing com

hmarks against adopted test data sets created by aligning well-curated ncRNAs, and not 

the alignments of ncRNA-containing genomic sequences. For example, one of the popular 

data sets is the alignments of ncRNAs retrieved from Rfam. These Rfam ncRNAs are different 

from real genomic sequences in that their 5’ and 3’ flanking sequences have been carefully 

trimmed. It is possible that additional noise may be introduced to complicate the detection of 

consensus RNA motif, if alignments of real genomic sequences, instead of Rfam seed 

sequences, are used. 

In the following test, pairwise and three-way genomic alignments of human tRNA genes 

were generated to assess the perform

One nd pairwise lignments a one thousand three-way lignments w
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tested on these alignments us defaul rs. orith RNA 

classifiers. Given a sequence alignment, they will determine whether the sequences as a whole 

are ncRNAs or not. The result reveals that the performances of none of these algorithms are as 

go

RN

identities within 60% ~ 100%; however, using the genomic alignments of human tRNA genes, 

the sensitivity is only ~49%, when pairwise alignments of identities no less than 60% are used 

anging the threshold of alignment identity does not improve the 

xplanation that contributes to the drop in 

sens

 

 

ing their t paramete These alg ms are nc

od as claimed in their respective papers (Table 2-8). For example, in the original paper of 

Az, the sensitivity was as high as ~95% for detecting tRNA genes by using alignments of 

(Table 2-8). In addition, ch

sensitivity of any of the algorithms. 

In order to rule out the possibility that the bias of using only human tRNA genes could 

cause the drop in sensitivities, a positive control was performed by using the alignments of 

human tRNA genes without the 5’ and 3’ flanking regions. The sensitivity of RNAz on this 

positive control data set is 94% (data not shown), which is close to the published value (95%) 

(Washietl et al. 2005). Consequently, the incorporation of flanking regions of human tRNA 

genes in the test alignments is the only obvious e

itivity of these ncRNA-finding algorithms. These results clearly indicate that it is much 

harder to identify ncRNAs from the alignments of real genomic sequences than from the 

alignments of curated ncRNAs. 
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 RNAz (three-way) ddbRNA (three-way) RNAz (pairwise) ddbRNA (pairwise) QRNA (pairwise) 

All 64.2% (642/1000) 36.2% (362/1000) 61.1% (611/1000) 36.2% (362/1000) 36.6% (366/1000)

Identities >=50% 75.7% (115/152) 57.9% (88/152) 53.8% (148/275) 42.2% (116/275) 46.5% (128/275) 

Identities >=60% 75% (6/8) 37.5% (3/8) 48.8% (20/41) 31.7% (13/41) 36.6% (15/41) 

Identities >=70% NA NA 44.4% (8/18) 5% (1/18) 27.8% (5/18) 

2.1.4. Discussions 

2.1.4.1. Practicality of ncRNA prediction based on comparative genomics 

With the results already presented in this section (section 2.1), pairwise and three-way 

alignments of vertebrate genomes do not appear to be ideal da

Additional 20 bases from both the 5’ and 3’ flanking regions of human tRNA genes are included when 
generating alignments of human paralogous tRNA genes. NA means in 1000 alignments, none of them have 

numerators are the numbers of alignments that are correctly classified as ncRNAs. Denominators are the 
numbers of alignments with identities within a certain range indicated in the first column of this table. 

ta sets for ncRNA finding 

algorithms. Firstly, there are limited numbers of covariations between orthologous ncRNAs 

and high primary sequence conservation (see subsections 2.1.3.3. and 2.1.3.4. ). Secondly, 

algorithms that take alignments as input data may be unable to properly score RNA motifs 

from genome alignments (see subsection 2.1.3.5. ). 

A finding algorithms on these data sets 

and their published performance is due to the different data sets used. Many comparative 

ncRNA finding algorithms have been trained and tested using alignments of ncRNAs, such as 

seed sequences used to build the Rfam CMs. These alignments are referred to as synthetic 

alignments in this thesis, because they are not generated directly by aligning genomic 

sequences. ncRNA finding algorithms perform better on synthetic alignments than genomic 

alignments. Also, while few, if any, covariations could be found in human-mouse syntenic 

ncRNAs, there were larger numbers of covariations in these synthetic alignments. One reason 

Table 2-8. Estimating sensitivities of ncRNA-finding algorithms by using the alignments of genomic 
sequences of human tRNA genes 

identities greater than certain thresholds as indicated in the first column of this table. In parentheses, 

The difference between the performance of ncRN
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for the difference is that they were generated from more distantly related organisms. A second 

reason is that the alignments also contained paralogous ncRNAs. Comparison reveals that 

paralogous ncRNAs can provide more covariations than comparison of orthologous ncRNAs. 

Synthetic alignments of ncRNAs from ncRNA databases (such as Rfam) may include 

paralogous ncRNAs. By contrast, synteny alignments should contain few, if any, paralogous 

ncRNAs. 

Under the situation of few covariations in vertebrate ncRNA alignments, the use of 

multi-way alignments of more than three genomes is an alternative choice that should be 

considered. In a recent report, eight-way genome alignments were used for genome-wide 

ncRNA finding (Pedersen et al. 2006). However, several cases presented by Pedersen et al. 

demonstrated that candidate regions of ncRNAs are very well conserved and only a few 

putative compensatory mutations could be found. In other words, the evidence presented in 

Pedersen et al.’s report actually indicates good conservation at the primary-sequence level. 

These cases should therefore be considered only as good candidates for functional elements, 

but not necessarily good candidates for RNA structural motifs. 

I therefore conclude that, although comparative ncRNA finding algorithms have been 

used to find ncRNA in multiple vertebrate genomes, there are still concerns with the results 

presented in relevant papers. Further examining the ncRNA conservation patterns in multiple 

verteb

 

existing vertebrate genome assemblies are composed of sequences generated from whole 

rate genomes may be required, in order to determine the potential of using multi-way 

alignments of vertebrate genomes for ncRNA finding. 

It is possible that multi-way ncRNA alignments from sufficient vertebrate genomes will 

contain enough variations and covariations for ncRNA finding algorithms to work effectively. 

However, a serious issue for practical genome-wide ncRNA finding is the quality of genome 

alignments that must be scanned by these algorithms. Up to now, a significant proportion of 
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genome shotgun sequencing (WGS). Compared to genome assembly composed of mainly 

clone based sequencing, genome assemblies consisting of much WGS may contain more 

sequence misassignment errors and unfinished regions (Cheung et al. 2003). It can be inferred 

that WGS m

NAs. For instance, in the 10-way vertebrate 

genome alignments generated using the Pecan algorithm, a new comparative-genomics 

their synteny-conserved counterpa

 performance on genome alignments, it is also 

necessary to consider the number of false positives. Recently ncRNA finding algorithms were 

applied to a high-quality set of 28-way verteb

ay result in missing synteny-conserved ncRNAs (false negatives). Even when 

finished contig sequences are used, multi-way genome alignments provided by public-domain 

resources may still miss synteny-conserved ncR

resource provided by Ensembl, only 114 human tRNA gene loci were found to be aligned to 

rts in other species (data not shown). This number is much 

smaller than that found using the UBRHPs-based approach (371 loci, see subsection 2.1.2.2. ), 

even though the mouse genome assembly used to generate Pecan alignments consists mainly 

of finished contig sequences. The UBRHPs-based approach is useful for evaluating ncRNA 

conservation, as it has been used here, but cannot be used in de novo ncRNA prediction as it 

relies on the location of ncRNAs in one species already being known. An additional source of 

false negatives, when using ncRNA finding algorithms that depend on genome alignments, 

will be ncRNAs which are genuinely synteny-non-conserved. In genomes that are distantly 

related, numerous ncRNAs may be synteny-non-conserved. Such a situation has been 

demonstrated by the low synteny-conservation ratio of human and zebrafish ncRNAs (see 

subsection 2.1.3.4. ). A similar situation was also encountered when comparing the human and 

chicken genomes (Hillier et al. 2004). 

When evaluating ncRNA finding algorithm

rate genome alignments consisting mainly of 

finished contig sequences and corresponding to 1% of the human genome sequence (Washietl 

et al. 2007). This is part of the ENCODE project (The ENCODE Project Consortium 2007). 
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The ncRNA finding algorithms were found to have successfully detected the small number of 

known ncRNAs. However with an evaluation using shuffled alignments that preserved the 

dinucleotide frequency to that of the 28-way genome alignments, Washietl et al. estimated that 

these comparative algorithms for genome-wide ncRNA finding may suffer from a high false 

positive rate, 50% ~ 70%. 

All in all, in the context of using existing vertebrate genome assemblies and their 

alignments, I conclude that the effectiveness of ncRNA finding algorithms that are based on 

comparative genomics is limited. 

2.1.4.2. Proportion of human ncRNAs which are human-mouse synteny-non-conserved 

In the process of collecting synteny-conserved ncRNAs to assess comparative algorithms 

so 

established. Synteny-conservation ratios of ncRNAs were calculated from this and were found 

t categories (see subsection 2.1.3.1. ). At first sight 

lower than published estimates of for protein 

codi

significantly higher than estimated previously in this 

for genome-wide ncRNA finding, the occurrence of synteny-non-conserved ncRNAs was al

to vary substantially for ncRNAs in differen

the ratios for all categories appear substantially 

ng genes (Mouse Genome Sequencing Consortium 2002), which were estimated as high 

as 96%. However there are substantial differences in the protein and ncRNA data sets from 

which the synteny-conservation ratios have been calculated which should be considered before 

any conclusions are drawn. For ncRNA genes in vertebrate genomes it is very difficult to 

determine which predictions are bona fide ncRNAs and which are ncRNA pseudogenes. 

Estimating synteny-conservation ratios for bona fide ncRNAs of various classes in vertebrate 

genomes is therefore difficult. For protein genes it is much easier to determine which ones are 

pseudogenes and the figures quoted were calculated after pseudogenes have been excluded, 

unlike figures for ncRNAs. 

If many synteny-non-conserved ncRNAs are pseudogenes, the synteny-conservation ratio 

of human and mouse ncRNAs may be 
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secti

2.2.1. Materials and methods 

on (2.1). Apart from the effect of pseudogenes, there are several other factors that will 

contribute to an underestimate of the synteny-conservation ratios of ncRNAs, though only to a 

small extent. Firstly, some uncertain type(s) of genome rearrangements may potentially cause 

artefacts in finding synteny-conserved ncRNAs (for details see subsection 2.1.3.2. ). However, 

even if the real synteny-conservation ratio of ncRNAs in “complicated” regions is comparable 

to that under other evolutionary conditions, the overall synteny-conservation ratio of ncRNAs 

would only be ~2% higher than previously estimated. Secondly, ~40% of the mouse genome 

assembly (NCBI M33) used in this section was composed of whole genome shotgun 

sequencing (WGS). However here too, the effect is small, and estimated to have lowered the 

synteny-conservation ratio by only ~2% (for details see subsection 2.1.3.1. ). The major 

uncertainty relates to the functionality of synteny-non-conserved ncRNA. This issue is further 

explored in the next chapter (chapter 3). 

2.2. Gene-order conservation of mammalian tRNA genes 

2.2.1.1. Recruiting mammalian tRNA gene loci 

The genomic loci of the human and mouse tRNA genes were retrieved from Ensembl 

release 40. These tRNA gene loci were predicted by tRNAscanSE (Lowe and Eddy 1997). The 

human and mouse genome assemblies used in the following analysis are NCBI 36 and NCBI 

M36, respectively. They are the most updated assemblies that have been annotated by 

Ensembl (April 2007, http://www.ensembl.org/index.html). Unlike the previous mouse 

genome assemblies that consist of many sequences generated from whole genome shotgun 

sequencing (WGS), NCBI M36 is a highly polished genome assembly, where most of the 

sequence is composed of finished contig sequences (http://www.ncbi.nlm.nih.gov/projects/ 

genome/seq/NCBIContigInfo.html). Investigating the gene-order conservation of mammalian 
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tRNA genes using this higher quality mouse genome assembly should therefore be far less 

affec

One issue when trying to understand the evolution of tRNA genes is that, by comparing 

two genomes, it is difficult to determine whether a difference (i.e. an unaligned tRNA gene 

symbol, referred to subsequently as a ‘gap’) in an alignment between them is caused by the 

deletion and/or degradation of tRNA genes in one genome or the insertion of tRNA genes in 

the other. One way to try and distinguish between these possibilities is to recruit a set of tRNA 

gene loci, as an external reference, from a third genome that is an outgroup of the first two. An 

organism that has split from a common ancestor of placental mammals (including human and 

mouse) before the primate-rodent split can suffice or this purpose. In the following analysis, 

opossum was used which is a species of m tal 

mammals about 180 millions years ago (Lawn et al. 1997). By using such an external 

refer

 locus after the primate-rodent split 

um genome were retrieved from 

Ense

ted by genome assembly artefacts. 

 f

arsupials. Marsupials diverged from placen

ence, the evolutionary event that led to a gene order difference in human and mouse may 

possibly be inferred. For instance, when considering alignments of tRNA gene clusters if a 

symbol insertion found in a human-mouse tRNA symbol alignment remains an insertion in a 

human-opossum tRNA symbol alignment, this insertion is likely to be the result of a 

duplication or transposition event that occurred in the genome of the human ancestors. 

Likewise, a deletion and/or degradation of a tRNA gene

may also be inferred. The tRNA gene loci of the oposs

mbl release 40 and the opossum genome assembly used in the following analysis is 

MonDom4. 

There is one concern about using the tRNA gene arrangements in the opossum genome. 

The sequence assembly of the opossum genome consists mainly of the sequences from whole 

genome shotgun sequencing (http://www.ensembl.org/Monodelphis_domestica/index.html). 

For this reason, the opossum tRNA gene loci are used only for inferring the evolutionary 
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history after the primate-rodent split, but not that before the primate-rodent split, i.e. apparent 

differences in gene order unique to opossum were ignored. 

2.2.1.2. Identifying the syntenic tRNA gene clusters 

The steps for identifying synteny-conserved tRNA gene clusters are presented in the 

flowchart in Figure 2-4. In comparing the tRNA gene order in the human and mouse genomes, 

the first genome is the human genome and the second genome is the mouse genome. The 

tRNA

unit. 

 gene loci were sub-grouped into clustered and non-clustered ones (singlets), 

respectively. A threshold of the maximal distance allowed between the nearest neighbouring 

tRNA genes in a cluster was defined to be 1 mega bases. This threshold was set as the 

minimum distance required to ensure the super cluster (e.g. 150 tRNA gene loci) that spans 

several mega bases on human chromosome 6 remained a single 

 

For each human tRNA gene cluster, the syntenic region in the mouse genome was 

determined using the UBRHPs-based approach (for details see subsection 2.1.2). Each human 

tRNA gene cluster, together with the corresponding tRNA gene cluster in the syntenic region 

Figure 2-4. The procedure of identifying the syntenic tRNA gene clusters in mammalian genomes 
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in the mouse genome, becomes a pair of synteny-conserved tRNA gene clusters. The 

conservation of tRNA gene order was investigated by comparing the arrangements of tRNA 

gene loci in each pair of human-mouse syntenic clusters. 

2.2.1.3. Assigning symbols to mammalian tRNA gene loci 

A general approach for investigating gene-order rearrangements is to represent genes as 

symb

ple, there are two anticodons, UUU and CUU, for 

ols and then compare their order (for review see Sankoff and El-Mabrouk 2000). In 

investigating the tRNA gene-order conservation, I followed a similar strategy. Each tRNA 

gene locus was thus assigned with a symbol according to its features. These features include 

the anticodon types and the genomic orientation. For example, there are two different 

anticodons, GCA and ACA, used by tRNAs for carrying cysteines (tRNA-Cys). Cys1 was 

used to represent the tRNA-Cys gene loci that have the anticodon GCA. Cys2 was used to 

represent the tRNA-Cys2 gene loci that have the anticodon ACA. If a Cys1 was on the 

forward strand of a chromosome, a suffix “F” was added. Conversely, Cys1R was used when a 

tRNA-Cys1 gene locus was on the reverse strand of a chromosome. A lookup table of the 

relations between anticodon types and tRNA gene symbols can be found in Table A 1, 

Appendix A. 

There is one consideration in the use of a set of anticodon based tRNA gene symbols. If 

there are transitions of anticodon types, finding two loci with the same anticodon types does 

not necessarily mean that both loci should have evolved from a common ancestral locus. 

Likewise, a mismatch of the anticodon types does not necessarily mean that the two tRNA 

gene loci should have evolved from two distinct ancestral loci. 

In order to compensate for this limitation of the anticodon-type tRNA gene symbols in 

the gene-order comparison, another set of tRNA gene symbols based on sequence identities 

was also created. The steps are as follows. Firstly, all human tRNA gene loci were classified 

according to their anticodons. For exam
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tRNAs that carry the amino acid lysine. All lysine-tRNA genes, which carry either one of the 

two 

ne loci in the human, mouse, and opossum genomes was 

assig

anticodons, were grouped together. Secondly, using the TIGR Gene Indices Clustering 

Tools (TGICL) (TIGR 2002-2003), each group of tRNA genes was further divided into 

subgroups according to pairwise sequence identities. The grouping was performed by Cap3 

(called by TGICL) (Huang and Madan 1999) using default parameters. Subgroup assignments 

were performed automatically using TIGR. For example, Thr-tRNAs were divided into 

S_Thr_1, S_Thr_2, and S_Thr_3 subgroups. Forty subgroups were so created. The pairwise 

sequence identities within individual subgroups range from 94% to 100%. Sequences in each 

group are fairly homogeneous at the primary-sequence level. Each subgroup was used as a 

unique sequence type of tRNA genes. For the purpose of comparing the tRNA gene orders in 

different genomes, each tRNA ge

ned with the best-hit sequence type according to its sequence identities to all sequence 

types. The sequence-type symbols of tRNA genes were used to find anticodon transitions that 

may cause the generation of gaps in the anticodon-type symbol alignments. 

2.2.1.4. Filtering out possible tRNA-like SINEs 

In this tRNA gene-symbol based comparison one issue is filtering out the large number of 

tRNA-like SINEs which are present mammalian genomes. If too many are included, many 

false gaps will be generated when comparing the gene orders of two different genomes. In 

practice, it is very difficult to prepare a comprehensive list of free of the many tRNA-like 

SINEs. For instance, there are, in the mouse genome, thousands of species-specific SINEs that 

are related to tRNA genes (Mouse Genome Sequencing Consortium 2002). This is discussed 

in more depth in the introduction to chapter 3, however for the purposes here, only mouse 

tRNA genes with tRNAscanSE bit scores greater than 40 were included. There are two 

reasons for setting this threshold. First, in the set of 2,345 tRNA genes of low scores 

(tRNAscanSE bit score < 40), 97.3% (2,282) of them overlap with SINEs. Secondly, the 
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bit-score distribution of the mouse tRNA genes reveals a bi-modal distribution (data not 

shown), where bit score 40 seems to be a point that can preserve as many normal mouse tRNA 

genes as possible, while most of the tRNA-like SINEs can be removed. After this filtering, 

504 tRNA gene loci in the mouse genome were recruited for this study, while without any 

particular filtering, there are by coincidence 504 human tRNA gene loci. Only 11.1% (55 / 504) 

of the high-scoring tRNA gene loci in the mouse genome overlap with SINEs. 

For the opossum t y tRNAscanSE was 

used to clean the data set of the opossum tRNA gene loci. This is due to there being relative 

little knowledge about repetitive elements in the opossum genome during the preparation of 

this manuscript. 

RNA gene loci only the simple pseudogene filter b

2.2.1.5. Types of gene-order conservation 

The tRNA gene symbols of the human and mouse tRNA gene clusters were initially 

ed using a dynamialign c programming implementation in Biojava (http://biojava.org). Except 

the h

the 

unal

onversely, when the unaligned symbols were from the other genome, either the mouse or 

dicating the source of gaps in symbol alignments, without implying anything about the 

sepa nd mouse one is the human-forward-strand versus 

ouse-forward-strand alignment; the other is the human-forward-strand versus 

mouse-reverse-strand alignment. The two symbol alignments automatically generated by using 

in the cases of perfect-type conservation, there were gaps in the tRNA symbol alignments of 

uman-mouse or human-opossum syntenic tRNA gene clusters. According to the source of 

unaligned symbols, these gaps were assigned as either insertions or deletions. The 

igned tRNA symbols that were from the human genome were assigned as insertions. 

C

opossum genome, the gaps were assigned as deletions. This convention was used only for 

in

evolutionary origin of these gaps. 

The gene symbols from the two genomes are aligned on both strands to generate two 

rate alignments, i.e. for human a

m
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the B

lignment can best explain the evolutionary relationship between the human-mouse 

ake, 

especially w

iojava were then examined manually. The purpose of this step was to decide which 

a

synteny-conserved tRNA gene clusters. In some cases, this decisions was not easy to m

hen there had been chromosomal inversions in the tRNA gene clusters after the 

primate-rodent split. In cases where there were also synteny-conserved protein-coding genes 

intervening in the synteny-conserved tRNA gene clusters, these protein-coding genes were 

used as landmarks. These intervening protein-coding genes could be used to sub-divide tRNA 

gene clusters into smaller sub-clusters allowing conservation of tRNA gene orders within 

these sub-clusters. 

 

 

Five types of conservation patterns of the mammalian tRNA genes were defined as 

follows (see also Figure 2-5): 

Figure 2-5. Different types of tRNA gene-order conservation 

 
z “Perfect” conservation (Figure 2-5, A) refers to a pair of syntenic tRNA gene clusters in 

protein-coding genes, has been completely  
perfectly aligned. 

 
z  synteny-conserved clusters where there are 

which the arrangement of all functional elements, including tRNA
 conserved and all the sym

 genes and intervening 
bols can be

“Sub-perfect” conservation refers to a pair of
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minor diff
used when there is between-syntenic-cluster

erences between them. “Sub-perfect type-one” conservation (Figure 2-5, B) is 
s inconsistency in the physical arrangement 

type-two” 
conservation (Figure 2-5, C) is used when there are non-syntenic tRNA genes at the ends 
of the syntenic clusters.  

z “Gapped” conservation (Figure 2-5, D) refers to -conserved clusters 
where a few r

 

e may have been multiple genome rearrangem ce of
complicated case is inferred when there are multiple gaps in the tRNA symbol alignment. 

 the neighbourhood of tRNA 
gene loci may have also changed. 

z 

the second genome. 

of protein-coding genes intervening in the clustered tRNA genes. “Sub-perfect 

 
a pair of synteny

 tRNA gene loci a e not aligned. 

z “Complicated” conservation (Figure 2-5, E) refers to a pair of synteny-conserved clusters 
where ther ents. The existen  a 

Besides, the linear relations of the protein-coding genes in

 
“Single” conservation refers to the case where, in a tRNA gene cluster, only one 
synteny-conserved tRNA gene locus was found in the corresponding syntenic region in 

 

2.2.1.6. Checking the conservation of the internal promoters of tRNA genes 

For the purpose of checking the conservation of the internal promoters in these tRNA 

genes, eufindtRNA (Pavesi et al. 1994) was used. eufindtRNA is a tRNA-finding algorithm 

that can recognize the features of important promoting elements, such as A and B boxes, 

termination signals, and relative spacing between signals, for the transcription of eukaryotic 

tRNAs. The relaxed mode of eufindtRNA was used here to evaluate only the integrity of 

intragenic control regions. The stringent mode of eufindtRNA, which can also assess the 

quality of termination signals, was not used in the following analysis, because evidence 

suggests that some variations in termination signals are allowed (Gunnery et al. 1999). 
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2.2.2. Results 

2.2.2.1. 32 human-mouse synteny-conserved tRNA gene clusters 

Among the 504 tRNA gene loci in the human genome, 92 (18%) loci are not clustered 

nglets) (Table 2-9). There are more singlets (27%, 134/504), and also fewer clustered tRNA 

ne loci in the mouse genome than in the human genome. The significance of this finding is 

clear given that we know the data sets used are not entire

(si

ge

un ly clean of loci such as tRNA-like 

SINEs. 

 

 
number of 

tRNA genes 

number of 

clusters 

number of cl

tRNA gene l ene loci (singlets)

ustered 

oci 

number of non-clustered 

tRNA g

human 504 (100%) 38 412 (82%) 92 (18%)

mouse 504 (100%) 48 370 (73%) 134 (27%)

opossum 991 (100%) 121 597 (60%) 394 (40%)

opossum  

(bit score >= 40) 
546 (100%) 46 408 (75%) 138 (25%)

 

 
clusters 

synteny-conserved clusters 

human tRNA gene loci in 

synteny- non-conserved 
synteny-conserved clusters 

 

human tRNA gene loci in 

clusters 

human tRNA gene loci in the 

human-mouse 412 (100%) 32 29 (7%) 383 (93%)

human-opossum 412 (100%) 28 181 (44%) 231 (56%)

 

Table 2-9. The statistics of clustered tRNA gene loci in the human, mouse, and opossum genomes 

Table 2-10. The synteny conservation of clustered human tRNA gene loci 

Eighty-two percent and seventy-three percent of the tRNA gene loci (Table 2-9) in the 

hum d omes were grouped into 38 and 48 clusters, respectively (for the 

detailed lists see Table A 2 and A 3, Appendix A). Th two p of h  and mouse 

tRN e d  a detailed list see Table A 4 in 

an an mouse gen

irty- airs uman

A gen clusters were found to be synteny-conserve  (for
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Ap  A ha clust h an ge  

are RN ne c T )  

con n te align sy s of 2 

human-mouse pairs of synteny-conserved tRNA gene clusters. The gene order comparison 

was performed primarily by using the anticodon-type symbols of tRNA gene loci. The result 

veals some unaligned regions in the tRNA symbol alignments (Table 2-12). Among the 383 

rved clusters, 

230 

 

ose evolutionary 
tangles are used to 

indicate the unitary blocks that repeat for multiple times in both the human and mouse genomes. Arrows are 
us
un
are used to indicate the possible region of a chromosomal inversion. 

pendix ). 93% (383/412) of the tRNA gene loci t t are ered in t e hum nome

 within the human-mouse synteny-conserved t A ge lusters ( able 2-10 . The

servatio  of tRNA gene order was then investiga d by ing the mbol the 3

re

clustered human tRNA gene loci that reside in the human-mouse synteny-conse

loci (60%) can be aligned without much uncertainty. A special case is the alignment of 

human cluster 4.1.36 and mouse cluster 5.1.26. In the initial alignment of this pair of syntenic 

clusters, only 10 out of the 36 human loci can be aligned. By manual curation, a track of 15 

tRNA gene loci that can be aligned in an inverted way was found (Figure 2-6). 

Figure 2-6. The conservation pattern of the human tRNA gene clusters 4.1.36 and its syntenic cluster in the 
mouse genome (see next page) 

tRNA gene loci are represented in two ways: (1) the ones in rounded rectangles with symbols indicating the 
codon type of tRNA genes; (2) the ones that are plotted in red dots, indicating the loci wh
origins cannot be unambiguously assigned based on sequence identity. Dotted-rounded rec

 

ed to indicate the orientation of these repetitive blocks, where the red ones are used to indicate the complete 
itary blocks, and the cyan and magenta ones are used to indicate the incomplete unitary blocks. Red lines 
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Figure 2-6 (for figure legend see the

previous page) 

 

 



70 Chapter 2. Constraints from comparative genomics for ncRNA finding
 

2.2.2.2. Anticodon transitions are rare after the primate-rodent split 

The conservation of gene order was also evaluated by comparing the arrangements of the 

sequ

A gene loci are not 

consistent with the expectations inferred from their respective sequence types. The transitions 

 tRNA-Ser and tRNA-Tyr in human cluster 17.7.20 are also supported by 

the c

ID anticodon sequence anticodon score

ence-type symbols. The purpose here was to find if there was any evidence of anticodon 

transitions that could cause mutated tRNAs to carry different amino acids. The result reveals 

that, as expected, anticodon transitions in mammalian genomes are very rare. By comparing 

the human and mouse synteny-conserved tRNA sequence types, only six anticodon transitions 

were found (Table 2-11). The observed anticodons in these six human tRN

from tRNA-Cys to

onserved arrangement of the tRNA gene loci in the corresponding mouse syntenic cluster, 

in which there are only tRNA gene loci of anticodon type Cys1 and sequence type S_Cys_1. 

 
cluster Coordinate observed 

type 

observed 

type 

expected 

type 

bit 

3.1.42 chromosome:NCBI36:1:147561290:147561360:-1 Val3 S_Gly_1 Gly2/Gly3 60.62

3.1.42 chromosome:NCBI36:1:146185653:146185726:1 Asn2 S_Asn_1 Asn1 52.07

14.6.150 chromosome:NCBI36:6:27379547:27379618:-1 Thr3 S_Met_1 Met1 46.44

14.6.150 chromosome:NCBI36:6:28811185:28811256:-1 Val4 S_Ala_1 Ala3/Ala4 64.08

17.7.20 chromosome:NCBI36:7:148886066:148886138:1 Tyr1 S_Cys_1 Cys1 49.4 

17.7.20 chromosome:NCBI36:7:148936400:148936471:1 Ser4 S_Cys_1 Cys1 62.1 

 

Table 2-11. Transitions of the anticodons of tRNA gene loci 

2.2.2.3. Numerous gaps between synteny-conserved hu n and mouse clustersma  

There were nu ny-conserved human an ouse clusters (Table 

2-12). As many as 40% of the human loci in these gene clusters were insertions in symbol 

alignments. According to the distribution pattern of gaps in the symbol alignments, the 

synteny-conserved tRNA gene clusters were further grouped into the five conservation types 

merous gaps between synte d m
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(T

M

hu here there are multiple gaps in their symbol 

ali

etc

An attempt was made to look for possible relationships between human-mouse 

non-syntenic tRNA  for similarities in the gene order. No significant 

tRNA gene-order conservation was discovered. 

 

synteny-conserved clusters alignments symbol alignment 

able 2-13) (for the definitions of the five types, see subsection 2.2.1.5. , Materials and 

ethods). ~65% (267/412) of the human clustered tRNA gene loci are within the 

man-mouse synteny-conserved clusters w

gnments (“gapped”, Table 2-13). Other statistics about the conservation types, aligned loci, 

. of the human-mouse synteny-conserved clusters are listed in Table 2-13.  

 clusters by searching

 
human tRNA gene loci in the insertions in the symbol aligned human tRNA gene loci in 

human-mouse 383 (100%) 153 (40%) 230 (60%)

human-opossum 231 (100%) 104 (45%) 127 (55%)

 

Table 2-12. The statistics (aligned and inserted regions) of the human-mouse tRNA symbol alignments 

conservation type 
human tRNA human tRNA- aligned loci in the unaligned loci 

gene clusters gene loci human genome (insertions)* 

perfect 8 17 (4%) 17 0

sub-perfect type one 5 36 (9%) 36 0

sub-perfect type two 4 11 (3%) 9 2

gapped 8 267 (65%) 157 110

complicated 1 42 (10%) 6 36

single 5 10 (2%) 5 5

synteny-non-conserved 7 29 (7%) 0 29

subtotal 38 412 (100%) 230 182

Table 2-13. The statistics of the gene-order conservation of human and mouse tRNA gene clusters 

additional tRNA symbols in the mouse genome that cannot be aligned to suitable syntenic counterparts in the 
human genome. Fifty-eight deletions belong to gapped conservation type. Three deletions belong to “single” 
conservation type. 

*: There are also 61 deletions in the human-mouse tRNA symbol alignments. Deletions are defined as the 
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In addition to clustered tRNA gene loci, some non-clustered tRNA gene loci were also 

found to be conserved in the corresponding mouse syntenic regions. There are 92 

non-clustered tRNA gene loci in the human genome. 37 of them are human-mouse 

synteny-conserved (see Table A 5, Appendix A). 

 

 

When the gene order is taken into consideration, only ~53% (267/504) of the human 

tRNA

the p ent in each tRNA 

gene cluster. Obviously, the m

ters are not conserved (Figure 2-7). 

.2.2.4. The association of the synteny-conservation of tRNA gene clusters with the quality of 

 gene loci are synteny-conserved. This value is much lower, by 21% (74% - 53%), than 

revious estimate made under the ignorance of the gene-locus arrangem

ain source of this big difference is that the arrangements of 153 

loci within the synteny-conserved clus

2
genome assembly 

One factor that may affect the d inati r  is 

the quality of genome assembly. It is ore important to explo  the 

synteny-non-conservation of human tRNA gene loci is as ciated with unfinished regions or 

use tRNA gene loci Figure 2-7. Summary of the synteny conservation of human and mo

eterm on of synteny-conse

theref

vation of tRNA genes

re if

so
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WGS in the g blies. The vestigation reveals that in the synteny-conserved tRNA 

gene clusters, the gaps in the tRNA symbol alignments are generally not related to the quality 

of genome a  (Table 2-14). W the human-mo e synteny-conserv tRNA gene 

clusters, all the genomic sequences intervening between each neighbouring tRNA gene loci in 

the mouse g re composed of finished contig sequences, but no unfinished contigs nor 

WGS. Besides, four out of the seven synteny-non-conserved human tRNA gene clusters were 

found to be in the regions where the genome assembly consists of finished contig sequences. 

 

enome assem  in

ssembly ithin us ed 

enome a

human tRNA gene clusters FCS CSN WGS* 

synteny-conserved clusters 31+ 0 0 

synteny-non-conserved clusters 4 1 2 

 
uman non-clustered  gene loci FC CSN WGS h  tRNA S 

synteny-conserved si ets 36 0 1 ngl

synteny-non-conserv nglets 51 1 3 ed si

The association between the quality of genome assemblies and the synteny conservation 

of non-clustered tRNA gene loci (singlets) was also evaluated. The inability to find syntenic 

mou

 of synteny-conservation of tRNA gene clusters and the quality of the mouse genome 
assembly 
FCS: finished contig sequence; CSN: unfinished contig sequence (with gaps); WGS: whole genome shotgun 
sequence 

*: there are also unfinished gaps in these WGSs.  

+: In 3 human-mouse synteny-conserved clusters, the ach 
pair of neighbouring tRNA g of Ss 
bet nd  of a clu n the 
cor ng human-mouse

Table 2-15. of synteny-conserv n of non-clustered tRNA genes (singlets) and quality of the 
mouse genome assembly 

Table 2-14. Relation

 intervening (mouse) geno
finished contig sequences 
ster, and the protein-ge

mic sequences between e
(FCS), while there are WG
e boundaries that define 

ene loci are composed 
tRNA gene loci
 syntenic blocks. 

ween the (5’ or 3’) e
respondi

 Relation atio the 

se counterparts to human tRNA gene singlets does not seem to be biased by the quality of 

genome assembly (Table 2-15). Among the 55 synteny-non-conserved singlets, 51 of the 

corresponding syntenic regions in the mouse genome are composed of FCS, but no WGS. 
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These results suggest that the gaps in the synteny-conserved clusters, the synteny 

non-conservation of at least four human tRNA gene clusters, and the synteny 

non-conservation of 51 non-clustered human tRNA gene loci, are more likely to be caused by 

evolutionary events, i.e. genome rearrangements, retro-transpositions, degraded genes 

(pseudogenes), tRNA-related SINEs, etc. 

2.2.2.5. The information from the tRNA gene loci in the opossum genome 

The comparison of the human and opossum tRNA gene loci reveals that there are fewer 

 human-mouse 

synte

ining the 3-way, 

hum

symbol alignment, this symbol insertion may represent a deletion or degradation of a 
ate-rodent split. 

z 

 symbol is also missing from opossum in the human-opossum 

(28) human-opossum synteny-conserved tRNA gene clusters than

ny-conserved clusters (Table 2-10). An example is that no opossum tRNA gene clusters 

were confirmed to be syntenic counterparts of the super tRNA gene cluster, 14.6.150, which is 

on human chromosome 6. Besides, more gaps (unaligned human tRNA gene symbols) were 

found in the human-opossum alignments than in the human-mouse alignments. These findings 

essentially fit expectations because opossum split from the placental mammals long before the 

primate-rodent split and the genome assembly quality is much lower. 

The arrangement of tRNA genes in the opossum genome provides information that can 

help us understand tRNA gene evolution in mammalian genomes. The insertions and deletions 

in the human-mouse tRNA symbol alignments, can be re-categorized by exam

an-mouse-opossum, alignments of the tRNA gene symbols and applying the following 

rules: 

 
z If an inserted tRNA gene symbol is found in opossum in the human-opossum tRNA 

tRNA gene locus in the mouse genome after the prim
If an inserted tRNA gene symbol cannot be found in opossum in the human-opossum 
tRNA symbol alignment, this symbol insertion may represent an insertion of a tRNA gene 
locus in the human genome after the primate-rodent split. 
If a deleted tRNA genez 
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tRNA symbol alignment, this symbol deletion may represent an insertion of a tRNA gene 
locus in the mouse genome after the primate-rodent split. 
If a deleted tRNA gene symbol can be found in opossum in the human-opossum tRNA 
symbol alignment, this symbol deletion may represent a deletion or degradation of a 
tRNA gene locus in the human genome after the primate-rodent split. 

z 

erformed using the above rules. 

 

 

The re-categorization of gaps in the human-mouse tRNA symbol alignment was 

p

human tRNA gene 

clusters 

insertions in the 

human-mouse alignments

Post primate-rodent-split 

insertions in the human 

genome 

Post primate-rodent-split 

deletions/degradations in 

the mouse genome 

6.1.3 1 1 0 

13.5.17 10 9 1 

16.6.2 1 1 0 

17.7.20 2 NA NA 

18.8.4 1 1 0 

20.11.2 0 0 0 

23.13.2* 2 0 1 

24.14.14 9 0 7 

26.15.2 1 1 0 

30.16.5 2 1 1 

33.17.8 2 1 1 

37.19.2* 2 0 2 

Subtotal 44 15 13 

 
 
 
 

Ta nsertions in the human-mouse tRNA symbol alignments 

NA: not available. The placement of gaps in the alignments is not unique. 

*: t
sy

ble 2-16. Evolutionary origin of the i

hese tRNA gene clusters are not human-mouse synteny-conserved, but are human-opossum 
nteny-conserved. 
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human tRNA gene 

clusters 

deletions in the 

human-mouse alignments

Post primate-rodent-split 

insertions in the mouse 

genome 

Post primate-rodent-split 

deletions/degradations  

in the human genome 

13.5.17 1 1 0 

17.7.20 34 NA NA 

18.8.4 1 0 1 

20.11.2 1 1 0 

Subtotal 38 2 1 

 

Based on the information derived from comparing the human-opossum 

synteny-conserved tRNA gene clusters, 28 insertions (i.e. the unaligned tRNA symbols in the 

human genome) can be re-classified to 15 post primate-rodent-split insertions of tRNA gene 

loci in the human genome, and 13 post primate-rodent-split deletions/degradations of tRNA 

gene loci in the mouse genome (Table 2-16). Two human tRNA gene clusters that are not 

human-mouse synteny-conserved were found to be human-opossum synteny-conserved 

(23.13.2 and 37.19.2, Table 2-16). These two clusters may have been deleted/degraded in the 

mouse genome after the primate-rodent split. Besides, among the deletions in the 

human-mouse tRNA symbol alignments, there are two post primate-rodent-split insertions of 

tRNA gene loci in the mouse genome, and one post primate-rodent-split deletion/ degradation 

of a tRNA gene locus in the human genome (Table 2-17). 

2.2.2.6. Duplicated multi-loci blocks in the mammalian tRNA gene clusters 

There are several human-mouse synteny-conserved tRNA gene clusters in which gaps in 

the tRNA symbol alignments cannot be unequivocally placed, due to the existence of so many 

unaligned regions in the tRNA symbol alignments. Human cluster 3.1.42 is a classic example 

(Figure 2-8). In the human cluster 3.1.42, not only the arrangement of the tRNA gene loci, but 

ding genes has changed. 

Table 2-17. Evolutionary origin of the deletions in the human-mouse tRNA symbol alignments 

NA: not available. The placement of many gaps in the alignments is not unique. 

also the relation of the tRNA gene loci to the neighbouring protein-co

  



2.2. Gene-order conservation of mammalian tRNA genes 77
   

One question that arises from these observations is about the mechanism by which tRNA gene 

loci in mammalian genomes evolve. Are there any particular rules that govern the changes of 

tRNA gene orders in these syntenic clusters? Or is the rearrangement of the tRNA gene loci in 

th

inf

ne

picture about the evolution of the tRNA gene loci in the human cluster 3.1.42 is revealed 

(F

z T ten  u d i c s, , and ,  oding 
genes. The gene order in each block is e e g the hu a , and 
o  ge o

 
z The arrang

protein-coding genes, are quite conserved in the mouse and opossum genomes. However, 
in the human genome, the arrangement of A, B, and C is as CR-A-B. The subscript “R” 
indicates that the C block is on the reverse strand. It can be inferred that there might be 

 
z 

 

cluster, 3.1.42, and its syntenic clusters in the mouse and opossum genomes. In the 
RNA gene loci, two blocks of 

Gln2-His1 loci, and two duplicated blocks of Asn1-Asn1 loci. In the syntenic tRNA gene 

-Gly3 loci. In the syntenic cluster in the opossum 

consists of unique combinations of different tRNA gene loci. 

ese synteny-conserved clusters generally random? 

Interestingly, the arrangement of the opossum tRNA gene loci provides useful 

ormation on this issue. By comparing the arrangements of tRNA gene loci as well as 

ighbouring protein-coding genes in the human, mouse, and opossum genomes, a vague 

igure 2-8). My conclusions are summarized as follows: 

he syn ic cl sters contain four ist nct blo k  A, B, C D of protein-c
quite cons rv d amon  m n, mouse

possum n mes. 

ements of the first three blocks, including A, B, and C, consisting of 

one segmental inversion in the human genome after the primate-rodent split. 

Between the C and D protein-gene blocks, the arrangements of tRNA gene loci in the 
human, mouse, and opossum genomes is very different. 

z There are multiple species-specific multi-tRNA-loci duplications in each cluster. No 
common unit blocks of these species-specific duplications were found among the human 

human cluster, 3.1.42, there are two blocks of Gln2-Asn1 t

cluster in the mouse genome, there are three duplicated blocks of Asn1-His1 tRNA gene 
loci, two duplicated blocks of Glu1
genome, there are at least seven types of duplicated blocks, where each distinct type 

 
z In the human cluster 3.1.42, there are 16 tRNA-Asn1 gene loci which are arranged into 
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several separated sub-clusters consisting of varied numbers of tRNA-Asn1 gene loci. By 
contrast, there are 7 tRNA-Asn1 gene loci that are interspersed in the syntenic mouse 

intra-cluster (other tRNA gene loci in the same cluster, 3.1.42) hits than inter-cluster hits 

than by inter-cluster duplication. In addition to at least three duplicated blocks of two 

 

blocks in the mouse genome cannot be found in either the human or opossum syntenic 

cluster. 15 out of the human 16 tRNA-Asn1 gene loci were found to have better 

(other tRNA gene loci not in cluster 3.1.42). This means that these tRNA-Asn1 gene loci 
in the human cluster 3.1.42 are more likely to be generated by intra-cluster duplications 

tRNA-Asn1 gene loci, there appear to have been a number of tandem duplications of 
single tRNA-Asn1 gene loci. 

z Some of the single units of duplicated multi-tRNA-loci blocks in one genome cannot be 
found in the other genome(s). For instance, the Glu1-Gly3 unit of a pair of duplicated 

cluster. 

  



2.2. Gene-order conservation of mammalian tRNA genes 79
   

DD

D

A

A

C
R

a
b

c
d

e
f

h
g

j
i

C
B

Ce
g

h
j

f
b

d
a

A
B

n
l

k
m

p
o

B
n

l
k

m
p

o

r
s

t
q

v
u

H
um

an
chr 1
14

48M
-

2.
148.38M

Mchr 6
97. ouse

77M
-96.19M

M
onodel

chr 2
492.98M

-

phis

495.31M

γ

Asn

n
l

k
m

p
o

i
j

e
g

b
h

f
a

c
d

r
s

q
u

t
α

Val

His
Val

H
is

Lys

Lys
Lys

Lys
Lys

Lys
Ser

M
et

G
ln

Trp

Ser
S

er
G

ln
G

ln
Trp

G
ln

G
ln

G
ln

Ser
Ser

M
et

Ser

G
ln

Asn

α
Asn

Asn

Asn

Asn

Asn

Lys
His

G
ln

Asn

H
is

G
ln

G
ln

His

G
ln

M
et

Ile
Ile

G
ly

G
ly

Lys
G

ln

G
ly

Ile
Ile

Lys

G
ly

M
et

H
is

Asn

Asn
His

G
ly

G
lu

G
lu

G
ly

β
Asn

Asn

Asn

Asn
Asn

Asn

Asn
Asn

G
ln

His
G

ly
G

lu

G
lu

G
ly

H
is

Asn
Asn

Val
Asn

Val
Asn

r
u

q
t

s
v

G
lu

G
ly

His

Asn
His

Lys

 

Figure 2-8 (for figure legend see the next page) 
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2.2.2.7. The synteny conservation of non-clustered tRNA gene loci in mammalian genomes 

In addition to the exploration about the evolution of tRNA gene loci in clusters, 

non-clustered but synteny-conserved tRNA gene loci (singlets) were also investigated in this 

study. Interestingly, ~78% (29/37) of the human-mouse synteny-conserved tRNA gene 

singlets were also human-opossum synteny-conserved. All these synteny-conserved tRNA 

 

gene singlets were high-scoring (tRNAscanSE bit scores > 64). 

2.2.2.8. The association between local duplications and unaligned tRNA gene loci in the
human-mouse tRNA symbol alignments 

This figure was not prepared to the scale, because it was intended to provide an overview of the putative, both 
s duplications on human chromosome one, 142.48M-148.38M, 

with respect to the corresponding syntenic regions in the mouse and opossum genomes. 

tR
co

around multiple tRNA gene loci are used to indicate the regions that may be involved in intra-species 

blues ones are used to indicate the blocks of directed duplications, and the green ones are used to indicate the 

Protein coding genes are represented using arrows. Synteny-non-conserved protein coding genes are 

as follows: 

d ANKRD35  i CD160  n ACP6  s SV2A  β NP_110423.3 

Figure 2-8. The conservation pattern of human tRNA gene cluster 3.1.42 and its syntenic clusters in the mouse 
and opossum genomes 

intra-species and inter-species, tRNA gene locu

NA gene loci are represented in two ways: (1) the ones in rounded rectangles with symbols indicating the 
don type of tRNA genes; (2) the ones that are plotted in red dots, indicating the loci whose evolutionary 

origins cannot be unambiguously assigned based on sequence identity. Color-shaded boxes are used to 
indicate the inter-species synteny-conserved regions, which are connected by red lines. The dotted boxes 

duplications. Curved lines are used to indicate the relation between intra-species duplicated blocks, where the 

blocks of inverted duplications.  

represented as open arrows. The symbols for the protein-coding genes used as the landmarks in this figure are 

a TXNIP  f NUD17_HUMAN  k FMO5  p GJA8  u ZA20D1 

b LIX1L  g POLR3C  l CHD1L  q BOLA1  v VPS45A 

c RBM8A  h ZNF364  m BCL9  r HIST2H2AB  α PDE4DIP 

e PIAS3  j PDZK1  o GJA5  t MTMR11  γ HIST2H2AA3 

 

Motivated by the finding of intra-cluster duplicated multi-tRNA gene blocks in the 

human cluster 3.1.42, and its syntenic clusters in the mouse and opossum genomes, I 

systematically surveyed the association between local duplications and synteny-non-conserved 
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tRNA gene loci in mammalian genomes. 

The starting point of this survey is to find candidate blocks for local multi-loci 

duplications. Candidate blocks are defined as repeating multi-loci blocks of 2-6 tRNAs in 

length that are not necessarily tandemly arranged, e.g. if a 2-locus block re-occurs 4 times, the 

number of loci involved in the putative duplication is 8, and so forth. If a series of tRNA gene 

loci 

more mismatches than their best hits 

to the regions outside the putative regions of duplications. The evidence, from

 are arranged in an inverted way. The synteny-non-conserved human 

cluster, 38.X.3, consists of 3 tRNA-Ile gene loci. The synteny-non-conserved human cluster, 

of the same anticodon type are tandemly arranged, they are also defined as a type of 

candidate block. When all human tRNA gene clusters were surveyed, ~20% (108/504) of all 

human tRNA gene loci were labelled candidate blocks. The existence of local duplications is 

supported by the observation that, among these 108 loci, ~81% (88/108) have their best 

(sequence identity) match within the putative regions of human-specific duplications. The 

remaining ~19% have matches that have only one or two 

 the 

conservation of gene order and the good sequence identities between putative duplicated loci, 

suggests an association between local duplications and the evolution of tRNA gene loci in 

mammalian genomes. 

Further investigation reveals that local duplications may be implicated in the unaligned 

tRNA gene loci in synteny-conserved tRNA gene clusters. A substantial proportion of the 

insertions in the human-mouse tRNA symbol alignments can be explained by species-specific 

local duplications. ~46% (70) of insertions (153, Table 2-12) overlap with putative 

human-specific candidate blocks involving multi-tRNA-gene loci; ~16% (25/153) of 

insertions overlap with human-specific tandem duplications of single tRNA gene locus. In 

addition, duplications may also associate with the species-specific tRNA gene clusters in 

mammalian genomes. In the synteny-non-conserved human cluster 1.1.10, there is one pair of 

candidate blocks, which
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15.6.8, is likely to be the result of a segmental duplication of the human cluster 14.6.150. In 

summ

 

ary, 63% of the unaligned tRNA gene loci in the human-mouse tRNA symbol 

alignments can be explained by local duplications (Table 2-18). 

conservation type 
unaligned loci 

(insertions)* 

unaligned loci that can 

be explained by local 

duplications 

sub-perfect type two 2 1 (50%) 

gapped 110 66 (60%) 

complicated 36 29 (81%) 

single 5 0 (0%) 

synteny-non-conserved 29 19 (66%) 

subtotal 182 115 (63%) 

 

Table 2-18. Local-duplication associated insertions in the human-mouse tRNA symbol alignments 

*: The definition of insertion is the same as that in Table 2-13. 

2.2.3. Discussions 

2.2.3.1. Possible evolutionary events involved in the rearrangements of tRNA gene loci in 
mammalian genomes 

Based on the investigation of gene-order conservation, the human-mouse 

synteny-conservation ratio of tRNA gene loci is estimated to be only ~53% (see subsection 

2.2.2.3. and Figure 2-7). This is lower than the UBRHPs-based estimate of ~74% which did 

not take into account gene-order and indicates the substantial number of gene-loci whose order 

is not conserved within tRNA clusters. 

One evolutionary event implicated by the low synteny-conservation ratio appears to be 

local duplication. More than half of the changes between the human-mouse syntenic tRNA 

gene clusters can be explained as the results of local duplications (see subsection 2.2.2.8. and 

Table 2-18). In addition to species-specific (post primate-rodent split) duplications, there is 
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evidence for local duplications before the primate-rodent split. For instance, in the human 

cluster 4.1.36, three duplicated blocks of five-tRNA-gene loci can be found in both the human 

and mouse syntenic clusters. Local duplication may be a ubiquitous rule for the evolution of 

tRNA gene loci in mammalian genomes. 

In many cases of putative duplications, the candidate blocks, which may consist of 

ed in either a direct or an inverted order. Formally, direct 

local

ssing-overs, which is proposed by Passananti et al. (Passananti et al. 1987), can also 

generate inverted duplications. However, from the 

clusters

multiple tRNA gene loci, are link

 duplications are called tandem duplications. One mechanism which may generate tandem 

duplications is unequal crossing-over between sister chromosomes during meiosis (for review 

see Anderson and Roth 1977). On the other hand, when local duplicated blocks are arranged in 

an inverted order, the duplications are called inverted duplications. There are at least two 

possible mechanisms which may generate inverted duplications. First, inverted duplication 

may be the result of post-tandem-duplication chromosomal inversion. Second, a model with 

double cro

investigations already made in this chapter, 

it is impossible to determine by which mechanism each inverted duplication has been 

generated. Future work could be to look for evidence to support one of the mechanisms. One 

possible way to resolve this problem might be to look for existence for replication origins, 

which is a required feature, proposed by Passananti et al., in the generation of inverted 

duplication. 

2.2.3.2. The co-amplification model of the formation of gene  

ronmental conditions (for review see Reams and Neidle 2004). 

The mechanisms that may lead to gene amplifications through tandem duplications and 

inverted duplications in one of the daughter strands can also cause the de-amplification of 

gene loci in the other strand. It has therefore been proposed that local duplications in 

prokaryotic genomes can act as a dynamic and reversible mechanism that can facilitate 

adaptation to a variety of envi
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A co

er of genes in this cluster does not need to be strictly conserved. 

Interestingly, the differences in tRNA gene order observed between the syntenic 

counte may 

have contributed to the for

genom  include increases of copy 

umber of tRNA genes through mechanisms leading to local duplications, and the partial 

co

One question that remains unanswered is about the advantage to survival conferred by the 

amp

17.7.20, while there are 52 and 43 loci in the syntenic clusters in the mouse and opossum 

genomes, respectively. 

 

-amplification model has been proposed to explain the generation and maintenance of the 

clustering of related genes in prokaryotes (Reams and Neidle 2004). One main argument is 

that clustered genes are more likely to be co-amplified and so equally regulated by gene 

dosage. Besides, if a gene cluster has been evolutionarily selected by the co-amplification 

model, the ord

rparts in different mammalian genomes suggest that the co-amplification model 

mation and evolution of tRNA gene clusters in mammalian 

es. The findings relevant to the co-amplification model

n

nservation tRNA gene orders in mammalian genomes. 

lification of tRNA gene loci in mammalian genomes. In prokaryotes, over-expression of 

gene products caused by gene amplification has been suggested to play a critical role in coping 

with environmental stresses, such as existence of heavy metals, antibiotics, etc. (for review see 

Romero and Palacios 1997). When a particular selection force disappears, the duplicated loci 

may be de-amplified through the reversible mechanisms of local duplications. Perhaps, the 

finding of species-specific duplications of tRNA gene loci in the human, mouse, and opossum 

genomes, respectively, reflect the differential requirements in the evolution of different 

mammalian species. Due to local duplications, there is significant difference between the 

numbers, in the respective genomes, of the tRNA gene loci of particular isoacceptor 

(anticodon) types. For instance, there are 20 tRNA-Cys1 gene loci in the human cluster, 
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2.2.3.3. Observations that cannot be explained by the co-amplification model 

From the observed synteny-conservation pattern of tRNA gene loci in mammalian 

genomes, several phenomena were found to be incompatible with the co-amplification model. 

Firstly, there are synteny-conserved singlet tRNA gene loci in mammalian genomes. For 

instance, 29 human non-clustered tRNA gene loci were found to be synteny-conserved in the 

human-mouse-opossum syntenic regions (Figure 2-9). The synteny conservation of these 

non-clustered tRNA gene loci strongly suggests they should be functional genes. None of 

these singlet tRNA gene loci are single copies of respective isoacceptor (anticodon) types. 

There is also no evidence that these singlets are the degraded remnants of tRNA gene clusters. 

One question is that, if the co-amplification and clustering is so beneficial to the survival of 

different mammalian species, why these singlet tRNA gene loci should be still conserved after 

ns of million years of evolution? During the preparation of this manuscript, no obvious 

adv

te

antages/disadvantages can be proposed to explain this observation. 

 

of other mammalian genomes 

Secondly, there are some synteny-non-conserved human tRNA gene loci, which cannot 

be explained by local duplication. Possible explanations may include the retro-transpositions, 

Figure 2-9. the synteny conservation of human non-clustered tRNA gene loci in the syntenic regions 
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and the post primate-rodent-split deletions/degradation of tRNA gene loci. These two issues 

are investigated in the following subsections (2.2.3.4. and 2.2.3.5. ). 

Finally, recent evidence has implied that the co-amplification model may not be the only 

plausible mechanism for the clustering of tRNA gene loci in the genomes. In the 

co-amplification model, clustered genes need not to be co-regulated by a cluster-associated 

enhancer. However, there is evidence that, under different conditions, the relative expression 

levels of tRNAs of different isoacceptor types may change (Dittmar et al. 2006). One idea is 

d the 

non-

that the internal promoters may provide a basal-level regulation of tRNA transcription, an

promoter regulatory regions may be responsible for controlling the differential expression 

under different situations. Searching for transcription regulatory elements for clustered tRNA 

gene loci in mammalian genomes is discussed briefly at the end of chapter 5. 

2.2.3.4. Degradation or deletion? 

Although the co-amplification model is an appealing hypothesis for interpreting the 

observed conservation patterns of tRNA gene loci in mammalian genomes, not all unaligned 

tRNA gene loci can be explained by species-specific local duplications or its reversible 

process (Table 2-18). In order to find other evolutionary events that may also lead to the 

unaligned regions in the human-mouse tRNA gene symbol alignments, another possibility, the 

post primate-rodent-split degradation of the sequences of tRNA gene loci, was therefore 

explored. 

For the non-clustered (singlet) and synteny-non-conserved human tRNA gene loci, the 

search for the evolutionary remnants in their corresponding syntenic regions in the mouse 

genome proved to be not very informative. For the 54 synteny-non-conserved singlet tRNA 

gene loci, only short hits could be found by using WU-BLAST. Most of the e-values are much 

higher than 0.05, except two cases with borderline significance (0.014 and 0.053). Since the 

evidence is so weak, it is unclear if there has been pseudogenisation through sequence 

  



2.2. Gene-order conservation of mammalian tRNA genes 87
   

degradation of singlet tRNA gene loci in the mouse genome. 

Interestingly, for the unaligned tRNA gene loci in the human-mouse syntenic clusters, 

two 

 

be a worse promoter than the one in the human orthologous tRNA 

gene

Human   GCGUUGGUGGUAUAGUGGUuAGCAUAGCUGCCUUCCAAGCAGUUGA 

putative cases of pseudogenisation through sequence degradations were found. None of 

the two pseudogenes have previously been annotated by Ensembl (using tRNAscanSE). These 

cases suggest that sequence degradation is implicated in the evolution of clustered tRNA gene 

loci in mammalian genomes. 

The first case is the degraded remnant in the mouse syntenic region of the Gly1-tRNA 

gene locus in the human cluster 37.19.2, which is a human-mouse synteny-non-conserved 

cluster. The e-value of the hit is 2.9e-06 (reported by WU-BLAST). The coordinate of the 

syntenic tRNA gene locus in the mouse genome is chromosome: NCBIM36: 17: 55852840: 

55852911: 1. 

Mouse(degraded) AUAUUGGUAGAAUAGUGGUuAGgAAAGCUGCCUUCCAAA-AGGUGG 
SS_cons   (((((((,,<<<<______._>>>>,<<<<<_______>>>>>,,, 
 
Human   -CCCGGGUUCGAUUCCCGGCCAACGCA 
Mouse(degraded) CCCCGGGUUCUAGUCCCAGAUUGCUUA 
S

 

 

This previously undiscovered mouse tRNA gene locus does not seem to be a functional 

one. Firstly, the sequence of the promoter, B box, appears to be degraded. Using eufindtRNA, 

which is a tRNA-finding algorithm based on the promoter conservation of tRNA genes, this 

sequence was determined to 

. Secondly, even if this mouse tRNA gene could be transcribed, the secondary structure of 

the generated tRNAs is likely to be unstable. The putative tRNA product of the degraded gene 

S_cons   ,,<<<<<_______>>>>>))))))): 

Figure 2-10. The structural alignment of a human tRNA gene locus and its syntenic (but degraded) counterpart 
in the mouse genome 
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locus contains 10 non-Watson-Crick (W-C) and non-GU base pairs in the stem regions (red 

regions on the mouse strand, Figure 2-10). For comparison, there is only one non-canonical 

base pair potentially de-stabilizing the secondary structure of the tRNA products transcribed 

from the orthologous human tRNA gene locus (red regions on the human strand, Figure 2-10). 

The second case of pseudogenisation is the degraded locus in the human syntenic region 

of the Arg4-tRNA gene locus in the mouse cluster 10.3.5, which is the syntenic cluster of the 

human cluster 18.8.4. The e-value of the hit is 7.8e-09 (reported by WU-BLAST). This 

previously undiscovered human tRNA gene locus, chromosome: NCBI36: 8: 67187730: 

67187802: -1, should be a pseudogene, although the secondary structure of the putative tRNA 

product have largely been preserved (red regions on the human strand, Figure 2-11). Its 

promoter, B box, has mutated from GGTTCGACT to GGTCCAGCT (corresponding to the 

RNA sequences in magenta color on the human and mouse strands, resepctively, Figure 2-11). 

The degradation of the promoter pattern, which cannot be identified by eufindtRNA, suggests 

that this degraded tRNA gene locus should be untranscribable. This finding is interesting, 

beca

 

 

use it provides an example of pseudogenisation through promoter-specific degradation. 

Pseudogenization through promoter-specific degradation is investigated and discussed more 

generally in chapter 3. 

 

Mouse   GGGCCAGUGGCGCAAUGGAuAACGCGUCUGACUACGGAUCAGAAGAUUGU 
Human(degraded) AGGCCAGUGGCGCAAGGGAuAACGUGUCUGACCACGCAUCAGAAGAUUGU 
SS_cons   (((((((,,<<<<______._>>>>,<<<<<_______>>>>>,,,,,<< 
 
Mouse   AGGUUCGACUCCUACCUGGCUCG 
Human(degraded) AGGUCCAGCUCCUGCCUGGCUCG 
SS_cons   <<<_______>>>>>))))))): 

Figure 2-11. The structural alignment of a mouse tRNA gene locus and its syntenic (degraded) counterpart in 
the human genome 
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One advantage of pseudogenisation through promoter-specific degradation is that it is 

efficient and safe. If pseudogenisation of a tRNA gene locus proceeded through random 

mutation, accumulated generation by generation until the functions of the tRNA products were 

fully abolished, it is possible that some intermediate diseased species of tRNAs would be 

produced and thus decrease the fitness of the affected organism. By contrast, 

prom

the promo gh only two cases of promoter-specific 

degr

Searching nal 

constraints, pseudogenes may, after millions of years of evolution, have accumulated so many 

random mutations that sequence similarity search algorithms cannot find the significant 

remnants. Consequently, determination of the differential contributions made by sequence 

degradation and deletions, respectively, to the evolution of tRNA gene loci in mammalian 

genomes is difficult. 

2.2.3.5. Finding pseudogenes through the human-mouse tRNA gene symbol alignments

oter-specific degradation achieves pseudogenisation by mutating only a few residues in 

ter region of a tRNA gene locus. Althou

adation were found, it is likely that there are other undiscovered degraded tRNA gene loci. 

 for evidence of old pseudogenes can be very difficult, because without functio

 

One purpose of investigating the tRNA gene-order conservation is to search for the 

evide

topic m ssed in chapter 3. An appealing argument is that 

synte

human-m

other insig mination of tRNA pseudogenes. 

order to realize this 

argument, a brief introduction to tRNA identity is necessary. The term, tRNA identity, refers 

to the amino acid charging specificity of each tRNA molecule by aminoacyl-tRNA synthetases. 

nce which can help us to differentiate functional tRNA gene loci from pseudogenes, a 

ore broadly discu

ny-non-conserved tRNA gene loci will tend to be pseudogenes. In addition to this, the 

ouse tRNA gene symbol alignments of synteny conserved tRNAs provide some 

hts relevant to the deter

Firstly, several cases of anticodon transitions were found (Table 2-11) and anticodon 

transitions may potentially be an indicator of tRNA pseudogenes. In 
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For most 

amino aci

transitions would change the tRNA identity of the tRNAs produced from the gene loci in 

Table 2-11. If the tRNA identities of tRNAs 

there cou

consideration related to tRNA identity, the tRNA gene loci with anticodon transitions should 

be regarded as potential pseudoge

genome sequence. The significance of these tR

further investigation. 

synteny-conserved but low-bit- cus may also represent a 

cand

scanSE) is 34.08, which is much lower than that (72.92) of its 

synte  

genome. s may have an unstable amino-acid 

accepting stem. In addi

might have degraded (data not shown). This fi

mechanism, promoter-specific degradation, which has also been suggested by previous 

findings in this section (see the exam

2.2.3.6. Other evol volution of tRNA gene loci in 

tRNAs, the determinants of tRNA identity include the anticodon loop as well as the 

d accepting stem (for review see Giege et al. 1998). It is unknown if these anticodon 

with anticodon transitions remained unchanged, 

ld be incorrect incorporation of amino acids in protein synthesis. Under the 

nes. An alternative possibility may be errors in the human 

NA gene loci with anticodon transitions needs 

Secondly, the human-mouse tRNA gene symbol alignment also reveals at least one 

score tRNA gene locus. Such a lo

idate pseudogene. The example is the human tRNA-Asp1 gene locus, chromosome: 

NCBI36: 1: 159768539: 159768610: 1, which is a member of the human cluster 4.1.36. Its 

bit-score (reported by tRNA

nic counterpart, chromosome: NCBIM36: 1: 172873704: 172873775: -1, in the mouse 

A putative tRNA product from this gene locu

tion, this locus may be untranscribable, since its internal promoters 

nding is consistent with the pseudogenisation 

ples of Figure 2-10 and Figure 2-11). 

utionary events that may be implicated in the e
mammalian genomes 

The involvem

and gene degradati

emonstrated in this section. A question is that, what is the involvement of other evolutionary 

ent of various evolutionary events, such as local duplications, inversions, 

on, in the evolution of tRNA gene loci in mammalian genomes have been 

d
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even su

even gen  the following discussions, I consider these 

possibilities un

species-specific si he unaligned tRNA gene loci in 

synteny-conse

For species-specific tRNA gene clusters evol

important feature is the pattern of gene ar

local duplications. An exam

of four tRNA gene loci. There can be two al ation of this 

that this human-specific tRNA gene cluster formed before the 

prim

genome rearrangements in the mouse and opossum genomes, respectively, the syntenic 

clusters in either genom

evolved after the prim ore 

likely, since the probability of independent segmental deletions in respective genomes should 

be low. Beside

the primate-specifi 179571, etc.) (based on the 

nnotation made by Ensembl). A similar finding was also observed in the human cluster 

38.X  w air of 

duplicated genes (e.g.

tRNA-Ile2 gene loci can be found in the m

With the evid  in this subsection, it can be concluded that segmental 

deletions ian genomes are less likely the reason which can explain the 

existence of speci ene clusters. However, it is still unclear by which 

mechanism, either retrotranspositions, transpositions, or segmental duplications, the 

ts, ch as retrotranspositions, transpositions, segmental duplications, gene deletions, or 

e transfer from other organisms? In

der the following conditions, including the species-specific tRNA gene clusters, 

nglet tRNA gene loci, and t

rved clusters. 

ved after the primate-rodent split, an 

rangement which should have been generated by 

ple is the human cluster 1.1.10, which contains a duplicated block 

ternative hypotheses to the form

cluster. Firstly, it is possible 

ate-rodent or even placental-marsupial split. Perhaps, through independent events of 

e have been deleted. Secondly, the human-specific clusters could have 

ate-rodent split. Theoretically, the second hypothesis should be m

s, in the human cluster 1.1.10, interspersed between the duplicated blocks are 

c protein-coding genes (e.g. ENSG00000

a

.3, here two tRNA-Ile2 gene loci are located within the intronic regions of a p

 ENSG00000205663), which are also primate-specific. In fact, no other 

ouse and opossum genomes. 

ence collected

in other mammal

es-specific tRNA g
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hum ed in new genomic loci. Similar situations were also 

encountered in investigating the evolutionary origin of the synteny-non-conserved singlet 

tRNA gene loci, and of some of the unaligned loci in the synteny-conserved tRNA gene 

clusters. A preliminary result indicates that most of the synteny-non-conserved tRNA gene 

loci in the human genome are not associated with simple repetitive elements, which might be 

the evidence of retrotranspositions. 

2.3. Summary 

In the first part of this chapter, the conservation patterns of the human ncRNAs retrieved 

from Rfam were investigated. The findings and conclusions relevant to comparative ncRNA 

finding ncRNA finding approaches are summarized as follows: 

z Few covariations are found in either human-mouse synteny-conserved ncRNAs or in 

the human-zebrafish orthologous ncRNAs. 

z ncRNA finding algorithms perform worse when applied to genome synteny 

alignments than on the single ncRNA gene test alignments they were evaluated. 

z Multi-vertebrate synteny alignments can contain more co-variations but the 

performance of ncRNA finding algorithms on them is similarly affected by 

alignment quality and completeness, resulting in both false positive and false 

negative predictions. 

z The synteny-conservation ratios of categories of Rfam ncRNAs in the human and 

mouse genomes vary from ~1% to ~74%. 

z ncRNAs with more copies in mammalian genomes appear to be less 

synteny-conserved. 

z Genome assembly quality and artefacts resulting from genome rearrangements 

an-specific clusters have been form
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(Figure 2-1, d), have only a small effect on calculations of synteny-conservation 

ratio of Rfam ncRNAs 

In the second part of this chapter, the gene-order conservation of mammalian tRNA genes 

(pred

z When gene order is considered, only ~53% of the human tRNA gene loci are 

human-mouse synteny-conserved (see subsection 2.2.2.3. and Figure 2-7). Besides, 

6% (29/504) of human tRNA gene loci are in human-specific clusters (see Table 

2-10). 

 the low 

There are a number of hypotheses with respect to the discovery of numerous 

synteny-non-conserved ncRNAs in mammalian genomes. Finally, I summarize the evidence 

for or against each of them: 

n sequencing or 

icted by tRNAscanSE) was investigated. My findings include that: 

z The low gene-order conservation ratio is not biased by the quality of the mouse 

genome assembly used in this study (see subsection 2.2.2.4. ). 

z Tandem duplications and inverted duplications may be important reasons for

gene-order conservation ratio of tRNA gene loci in mammalian genomes (see 

subsection 2.2.2.8. ). 

z Promoter-specific degradation may be involved in the pseudogenisation of 

mammalian tRNA genes (see subsection 2.2.3.4. ). 

1. Hypothesis: low quality genome assemblies lead to synteny-conserved ncRNAs 
being misclassified as synteny non-conserved. 
� Evidence for this hypothesis: 

z Synteny-non-conserved ncRNAs (comparing the human genome assembly 

NCBI 35 and the mouse genome assembly NCBIM 33) were significantly 

enriched in regions consisting of whole genome shotgu
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unfinished regions of clone-based sequencing in the mouse genome (see 

subsection 2.1.3.1. ,Table 2-2 and Table 2-3). 

� Conclusion: 

z Low quality genome assemblies do lead to some ncRNAs being 

misclassified as synteny non-conserved, but does not explain the majority. 

2. Hypothesis: genome duplication and rearrangement can generate 
synteny-non-conserved ncRNAs. 

z There are duplicated multi-loci blocks in the mammalian tRNA gene 

clusters (see subsection 2.2.2.6. ). 

z There might be one segmental inversion in the human tRNA gene clusters 

after the primate-rodent split (see subsection 2.2.2.6. and Figure 2-6). 

� Conclusion: 

z Analysis of tRNA clusters is highly suggestive that genome duplication 

 

� Evidence for this hypothesis: 

3. Hypothesis: deletion through degradation can generate synteny-non-conserved 

� Conclusion: 

corresponding ncRNA in the other species. 

and rearrangement is a mechanism for the generation of 

synteny-non-conserved ncRNAs. 

 

ncRNAs. 
� Evidence for this hypothesis: 

z Degraded remnants of tRNAs can be found that correspond to 

synteny-non-conserved ncRNAs (see subsection 2.2.3.4. ) 

z There is evidence that some synteny-non-conserved ncRNAs are 
generated through pseudogenisation, degradation and deletion of the 

 

4. Hypothesis: retrotransposition can generate synteny-non-conserved ncRNAs. 
� Evidence for this hypothesis: 
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z The generation of species-specific tRNA gene clusters (see subsection 

2.2.3.6. ) could be explained by retrotransposition, but also by other 

mechanisms. 

� Conclusion: 

retrotransposition. 

 

 

z There is no convincing evidence for or against the mechanisms of 

 



 

Chapter 3.  Distinguishing functional ncRNAs from

pseudogenes in mammalian genomes 

The results presented in the previous chapter (chapter 2) suggest that many Rfam human 

ncRNAs appear to be synteny-non-conserved in the mammalian genome after the

 

 

primate-rodent split. When considering using comparative methods for genome-wide ncRNA 

finding, one important question is whether synteny-non-conserved ncRNAs tend to be 

functional genes or pseudogenes. If a considerable proportion of synteny-non-conserved 

ncRNAs in the genomes under investigation are functional, the strategies that predict ncRNAs 

only in the alignments of syntenic regions will fail to predict those functional ncRNAs. 

Conversely, if most synteny-non-conserved ncRNAs are pseudogenes, methods that depend on 

alignments derived from synteny may be sufficient for genome-wide ncRNA finding. 

Before exploring the likelihood of synteny-non-conserved ncRNAs to be pseudogenes, it 

is necessary to briefly introduce how pseudogenes might be generated, and how they can be 

computationally identified. Pseudogenes are believed to be generated by either genome 

duplication or retrotransposition, followed by non-functionalization of a subset of the 

duplicated copies (for review see Lynch and Conery 2000). The mechanisms that may lead to 

ge

duplication of a segmental (Gu et al. 2002) or entire chromosome (Van de Peer 2004; Dehal 

and Boore 2005). In so-called retrotransposition,

geno

retro

often referred to as processed pseudogenes, while the pseudogenes generated through 

duplications of genomic DNA are referred to as non-processed pseudogenes. 

nome duplications include unequal crossing-over (for review see Graur and Li 2000), and 

 which is a RNA-mediated process, the RNA 

transcript of a gene is reverse transcribed into DNA, which is then inserted back into the 

me at a new location (Maestre et al. 1995). The pseudogenes that are generated through 

transposition have usually lost the original gene’s intron-exon architecture and thus are 

96 
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Currently, pseudogenes can be computationally identified by searching protein coding 

genes for indicators of non-functionality. For instance, a duplicated protein pseudogene can be 

evolutionarily unconstrained, and hence have accumulated random mutations that may destroy 

its protein gene-like features; a retrotransposed protein pseudogene can completely lose 

introns (Figure 3-1 A). Several surveys already performed for exploring pseudogenes in the 

human genome were based on indicators of functionality derived from features of multi-exon 

protein coding genes (Ohshima et al. 2003; Torrents et al. 2003; Zhang et al. 2003). In 

particular, by using the ratio of silent to replacement nucleotide substitutions (KA/KS), Torrents 

et al. discovered ~20,000 protein 

ogenes is unknown. 

To date, the functionality of the synteny-

not been system es there 

are abundant ncRNA-derived short interspersed repetitive elements (SINEs) (International 

Hum

which ma ents 

that t 

eukaryotic S

pseudogenes in the human genome, where as many as 70% 

of them were retrotransposed (Torrents et al. 2003). These results, together with the estimate 

that ~96% of the human protein genes are mouse-synteny-conserved (Mouse Genome 

Sequencing Consortium 2002), suggest that a protein coding gene sequence that is 

synteny-non-conserved in mammalian genomes is very likely to be a pseudogene. 

However, since the surveys mentioned above were limited to investigating protein 

pseudogenes, the tendency of synteny-non-conserved ncRNAs to be pseud

non-conserved ncRNAs in mammalian genomes has 

atically investigated. One reason for this is that in mammalian genom

an Genome Sequencing Consortium 2001; Mouse Genome Sequencing Consortium 2002) 

ke the determination of ncRNA pseudogenes difficult. SINEs are repetitive elem

are amplified in the genomes through retrotransposition (for review see Smit 1999). Mos

INEs have evolved from the ncRNAs that are transcribed by RNA polymerase III. 

Known evolutionary sources of eukaryotic SINEs include tRNA genes, 7SL genes, 5S rRNA 

genes (for review see Kramerov and Vassetzky 2005). With respect to ncRNA pseudogene 

identification some of the SINEs in mammalian genomes are so similar, at both the 
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primary-sequence and structural levels, to functional ncRNAs that even well tuned ncRNA 

finding algorithms may falsely predict them as real ones. For instance, about 2,700 tRNA 

genes, which is more than five times of the tRNA genes annotated in the human genome, were 

initially predicted in the mouse genome (Mouse Genome Sequencing Consortium 2002). In 

order to generate a smaller, but more confident, set of functional mouse tRNA genes, the 

Mouse Genome Consortium has used an additional criterion, non-overlapping with the SINEs 

identified by RepeatMasker (Sm

 a criterion. First, it may be too 

arbitrary to hypothesize that all SINEs are pseudogenes. Second, ncRNA pseudogenes that are 

unrelated to

pseudogenes  pseudogenes. 

synteny-non-conserved ncRNA m

been deleted in the other 

functional gene as a result of m erhaps, due to unique 

synteny-non-conserved in mammalian genomes. One argument is that the mechanisms that 

udogenes may generate synteny-non-conserved but functional ncRNAs, in 

 mechanism of pseudogenisation may effectively 

cause a newly amplified protein gene to lose the association with its upstream regulatory 

regio

Retrotransposition appears to be one possible mechanism that can lead to the generation 

of protein pseudogenes, but new and functional ncRNA loci. Since the transcription regulatory 

elements in the 5’ flanking regions of the protein genes are not contained in mRNA transcripts, 

it and Green unpublished), to filter the initial prediction. 

However, there are at least two considerations with such

 SINEs can not be filtered out. The above case about filtering out tRNA 

 illustrates the difficulty of distinguishing functional ncRNAs from

It is possible that some synteny-non-conserved ncRNAs are functional genes. Firstly, a 

ight be functional and originally synteny-conserved, but has 

lineage. Secondly, a synteny-non-conserved ncRNA may be a 

echanisms creating a functional copy. P

features of certain types of ncRNAs, there is a high tendency for these genes to be 

generate protein pse

addition to ncRNA pseudogenes. While a

ns, the same mechanism may not necessarily cause the nonfunctionality of a recently 

amplified ncRNA locus in the genome. 
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a retrotransposed protein gene, even if it has retained part of the intron-exon structure, should 

generally be untranscribable. Therefore, a retrotransposed protein gene may become a 

pseudogene as soon as the redundant sequence is generated (Figure 3-1 A). Conversely, a 

retrotransposed ncRNA that is not truncated may remain transcribable, if its intragenic 

promoters are still intact during the process of generating this redundant copy (Figure 3-1 B). 

 

Figure 3-1. Comparison of the gene structures of a retrotransposed protein gene and a hypothetic
retrotransposed ncRNA that contain internal promoters. 

Therefore, this chapter is dedicated to distinguishing functional ncRNAs from ncRNA 

pseudogenes in the context of genomic sequences. There are two purposes in this chapter: 

al 

z To explore whether human synteny-non-conserved ncRNAs tend to be pseudogenes 

z To evaluate novel rules that may be useful for distinguishing functional ncRNAs 

from ncRNA pseudogenes 
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Mammalian tRNA genes were chosen for further investigation. One reason for this 

decision is that many features of functional tRNA genes have been well studied. For example, 

a tRNA molecule can

 types, clustering, etc., evidence 

might possibly be found to determine if synteny-non-conserved tRNA genes in the 

mammalian genomes tend to be pseudogenes. 

In the first part of this chapter (section 3.1), I investigate whether the human 

synteny-non-conserved tRNA genes that were retrieved from Rfam tend to be pseudogenes. 

The conservation of secondary structures and conservation of promoters, as well as 

conservation of primary sequences, were used to infer the functionality of the human 

synteny-non-conserved tRNA genes. The idea is that, if certain tRNA genes are pseudogenes, 

their sequences may have accumulated mutations which may change the features important for 

the functionality of tRNAs. The specific questions I address here include: 

z Is there a clear-cut difference between the bit-score distributions of 

synteny-non-conserved tRNA genes and synteny-conserved tRNA genes? 

features than synteny-conserved tRNA genes do? 

 fold into a cloverleaf-like secondary structure; tRNA genes have 

internal promoters, which consist of A and B boxes (DeFranco et al. 1980); mammalian tRNA 

genes tend to cluster in the genomes (Lasser-Weiss et al. 1981). It was therefore hoped that, by 

integrating the information of sequence similarity, anticodon

z Do synteny-non-conserved tRNA genes tend to have more unstable structural 

z Do synteny-non-conserved tRNA genes tend to have degraded internal promoters? 

A particular property of tRNA genes is that they frequently exist in synteny conserved 

clusters, as examined in chapter 2. In the second part of this chapter, I explore whether 

properties of copies of tRNA genes that are clustered and copies that are un-clustering are 

different and whether there is any evidence that can relate this to the likelihood of being 
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pseudogenes. Clustering seems to be an effective strategy to ensure each transcription unit can 

be accessed with generally equal probability by transcription machinery. Evidence suggests 

that clustering is important for regulating expression of ncRNAs. It has been demonstrated that 

clustered miRNA genes tend to be co-expressed (Baskerville and Bartel 2005). Besides, a 

cluster of 40 m

d be pseudogenes.  

3.1  

The coordinates of human and mouse tRNA genes were retrieved from RFAMSEQ of 

Rfam 4.1 (Griffiths-Jones et al. 2003) and then converted to chromosomal coordinates in the 

human and mouse genomes respectively. The reference genome assemblies are human NCBI 

33 and mouse NCBI M30. The bit scores of the Rfam tRNA genes were calculated using 

Infernal and the tRNA covariance model (CM) of Rfam 4.1 (Griffiths-Jones et al. 2003). The 

iRNA genes has been found in the human imprinted 14q32 domain and only 

the maternally inherited genes are expressed (Seitz et al. 2004). 

I therefore hypothesized that non-clustered tRNA genes tend to be pseudogenes. Two 

tests were therefore designed to evaluate this hypothesis: 

z Is there an enrichment of non-clustered tRNA genes in the low-scoring group which 

are more likely to be pseudogenes? 

z Are clustered tRNA genes sufficient for covering 46 types of anticodons that are 

necessary for protein translation? If so, this would be evidence that non-clustered 

tRNA genes are not absolutely required for protein translation, supporting 

hypothesis that they coul

. Are Rfam synteny-non-conserved tRNA genes

functional? 

3.1.1. Materials and methods 
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human tRNA genes predicted using tRNAscanSE were retrieved from Ensembl release 19 by 

using the Ensembl Perl APIs (Birney et al. 2004). 

NA genes may be biased 

and thus unsuitable for use as the reference distribution. Therefore, I decided to recruit Rfam 

tRNA genes that are human-mouse synteny-conserved as a trusted set of functional tRNA 

genes. Since synteny conservation has been widely accepted as a strong indication for the 

existence of functional elements, the human-mouse synteny-conserved tRNA genes are very 

likely to be functional tRNA genes. The sequences of these tRNA genes were prepared using 

the Ensembl Compara Perl APIs to search syntenic regions identified by Ensembl Compara 

release 19 (Clamp et al. 2003).  

ral features of tRNA genes was evaluated by using Infernal to 

align these sequences to Rfam tRNA CM. For the purpose of checking the conservation of the 

internal promoters in these tRNA genes, eufindtRNA (Pavesi et al. 1994) was used (for a brief 

introduction of Infernal and eufindtRNA, see materials and methods, section 2.1, chapter 2). 

3.1.2. Results 

3.1.2.1. Distribution of the Rfam bit scores of tRNA genes

In order to compare the bit-score distributions of the Rfam tRNA genes and the 

tRNAscanSE-predicted tRNA genes with that of bona fide tRNA genes, a trusted set of 

functional tRNA genes from the human genome is required. However, only a few 

experimentally verified human tRNA genes are available (Sprinzl and Vassilenko 2005). One 

consideration is that the bit-score distribution of a small number of tR

The preservation of structu

 

808 human and 452 mouse tRNA genes were retrieved from Rfam (release 4.1). At first 

glimpse, it seems that there are more tRNA genes in the human genome than in the mouse 

genome; however, a substantial portion of the mouse genome assembly NCBI M30 is 

composed of sequences from whole genome shotgun sequencing, which has not been scanned 
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by Rfam 4.1. The number of the tRNA genes in the mouse genome is therefore an 

underestimate. 

Interestingly, both the bit-score distributions of the human and the mouse tRNA genes 

sequences are bimodal (Figure 3-2, see “Rfam-human” and “Rfam-mouse” respectively). The 

bimodal bit-score distribution of the human tRNA genes seems to consist of two well-shaped 

distributions, which have modes at 65 and at 30 respectively. 
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One interpretation of these results is that the bimodal distribution represents two groups 

of evolutionarily distinct tRNA genes. This idea is supported by the similarity between the 

high-scoring part of this bimodal distribution and the bit-score distributions of other sets of 

tRNA sequences. For example, the contour of the bit-score distribution of the 

tRNAscanSE-predicted human tRNA genes (Figure 3-2, “tRNAscanSE-human”) is very 

similar to the high-scoring part of the bimodal bit-score distribution. In addition, the bit-score 

Figure 3-2. Distributions of Rfam bit scores of tRNA genes of different categories 

The bin size of Rfam bit scores is 5. Almost no tRNA genes (except the human numt-tRNAs) have bit scores 
less than 25 because Rfam has used 25 bits as the gathering threshold for tRNA genes. 

 



104 Chapter 3. Distinguishing functional ncRNAs from pseudogenes in mammalian genomes
 

distribution of the trusted set of bona fide tRNA genes (Figure 3-2, “Rfam human-mouse 

synteny-conserved”) is also very similar. Only 9% (12/133) of the trusted bona fide tRNA 

genes have bit scores lower than 50. This comparison suggests that the high-scoring mode 

represents the bit-score distribution of human bona fide tRNA genes. 

At this stage, this evidence is not convincing enough to conclude that the low-scoring 

tRNA

endants of ancient functional tRNA 

genes, the random

nferred from the bit scores of 

individual tRNA genes. 

functional tRNAs. These factors are further explored in subsections 3.1.2.2. and in 3.1.2.3. 

respectively. 

 genes are more likely to be pseudogenes. For example, the small bump in the 

distribution for “human-tRNAscanSE” within the range of 35 to 50 suggests that some bona 

fide tRNA genes may have bit scores indistinguishable from what are presumed to be tRNA 

pseudogenes (Figure 3-2, “tRNAscanSE-human”). In addition, the existence of a prominent 

low-scoring peak in the bit-score distribution of the tRNA genes predicted by Rfam does not 

really favour the hypothesis that “the low-scoring tRNA genes are pseudogenes”. If the 

low-scoring tRNA genes are pseudogenes and the desc

 drifts caused by neutral mutations would be expected to result in a tail at 

the left side of the bit-score distribution, rather than generating an obviously bimodal 

distribution. 

Consequently, I evaluated additional information, such as loss of primary-sequence and 

secondary-structure features, to look for additional evidence that low-scoring tRNA genes 

might be pseudogenes. Such information cannot be directly i

An Rfam bit score for a particular ncRNA is actually a statistical 

evaluation of its degree of conservation at both primary-sequence and secondary-structure 

levels. It turns out that two factors can contribute to low bit scores for a tRNA gene: 1) the loss 

of the capability to fold into cloverleaf-like secondary structure; 2) the loss of the internal 

promoter which is required for being recognized by RNA polymerase III in order to generate 
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3.1.2.2. Moderate preservation of secondary structures in the low-scoring and 
synteny-non-conserved tRNA genes 

However, even for the synteny-conserved tRNA genes which are more likely to be bona 

fide tRNA genes, the mode is 2 non-canonical base pairs in their stem regions (Figure 3-3) and 

the average is 2.6. This suggests that for one stem region of a tRNA, one non-canonical base 

pair can still be tolerated and its secondary structure can still be preserved. The evidence 

 

gene

 

The number of non-canonical base pairs in Rfam tRNA predictions, as compared to a 

reference tRNA structure, is plotted. For the synteny-non-conserved tRNA genes with bit 

scores lower than 50, the mode of the number of non-canonical base pairs that may make the 

secondary structures unstable is 3 and the average is ~5 (Figure 3-3). In other words, for a 

low-scoring tRNA gene, there is on average slightly more than 1 non-canonical base pair per 

stem region (i.e. 4 stems in a tRNA molecule in its functional form). 

suggests that there is moderate preservation of structural features in the low-scoring tRNA

s and a moderate level of non-canonical base pairs may be tolerated. The degree of loss of 

structural features provides only limited support for the view that these low-scoring tRNA 

genes tend to be pseudogenes. 
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3.1.2.3. Degradation of the internal promoters in the low-scoring tRNA genes 

The genomic loci containing tRNA genes need to be transcribed into tRNA molecules in 

orde

enization through promoter-specific degradation is investigated more generally in 

NA genes do 

not h

Figure 3-3. tions of numbers of the non-canonical base pairs in human t  

hat G-U base pairs are tolerated. 

Distribu RNA genes

The synteny-conserved and the synteny-non-conserved tRNA genes are aligned to the tRNA consensus 
structures by using Infernal and the Rfam tRNA CM. Non-canonical base pairs that may destabilize the 
secondary structures of these tRNA genes are counted, except t

r to function in cells. If these low-scoring tRNA genes are not transcribable, they are 

pseudogenes. In order to be transcribable a functional promoter is required. The internal 

promoters of the tRNA predictions were evaluated using the eufindtRNA algorithm (see 

methods in subsection 2.2.1.6 of the materials and methods of section 2.2). Previously in 

subsection 2.2.3.4 in chapter 2, two cases of promoter-specific degradation of 

synteny-non-conserved tRNAscanSE-predicted tRNA gene loci were found. Here, 

pseudog

synteny-non-conserved and low-scoring Rfam tRNA genes. 

The results reveal that, about three-quarters (339/441) of the low-scoring tR

ave intact promoters in their intragenic regions. According to current knowledge, these 

low-scoring tRNA genes in the human genome cannot be transcribed into tRNAs by 
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eukaryotic RNA polymerase III. This is good evidence which indicates that the set of 

low-scoring tRNA genes is enriched with pseudogenes. This result suggests that in the human 

genome there is a group of tRNA-related pseudogenes, where their internal promoters are 

degraded, while their secondary structures are moderately conserved. 

3.1.2.4. Tracing the evolutionary origins of low-scoring tRNA genes 

The finding that the majority of low-scoring tRNA genes appear to have more 

significantly degraded internal promoters than secondary structures and may be pseudogenes, 

suggests the hypothesis that mutations that degrade internal promoters have a selective 

advantage in mammalian evolution. It seems possible that degradation of internal promoters 

might be the most effective mechanism for disabling tRNA genes, since aberrant tRNA genes 

with mutations that make RNA secondary structures unstable would be still transcribable and 

lead to abnormal protein translation and damage the cell. 

If selective degradation of synteny-non-conserved tRNA genes were an important 

mechanism in the human evolution, it would be reasonable that the human genome would 

contain numerous tRNA genes which have lost functional promoters, but not yet lost their 

secondary structures. In order to test this hypothesis, it was proposed to demonstrate that 

random mutations are unlikely to generate tRNA genes, where their internal promoters have 

degraded and structural features are still moderately preserved. 

Consequently, a simulation, where a random mutation model is applied to the ancestors 

of these low-scoring tRNA genes, was planned. The initial step for preparing this simulation 

was to find an appropriate ancestral sequence for each low-scoring tRNA gene. The 

considerations for finding the ancestral sequences of these low-scoring tRNA genes are 

discussed in the following two subsections (3.1.2.4.1. and 3.1.2.4.2. ). 

 

 



108 Chapter 3. Distinguishing functional ncRNAs from pseudogenes in mammalian genomes
 

3.1.2.4.1. Weak evolutionary relation of low-scoring tRNA genes with bona fide human tRNA 
genes 

A sensible conjecture is that the ancestral sequences of the low-scoring tRNA genes are 

bona fide human tRNA genes. According to the discussions above (for details see subsections 

3.1.2.1. , 3.1.2.2. , and 3.1.2.3. ), it is conceivable that bona fide tRNA genes are enriched in 

the sets of human-mouse synteny-conserved tRNA genes, the tRNAscanSE-predicted 

high-scoring tRNA genes, and the tRNA genes in manually-curated tRNA repositories. 

However, the search for the evolutionary origins of the low-scoring tRNA genes proved 

difficult. Using WU-BLAST a possible ancestor could be found for less than one-quarter 

(101/441) of the low-scoring tRNA genes. In addition, less than half of the low-scorin

genes were found to have hom

tRNA genes and of tRNA compilation (Sprinzl et al. 1998). 

ing tRNA genes with mitochondrial tRNAs 

The sequences of the low-scoring tRNA genes were searched against the genomic 

sequence of the human mitochondrion (GenBank accession number: NC_001807.4), and 

better matches were found to human mitochondrial tRNA genes than to trusted tRNA genes in 

man

g tRNA 

ologous sequences in the sets of tRNAscanSE-predicted human 

3.1.2.4.2. Strong evolutionary relation of low-scor

Because of the failure to find the ancestral sequences for the majority of the low-scoring 

tRNA genes from the set of bona fide human tRNA genes, it was necessary to consider other 

sources of tRNA genes that might be the evolutionary ancestors of the low-scoring tRNA 

genes. In eukaryotic cells, the nuclear genome is not the only sequence that contains tRNA 

genes. Some intracellular organelles, such as mitochondria and chloroplasts, have their own 

tRNA genes in their organelle genomes. The tRNA genes of these organelles are divergent, at 

the primary-sequence level, from the vertebrate nuclear tRNA genes. They are another 

possible origin of the low-scoring tRNA genes. 

y cases (human-mouse synteny-conserved tRNA genes) (Table 3-1). In addition, 239 of 

the sequences that did not appear to have any homologous sequence in the set of human tRNA 
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genes matched human mitochondrial tRNA genes. The average identity of the 280 tentative 

nuclear mitochondrial tRNA sequences (numt-tRNAs) to human mitochondrial tRNA genes is 

84.8%. The average coverage of these alignments to the full length of the mitochondrial tRNA 

genes is 85.3%. The evidence strongly suggests that many low-scoring tRNA genes in the 

human nuclear genome are derived from the human mitochondrial tRNA genes, and not from 

the tRNA genes in the human nuclear genome. 

 

More similar to the human nuclear tRNA genes 128 (29%) 
More similar to the human mitochondrial tRNA genes 280* (64%)  
None 33 (7%) 
All the human low-scoring tRNA genes 441 (100%) 

For the 128 human tRNA genes that are more similar to human nuclear tRNA genes than 

to mitochondrial tRNA genes, 71.9% (92/128) of them were recognised using eufindtRNA. 

This means that the majority of human-nuclear-tRNA-derived low-scoring tRNA sequences 

still preserve their internal promoters to a certain extent. Consequently, the hypothesis which 

asserts that there might be selection for mutations that degrade the promoters of the tRNA 

genes in mammals does not appear to apply to tRNA genes derived from other human tRNA 

genes. 

3.1.2.5. Searching for nuclear mitochondrial tRNAs in mammalian genomes 

ial tRNA sequences in the human genome 

Table 3-1. Numbers of the human low-scoring tRNA genes which are more similar to either the human 
nuclear tRNA genes or the human mitochondrial tRNA genes. 

“N
nu

one” is used to indicate the low-scoring tRNA genes which are not significantly similar to either human 
clear tRNA genes or mitochondrial tRNA genes. “*” indicates that 239 out of the 280 low-scoring tRNA 

genes do not have homologous sequences in the set of human tRNA genes. 

3.1.2.5.1. Finding nuclear mitochondr

Since the Rfam tRNA CM (covariance model) is not specifically trained for finding 

nuclear mitochondrial tRNA sequences (numt-tRNAs) in the human genome, there may be 
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other human numt-tRNAs which were not identified by Rfam. In order to discover as many 

numt-tRNAs as possible, blastz and the human mitochondrial genome were used to search for 

nuclear mitochondrial sequences (numt-seqs) in the whole human genome (NCBI 33). Blastz 

was used since it is well tuned for aligning genomic sequences (Schwartz et al. 2003). 

177 human genomic loci were found to be similar to mitochondrial sequences. Many loci 

contain more than one nuclear mitochondrial genes (numt-genes). The arrangements of 

mito

na fide human 

out o

 

chondrial genes in these loci are mostly consistent with those of the real mitochondrial 

genes encoded in the human mitochondrial genome. It is therefore reasonable to infer that the 

numt-genes of each locus have been co-transferred into the nuclear genome. There are 627 

numt-tRNAs in the 177 human loci of numt-seqs. The average identity between these 

numt-tRNAs and the human mitochondrial tRNA genes is 84.5%. The average coverage of 

these alignments to the full-length mitochondrial tRNA genes is 85.3%. None of the 627 

tRNA genes overlap with known repetitive elements except tRNAs. Only 30 out of the 627 

sequences were found to have homologous sequences in the set of trusted bo

tRNA genes (human-mouse synteny-conserved tRNA genes). By using eufindtRNA, only 33 

f the 627 sequences were found to have RNA Pol III promoters. The discovery of human 

numt-tRNAs could explain the low-scoring mode in the bimodal score distribution of the 

human tRNA genes identified by Rfam well (Figure 3-4, human numt-tRNAs). Although the 

curve for numt-tRNAs does not fit exactly with the low-scoring group of the bimodal 

distribution, it is almost parallel. 
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3.1

Following the discovery of numt-seqs related sequences in the human genome the same 

analysis was repeated for the mouse genome. In contrast to the discovery of numerous 

numt-tRNAs in the human genome, far fewer numt-tRNAs could be found in the mouse 

genome. The bit-score distribution of the mouse low-scoring tRNA genes is obviously 

different from that of the human low-scoring tRNA genes (Figure 3-2, Rfam-mouse). 86% 

(217/252) of the mouse low-scoring tRNA genes from Rfam 4.1 are SINEs. Surprisingly, only 

64 numt-tRNAs were found in the mouse genome assembly NCBI M30. Not only is the 

number of numt-seqs smaller than that in the human nuclear genome, but also the average 

length for each locus of integration is shorter. There are on average 1.7 numt-tRNAs per locus 

of mouse numt-seq (64 numt-tRNAs / 38 loci), while there are on average 3.5 numt-tRNAs 

per locus of human numt-seq (627 numt-tRNAs / 177 loci). 

There are various hypotheses that might explain the difference between the numbers of 

numt-tRNAs in the human genome and in the mouse genome. However, before designing 

.2.5.2. Few numt-tRNAs in the mouse genome 

Figure 3-4. Distributions of Rfam bit scores of tRNA genes of human-numt, Rfam-human, and tRNAscanSE 
tRNA genes. 
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str

identifying numt-seqs needs to be addressed. Unlike the high coverage of clone-based 

se

M

genome sequencing (HTGS). One limitation of WGS sequence assembly is its inability of 

itochondrial 

genomic sequence into the mouse nuclear genome, it is possible that the numt-seqs could still 

be quite similar to one another and thus inappropriately collapsed by WGS sequence assembly. 

In order to confirm that there is a significant difference between the numbers of the numt-seq 

loci in the human and mouse genomes respectively, the latter value should be reassessed in the 

future when more clone-based sequences are used in the mouse genome assembly. 

human numt-tRNAs can be transcribed into functional tRNAs in human cells (for further 

discussion see subsection 3.1.2.6. ). Numt-seqs are also frequently ignored in annotations 

pr otation of repetitive elements, 

co

ad

(released on 10/09/2004) and there are only two mitochondrial tRNA genes from G. gallus in 

RepB

3.1.2.6. Are numt-tRNAs functional?

ategies to test these hypotheses, the effect of the quality of the mouse genome assembly on 

quences used in the current human genome assembly, the mouse genome assembly NCBI 

30 consists of sequences from both whole genome shotgun (WGS) and high throughput 

resolving duplicated regions. If there were numerous recent integrations of the m

3.1.2.5.3. Effects of numt-tRNAs on finding mammalian tRNAs 

The presence of numt-seqs in the human genome has not been considered in the 

annotation of the human genome. For example, at least five tRNAscanSE-predicted tRNA 

genes were found within regions of numt-seqs in the human genome. It is unknown whether 

ovided by public-domain genome databases. Unlike the ann

nsideration of numt-seqs is not part of the procedure in pipelines of genome annotation. In 

dition, most of the mitochondrial genes are not included in the current release of RepBase 

ase. 

 

The existence of numt-seqs in the nuclear genome has been known for some time 

(Tsuzuki et al. 1983), and their evolutionary dynamics have been discussed in a number of 
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papers (Mourier et al. 2001; Tourmen et al. 2002; Woischnik and Moraes 2002; Hazkani-Covo 

et al. 2003; Ricchetti et al. 2004). Most related research suggests that nuclear mitochondrial 

protein-coding genes (num

to nuclear genomes. 

erns of mutations of numt-tRNAs and non-tRNA numt-seqs 

In order to investigate the possibility that numt-tRNAs were once functional, the patterns 

of m

By aligning various human numt-seqs to the human mitochondrial genome, numbers of 

mutations in human numt-tRNAs and in human non-tRNA numt-seqs were counted separately. 

t protein-coding genes) are pseudogenes. One important factor is 

that the genetic code of the genes encoded in mitochondrial genomes is different from that of 

the genes encoded in nuclear genomes. Presumably numt protein-coding genes cannot be 

translated into functional proteins. 

In contrast, the functions of numt-tRNAs have never been explicitly discussed. The 

arguments, which have been used to infer that numt protein-coding genes should be 

pseudogenes, may not be applicable to the case of numt-tRNAs. The functions of numt-tRNAs 

do not depend on being translated into proteins. Numt-tRNA genes could be functional if they 

were transcribed into tRNA molecules. The following two subsections (3.1.2.6.1. and 

3.1.2.6.2. ) are therefore dedicated to finding evidence to support the hypothesis that human 

numt-tRNAs were initially functional while other nuclear mitochondrial sequences (non-tRNA 

numt-seqs) lost functions upon integration of numt-seqs in

3.1.2.6.1. Comparing patt

utation in numt-tRNAs and other non-tRNA numt-seqs were compared. The hypothesis is 

that, in order to protect the organism from the deleterious effects of transcripts of numt-tRNAs, 

mutations that disable these genes would accumulate more rapidly than in non-tRNA 

numt-genes which might be expected to be inactive upon initial insertion. In other words, 

differences between the patterns of mutations in numt-tRNAs and in non-tRNA numt-seqs 

might be considered as evidence that either numt-tRNAs or non-tRNA numt-seqs were once 

functional. 
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Unexpectedly, on average numt-tRNAs were found to be slightly more conserved than other 

non-tRNA numt-seqs (Figure 3-5). This result suggests that while evolutionary pressures on 

human numt-tRNAs and human non-tRNA numt-seqs may be different; overall human 

numt-tRNAs are not degraded faster than human non-tRNA numt-seqs. In addition, there is no 

obvious difference between the substitution patterns of the numt-tRNAs and the non-tRNA 

numt-seqs (Figure 3-6). 

 

Figure 3-5. Distribution of identities of human numt-tRNAs and human non-tRNA numt-seqs in 80-90 percent 
identity regions to the human mitochondrial genome 

The red points indicate numt-tRNAs and the blue crosses indicate non-tRNA numt-seqs. The green line is the 
diagonal line (x=y). Numt-tRNAs and non-tRNA numt-seqs were separated from all numt-seqs (found by 
using blastz) with 80-90 percent identities to the human mitochondrial genome. There are 43 numt-tRNAs and 
43 non-tRNA numt-seqs in this plot. The y-axis is the identities of numt-tRNAs or non-tRNA numt-seqs to 
their corresponding human mitochondrial genes. The x-axis is the identities to the human mitochondrial 
genome for respective numt-seqs, in which the numt-tRNAs or non-tRNA numt-seqs are embedded. 
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Figure 3

3.1.2.6.2. Uneven distribution of mutations along human numt-tRNAs 

Although the previous results show the overall mutation rate of numt-tRNAs is lower 

than for non-tRNA numt-seqs, I decided to investigate the distribution of mutations along 

numt-tRNAs sequences. Given that tRNAs contain internal regulatory elements that promote 

their transcription, if mutations in numt-tRNAs were found preferentially in positions that 

ts, this would support the hypothesis these numt-tRNAs 

had 

-6. Patterns of substitution in the human numt-tRNAs and in the human non-tRNAs embedded in 
regions with different percent identities to the human mitochondrial genome 

mitochondrial genome and so forth. In the x-axis, “AC” means the base adenosine being substituted with the 
qs, and so forth. The y-axis is the normalized ratio of substitutions (i.e. number of 
s normalized by total number of substitutions in each category of numt-tRNAs or 

non-tRNA numt-seqs). 

 “tRNA ID 70-80” indicates the numt-tRNAs embedded in regions with 70-80 percent identities to the human 

base cytosine in numt-se
each type of substitution

could effectively degrade these elemen

initially been active, but subsequently inactivated. Previously counted mutations from 

alignments between numt-tRNAs and the human mitochondrial genome were therefore 

counted in bins along the consensus numt-tRNA sequence. The 95% confidence interval for 

each bin was estimated based on the beta distribution, assuming that the number of mutations 

was α and that the number of bases in each bin was the sum of α and β. 
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Interestingly, two regions, the 16th to 19th (bin 5) and 52nd to 55th (bin 14) nucleot

Figure 3-7. Distribution of mutation numbers along human numt-tRNAs 

X-axis is the bins along human numt-tRNA sequences. Y-axis is the number of total mutations in each bin. 
The bin size is 4 bases in length. Forty-three numt-tRNAs are extracted from the numt-seqs with 80 to 90 
percent identities to the human mitochondrial genome. The mutations for the first 4 bases for the recruited 
numt-tRNAs are summed up to give the number of mutations in the first bin and so forth. The green bars are 

ides, 

were found to contain significantly more mutations than the 28th to 35th (bin 8 and 9) 

). The 95% confidence intervals of mutations for the former two regions 

th th gions 

are c

the 95% confidence intervals for bins. 

nucleotide (Figure 3-7

do not overlap with those for the 28  to 35  nucleotides. The locations of these two re

onsistent with the positioning of A and B boxes in the nuclear tRNA genes (DeFranco et 

al. 1980; Galli et al. 1981). 

In numt-tRNAs there are significantly more mutations in the positions that correspond to 

known regulatory regions of human tRNAs and the tRNA promoter finding algorithm 

eufindtRNA fails to find sequences that score well as promoters. These results might appear 

consistent with the hypothesis that numt-tRNAs were initially functional when copied into the 
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mammalian nuclear genomes, but have since become pseudogenes as a result of promoter 

degradation through selective acceptance of mutations. Unfortunately, proof of this hypothesis 

needs additional evidence. For example, the mechanism of expression of tRNAs in the 

mitochondria is different to that of human tRNAs. There is also no evidence to show that 

expression of mitochondrial tRNAs in the cytoplas  would interfere with the protein synthesis 

of the genes encoded in nuclear genom e 

fid  aminoacylation, and roles in protein translations if the 

3.1.3. Discussi

he previous subsections, these numt-tRNAs should be 

untranscribable pseudogenes. The pattern of mutation in these numt-tRNAs is interesting and 

suggestive of pseudogenisation through prom

al 

tRNA genes from tRNA pseudogenes. The bimodal bit-score distribution observed for low 

scori served tR  of 

numt-tRNAs, however w thes beca . This is 

consistent with the bit-score distributions am ncRNAs, where no 

m

es. There are no papers dealing specifically with th

elity of terminal maturation,

mitochondrial pre-tRNA transcripts are in the cytoplasm. 

on 

These results presented in this section (section 3.1) suggest that the 64% of the human 

synteny-non-conserved tRNA genes retrieved from Rfam are nuclear mitochondrial tRNA 

genes (numt-tRNAs), whose ancestors are tRNAs in the human mitochondria. With the 

investigations performed in t

oter inactivation. By contrast, the vast majority 

of the remaining low scoring synteny-non-conserved tRNA genes retrieved from Rfam have 

sequence similarity to synteny-conserved tRNA genes and ~72% are recognised using 

eufindtRNA suggesting they have intact promoters and may not be pseudogenes (see 

subsection 3.1.2.4.2. ). 

The bit-score distribution appears to be only weakly useful in distinguishing function

ng synteny-non-con NA genes

e were rem

 was mainl

oved any r

y the result of 

elationships 

the special case

me unclearhen 

of other classes of Rf
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particular pattern can be found. With a bit-score distribution that is simply single-modal and 

heavy-tailed, such as in t se g ed b  (Figure 

3-8), it is difficult to choose any clear-cut threshold that might separate functional and 

non-functional genes. Although ncRNA sequences with higher bit scores are more likely to be 

synteny-conserved and functional genes, whether ncRNA sequences with lower scores are 

functional or not cannot be unam uously d rmined. ilarly there is little evidence that 

an ncRNA gene with synteny-non-conserved status is necessarily a pseudogene. 

he ca of human U6 snRNA enes identifi y Rfam 4.1

big ete Sim

 

Figure 3-8. Distribution of the Rfam bit scores of the human U6-like sequences identified by Rfam 4.1 

The heavy-tailed distributions suggest that, for many classes of ncRNAs in mammalian 

enomes, the generation of pseudogenes may be a continuous process. It seems that abundant 

cRNA pseudogenes in mammalian genomes do not have a strong negative effect on the 

fitness of organisms. While this is g s a hat 

bit score distributions cannot be very helpful in filtering out ncRNA pseudogenes in ncRNA 

g

n

ood news for the urvival of mamm ls, it also means t
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finding. More specific signals ar necessary for d tinguishing bona fide ncRNAs from 

ncRNA pseudogenes. One such signal might be whether an ncRNA retains a recognisable 

internal promoter, however verif tion of the com l evide  presented her is 

needed. 

3.2. 

pseudogenes? 

3.2. ate s and methods 

3.2.1 ecruiti human and mouse tRNA genes

e is

ica putationa nce e 

Clustering – a useful criterion for filtering out ncRNA 

1. M rial

.1. R ng  

The human and mouse tRNA genes used in this section were retrieved from Ensembl 

relea  by usi Ensembl Perl A s. These genes w re predicted by u g tRNAscanSE

3.2.1 efining NA-gene clust

se 29 ng PI e sin . 

.2. D  tR ers 

essin e features of clustered tRNA gen  one issue conc  deciding a su le 

di rest neighbouring tRNA 

genes, for defining tRNA gene clusters. If the se

po

se s too short, some clustered bona fide tRNA genes may be incorrectly 

gr and 

10-kilo bases, were therefore tried to define tRNA-gene clusters. 

tios of non-clustered tRNA genes within different bit-score ranges

In ass g th es, erns itab

stance criterion, i.e. the maximal distance allowed between the nea

lected distance is longer than necessary, more 

tentially non-clustered tRNAs may be included into clusters. On the other hand, if the 

lected distance i

ouped or classified as non-clustered. Several different distances, such as 5-kilo bases 

3.2.1.3. Comparing the ra  

All human tRNA genes are categorized into five bins according to their bit scores: 20-55, 

separately f

56-65, 66-75, 76-85, and 86-95. The ratio of tRNA genes that are clustered was calculated 

or each bin. The enrichment of clustered tRNA genes in each bin is determined by 

comparing the ratios in different bins. The 95% confidence intervals for individual ratios were 
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estimated based on the beta distribution, assuming that each numerator was α and that each 

denominator was the sum of α and β. 

3.2.1.4. The anticodons required for protein translation 

It is known that not all 61 types of anticodons are required for protein translation in 

eukaryotic cells. Because the interactions between codons and anticodons allow wobble pairs 

in the third positions (of codons), some codons can share recognition by the same tRNA. 

mated that 46 types of tRNAs that have 45 unique anticodons are 

sufficient for translation (for review see Guthrie and Abelson 1982). Two types of tRNAs with 

exactly the sam m i

3.2.2. Results 

3.2.2.1. E he low-scoring group

Guthrie and Abelson esti

e anticodon are used for carrying Met  and Met  respectively (“i” indicates 

translation initiation codon “m” indicates a general non-initiation codon for methionine). 

nrichment of mammalian non-clustered tRNA genes in t  

clustered 

tRNAscan s 20-55 were found to be 

non-clustered. By contrast, ~27% (16/59) with scores 55-65, ~30% (45/152) with scores 65-75, 

~25% (42/171) with scores 75-85, and ~26% (9/35) with scores 85-95, are non-clustered 

(Figure 3-9). These results suggest that non-clustered tRNA genes are enriched in the 

low-scoring group. There is also a similar finding when the clusters were defined by using the 

5-kb

 

A 10-kb distance threshold was initially used to subgroup all human tRNA genes into 

and non-clustered ones. Among the 608 human tRNA genes predicted by 

SE, ~65% (125/192) of the tRNA sequences with score

 distance threshold (data not shown). 
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3.2.2.2. T stered tRNA genes can cover 46 necessary anticodonshe mammalian clu  

In this su

on the basis of the d tRNA genes are 

show no tion, this will be evidence 

that non-clustered tRNA genes are necessarily functional. Conversely, if clustered tRNA 

genes provide h

required for protein

These results indica

types of tRNAs and exactly satisfy the w

“clustered” ones). Although, the hum

tRNAs, there are several cases that violate the wobble rules (Table 3-2, compare “yeast” and 

Figure 3-

Each red bar is the 9
as described in subsection 3.2.1.3.  

9. The human low-scoring tRNA genes are enriched with non-clustered ones 

5% confidence interval for each bin. The confidence intervals shown here were estimated 

bsection, the functionality of non-clustered tRNA genes is explored indirectly 

 need for their roles in protein translation. If clustere

n t to include all the anticodons required for protein transla

all t e required anticodons, non-clustered tRNA genes may not be necessarily 

 translation. 

te that clustered tRNA genes in the human genome can cover all 46 

obble rules (Table 3-2, compare “yeast” and 

an non-clustered tRNA genes can also cover 46 types of 
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“non-clustered

were found (Table 

genomes may be su . 

Human 

” ones). Besides, in the mouse clustered tRNA genes, additional anticodons 

3-3). These results suggest that the clustered tRNA genes in mammalian 

fficient to provide the necessary types of tRNAs for translating proteins

tRNA types Yeast 
All 

Clustered, 
dist < 10kb

Clustered, 
dist < 6kb

Non-clustered, 
dist < 10kb 

Non-clustered, 
dist < 6kb 

Ala 3 3 3 3 3 3 
Arg 5 5 5 5 5 5 
Asn 1 2 1 1 2 2 
Asp 1 1 1 1 1 1 
Cys 1 1 1 1  1 1 
Gln 2 2 2 2 2 2 
Glu 2 2 2 2 2 2 
Gly 3 3 3 3 2 2 
His 1 1 1 1 1 1 
Ile 2 2 2 2 2 2 
Leu 5 5 5 5 5 5 
Lys 2 2 2 2 2 2 
Met* 2 2 2 2 2 2 
Phe 1 1 1 1 1 1 
Pro 3 3 3 3 1 1 
Ser 4 4 4 4 4 4 
Thr 3 3 3 3 3 3 
Trp 1 1 1 1 1 1 
Tyr 1 2 1 1 2 2 
Val 3 3 3 3 3 3 
Total 45 47 45 45 45 45 

 

Table 3-2. Comparison between types of anticodons of yeast and the human tRNAs 

Each number indicates the distinct types of tRNA anticodons corresponding to a particular amino acid. For 
example, there are 2 distinct types of anticodons found in the yeast tRNA genes corresponding to the tRNAs 
carrying isoleucine (Ile). Each red box is used to indicate that for a particular amino acid, the number of 
corresponding anticodon types that can be found in a category (clustered, non-clustered, etc.) of human tRNA 
genes is different from that of the anticodon types found in yeast tRNA genes. 

“*” means that there are two types of tRNAs with exactly the same anticodon for Meti and Metm respectively. 
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Mouse 
tRNA 

Yeast Clustered, dist < Clustered, dist < Clustered, dist < 
types 

All 1 mb 10 kb 6 kb 
Ala 3 4 4 3 3

Arg 5 6 5 5 5

Asn 1 2 1 1 1

Asp 1 2 1 1 1

Cys 1 2 2 1 1

Gln 2 2 2 2 2

Glu 2 2 2 2 2

Gly 3 4 4 4 4

His 1 2 2 1 1

Ile 2 3 3 2 1

Leu 5 6 5 5 5

Lys 2 2 2 2 2

Met* 2 2 2 2 2

Phe 1 2 2 1 1

Pro 3 4 3 3 3

Ser 4 6 4 4 4

Thr 3 4 3 3 3

Trp 1 1 1 1 1

Tyr 1 2 1 1 1

Val 3 4 4 4 4

total 46 62 53 48 47

 

Table 3-3. Comparison between types of anticodons of yeast and mouse tRNAs 

Th

nes were not listed. The types of anticodons that can be 
essential types of anticodons (the column “yeast”). It is 

difficult to determine which of them may not be the anticodons of bona fide mouse tRNA genes. The purpose 
of t genes can cover the anticodons essential for 
pro

“*”means that there are two types of tRNAs with exactly one anticodons for Met  and Met  respectively. 

e color-coding convention used in this table follows that of Table 3-2. 

The anticodon types of non-clustered mouse tRNA ge
found in non-clustered mouse tRNA genes exceed the 

his table is thus to demonstrate that clustered mouse tRNA 
tein translation. 

i m
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3.2.3. Discussion 

3.2.3.1. Clustering may be a useful criterion for filtering out tRNA pseudogenes 

Three threads of evidence imply that maybe the clustered tRNA genes in the mammalian 

genomes are functionally more important than the non-clustered tRNA genes are. First, the 

human low-scoring tRNA genes, which are more likely to be pseudogenes, are significantly 

enriched with non-clustered tRNA genes. Se

an-mouse synteny-conserved (for details see section 2.2 and Figure 2-7). 

first part of this chapter (section 3.1), I explored the tendency of the 

synte

unctionality of human 

cond, the finding that clustered tRNA genes 

should be sufficient for protein translation implies that non-clustered tRNA genes may not 

necessarily be required for protein translation. Third, ~56% of human clustered tRNA genes 

are human-mouse synteny-conserved, while only ~40% of human non-clustered tRNA genes 

are hum

3.3. Summary 

In the 

ny-non-conserved tRNA genes retrieved from Rfam to be pseudogenes. Results relevant 

to genome-wide ncRNA finding include that: 

z ~65% of human synteny-non-conserved tRNA genes retrieved from Rfam are 

nuclear mitochondrial tRNA sequences (numt-tRNAs). 

z Evidence suggests that these numt-tRNAs are currently non-functional in the human 

genome. The observed patterns of mutation are weakly suggestive of a mechanism 

of pseudogenisation that involves promoter inactivation. 

z Once numt-tRNAs were disregarded, it was apparent that many of the remaining 

low-scoring synteny-non-conserved tRNA genes might not necessarily be 

pseudogenes. 

In the second part of this chapter (section 3.2), I explored the f
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non-

synteny-non-conserved (Rfam) tRNA sequences still preserve their 

2. Hypothesis: non-clustered tRNA genes are pseudogenes. 

clustered tRNA genes. The main results are that: 

z Low-scoring tRNA genes are enriched with non-clustered tRNA genes. 

z Mammalian clustered tRNA genes can provide sufficient types of tRNAs to cover 

all the anticodons required for protein translation. This is consistent with 

non-clusters tRNA genes not needing to be functional, but does not demonstrate that 

they are non-functional. 

With respect to the functionality of synteny-non-conserved ncRNAs in mammalian 

genomes, there are two hypotheses. In the following, I summarize the pieces of evidence for or 

against each of these: 

1. Hypothesis: synteny-non-conserved ncRNA genes are pseudogenes. 
� Evidence against this hypothesis: 

z The majority (71.9%) of human nuclear tRNA derived low-scoring and 

internal promoters to a certain extent (see subsection 3.1.2.4.2. ). They 

may not be functional tRNA genes but may be transcribable. 

z Some synteny-non-conserved and non-clustered (tRNAscanSE) tRNA 

gene loci are also high-scoring, suggesting that these loci may not 

necessarily be pseudogenes (see the high-scoring bins in Figure 3-9). 

� Conclusion: 

z Evidence is weak, but is suggestive that synteny-non-conserved ncRNAs 

are a mixture of functional ncRNAs and pseudogenes. 

 

� Evidence for this hypothesis: 
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z The set of low-scoring tRNA genes in the human genome is significantly 

enriched with non-clustered tRNA genes (see subsection 3.2.2.1. and 

� Evidence against this hypothesis: 

Figure 3-9). 

z Clustered tRNA genes can cover 46 types of anticodons required for 

protein translation, implying that non-clustered tRNA genes may be 

functionally less important for translation (see subsection 3.2.2.2. ). 

z ~56% of human clustered tRNA genes are human-mouse 

synteny-conserved, while only ~40% of human non-clustered tRNA genes 

are human-mouse synteny-conserved (see section 2.2 and Figure 2-7). 

z Some non-clustered tRNA genes are high-scoring as well as 

synteny-conserved in mammalian genomes (see subsection 2.2.2.7. ), not 

suggesting that they are pseudogenes. 

� Conclusion: 

z Evidence is weak, but suggestive that non-clustered tRNAs may be more 

likely to be pseudogenes. 

 

In conclusion, evidence weakly supports that synteny-non-conserved ncRNAs are a 

mixture of functional ncRNAs and pseudogenes. Besides, non-clustered tRNA genes may be 

more likely to be pseudogenes. 

 

 

  



 

Chapter 4.  Modelling functional elements associated

with ncRNAs 

So far in thesis, the main focus has 

 

been on discussing issues related to applying 

comp

ynteny-non-conserved and potentially functional ncRNAs, etc. There is another 

related limitation of alignment approaches to this general problem: if a set of functionally 

related ncRNAs are mainly constrained at the structural level, their sequences may become 

very divergent at the primary-sequence level, making alignment very difficult (Torarinsson et 

al. 2006). 

Accordingly, it is appropriate to consider what approaches might be viable for 

genom

sites (TSSs) of ncRNAs 

In the first part of this chapter, I introduce the computational approaches that may be used 

arative-genomics based approaches for genome-wide ncRNA finding. This is due to the 

fact that till now these approaches have been believed to be one of the most promising ncRNA 

finding strategies. With the evidence presented in the previous chapters, this belief has 

therefore been challenged, due to the finding of insufficient covariations, the existence of 

numerous s

e-wide ncRNA finding which do not rely on comparative genomics. One possible 

strategy is to apply machine learning techniques which can, given a set of unaligned functional 

ncRNAs, generate models of functional elements implicated in either the transcription or 

functioning of ncRNAs. Such models can then be used to scan the genomes in order to find 

novel ncRNAs. 

From this chapter, I consider the computational modelling of two types of functional 

elements that may be associated with ncRNAs: 

z the transcription start 

z the functional elements/sites that are associated with RNA motifs in RNA transcripts 

127 
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to find the transcription regulatory regions, including enhancers/silencers and transcription 

start sites (TSSs). I start with a brief introduction of transcription regulatory regions, as well as 

the basics of available motif models and relevant machine learning techniques that have been 

used to discover motifs. Then I introduce an existing system, Eponine, which was designed to 

generate predictive models of functional sites, such as TSSs, in genomes. 

In the second part of this chapter, I consider the direct detection of RNA motifs in 

ility of applying available computational approaches for 

iden

 

Access to and recognition of transcription units by transcription machinery are two 

critical steps in the generation of functional transcripts of all genes, including both 

protein-coding and ncRNA genes. The essential components involved in transcription 

initiation include RNA polymerases, transcription factors (TFs), DNA templates, and 

transcription regulatory elements on genomic DNA sequences. The regulatory elements that 

are o

s they regulate, cis-regulatory elements can be 

further categorized into promoters, which are in close proximity to transcription start sites 

(TSSs), and enhancers/silencers, which can be at great distance from TSSs. A regulatory 

elem

genomes. I explore the possib

tifying RNA structural motifs in genomes. I also introduce a new model I have created for 

the purpose of discovering the functional sites which are associated with RNA structural 

motifs. 

4.1. Computational detection of transcription regulatory

regions 

n the same chromosome as the respective transcription units are also called cis-regulatory 

elements. Based on the distance from the gene

ent may consist of multiple transcription factor binding sites (TFBSs) that can specifically 

interact with different TFs. A set of TFBSs for a particular TF may share unique sequence 

patterns, which are generally short and degenerate. 
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For each gene, the interaction of its promoter with a specific type of RNA polymerase 

and with a set of TFs determines the exact transcription start point. Different RNA 

polymerases together with specific sets of TFs favour different promoter sequences. In 

eukaryotes, there are three different types of RNA polymerases for transcribing genes into 

RNA molecules. RNA polymerase I only transcribes tandemly repeated ribosomal RNA genes 

(except 5S rRNA genes). RNA polym

s (Lee et al. 2004). Genes that are transcribed 

by RNA polymerase I are referred to as pol I genes, and so forth. Modelling promoters of pol 

II or pol III genes is therefore potentially useful for ncRNA finding. In fact, the inter

promoters of tRNA genes have been used as an important signal for tRNA finding in 

eukaryotic genomes (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy 1997). 

 

cells (For reviews see Vignali et al. 2000; Berger 2002). The genomic DNA of eukaryotes is 

packaged with histone and non-histone pr

 RNA polymerases. In particular, a class of complex enhancers, locus 

control regions (LCRs), may consist of multiple regions for initiating chromatin remodell

(For review see Dean 2006). While an enhancer can regulate transcription of only one gene, 

LCRs can be effective on a cluster o

erase III transcribes tRNA genes, 5S rRNA genes, and 

some small nuclear RNA genes. RNA polymerase II transcribes all protein-coding genes. 

There is evidence indicating that RNA polymerase II is also responsible for transcribing many 

structural ncRNA and mRNA-like ncRNA gene

nal 

Enhancers/silencers are another type of transcription regulatory element. Their function 

may be independent of their orientations and distances relative to respective transcription start 

sites (For review see Khoury and Gruss 1983). Interaction of enhancers/silencers with 

transcription factors can alter the transcription efficiency of associated transcription units. One 

important regulatory mechanism of enhancers is inducing chromatin remodelling in eukaryotic

oteins into compact chromatin. To allow 

transcription to be initiated, the structure of compact chromatin must be remodelled in order to 

allow efficient access by

ing 

f genes. For example, an LCR in mammalian genomes is 
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suggested to regulate the temporal expression of the beta-globin locus, which consists of at 

least four genes (For review see Li et al. 2002). 

Many computational methods have been developed in order to address the problems 

relevant to finding transcription regulatory regions in genomes. For instance, many motif 

finders have been developed to detect over-represented motifs. However, the over-represented 

motifs so discovered may not directly be useful for discriminating functional sites in genomes. 

One reason is that the individual interaction between a TF and its TFBS is rarely sufficient to 

trigger a particular regulatory mechanism. For instance, in eukaryotes, the transcription 

e TFBSs (for review see Sandelin et al. 2007). 

Cons

putational approaches that can 

nal sites, such as TSSs and TTSs in genomes. The 

appr

ences can be 

helpful when studying the regulatory mechanisms of gene expression. Although determination 

of the functional TFBSs for a TF in genomes can currently only be achieved by experiment, 

many computational systems have been designed for the purpose of finding over-represented 

initiation may be associated with multipl

equently, for the purpose of finding particular functional sites in genomes, I consider the 

systems which can model the association of multiple TFBSs with particular functional sites. 

In the following two subsections, I introduce the approaches for finding motifs and 

functional sites. In the first subsection (4.1.1. ), existing computational approaches for 

discovering over-represented motifs are briefly introduced. Although these approaches were 

not directly used in the work presented in this thesis, this introduction provides essential 

knowledge for using methods that can perform selective classification of functional sites in the 

genomes. In the second subsection (4.1.2. ), I introduce the com

be used to model particular functio

oaches described and developed here are applied in chapters 5 and 6. 

4.1.1. Computational detection of over-represented motifs 

Computational detection of over-represented motifs in a set of related sequ
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patterns in a set of sequences containing genes known to be regulated by a particular TF. If 

over-represented motifs can distinguish sequences with genes with similar functions from 

background genomic sequences, these features can be suspected to be candidate regulatory 

elements, possibly TFBSs of the same TF(s). 

Over the past decades, many computational approaches have been developed in order to 

find the over-represented motifs among a set of related sequences. There are two main issues 

in discovering motifs: 1) the type of model used to represent motifs; 2) the approach used to 

learn the parameters of the motif model. In the following of this section, these two issues are 

discussed. 

4.1.1.1. Motif models 

The first step towards modelling transcription regulatory regions is using a formulation to 

describe a set of TFBSs for a particular TF. There are at least two types of motif models that 

onsensus based models, and profile based models. 

ost probable nucleotide at 

each position of TFBSs. A consensus model is suitable for describing a set of TFBSs that are 

comp

ambiguous sym enclature 

Com us symbols 

(Tom

have been used for this purpose: c

4.1.1.1.1. Consensus based models 

A consensus is a string of simple symbols for describing the m

letely identical. Consensus based models have also been extended to incorporate 

bols. One strategy is to use the IUPAC-IUB alphabet (Nom

mittee of the International Union of Biochemistry 1986) to code the ambiguo

pa 1999). For example, if both A and G are observed at a particular position of a set of 

TFBSs, “R” (purine) is thus used to represent this position; if all four types of nucleotides are 

observed, then “N” is used. 

The significance of a consensus can be evaluated by several different scoring schemes. 

One widely used scoring scheme is the z-score, which measures how unlikely a consensus 
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with certain occurrences in a given set of sequences is found given a background distribution 

(Tompa 1999). In brief, the z-score is the number of standard deviations of the observed 

 its expected frequency. The expected frequency of a consensus 

can be calculated by counting the number of occurrence in a set of random sequences, which 

can be generated using a high-order Markov chain modelling the background distribution 

(Sinha and Tompa 2002). 

ul, motif model is a profile based model, which can 

describe the alignment of a set of functionally related TFBSs. A widely used profile based 

model for representing motifs is a position freque

lity of emitting a particular sequence pattern that starts at the ith position of a 

sequ

frequency of a consensus from

4.1.1.1.2. Profile based models 

One problem with the consensus based motif model is its insufficiency for describing the 

differential preference toward different symbols at a particular position of a motif. A more 

flexible, and possibly more powerf

ncy matrix (PFM) (also as position specific 

frequency matrix, PSFM) (for review see Wasserman and Sandelin 2004), which is a type of 

product-multinomial model. A PFM consists of a series of columns. Each column of a PFM is 

a multinomial distribution over all possible symbols of the alphabet used in each position of a 

motif. By using a PFM, each position of a sequence motif is treated independently, although 

this assumption may be biologically imprecise as shown in some analyses of protein-DNA 

interactions (Barash et al. 2003). 

The probabi

ence x from a PFM can be evaluated by:  

∏ −+=
=

))1((),( lixPixM  [4-1] 
||

1

M

l
l

|M| is the number of columns of the PFM. Pl returns the probability of a particular symbol 

emitted by the lth column of the model. x(i + l - 1) is the symbol at the (i + l - 1)th position of x. 

For modelling TFBSs, the possible symbols for each column consist of adenine (A), guanine 
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(G), cytosine (C), and thymine (T). A PFM can be displayed in the form of sequence logos 

(Schneider and Stephens 1990). A sequence logo for a PFM contains of a series of columns of 

stacked symbols, where the height of each symbol is proportional to its information content at 

each position. In the rest of this thesis, sequence logos are used to represent the 

primary-sequence motifs. 

One advantage of using PFMs to describe motifs is that it is very easy to connect a motif 

model to statistical information theory. The statistical significance of a motif can be assessed 

by calculating the information content of a PFM. The information content at the lth position of 

a site is:  

∑=
b b

bl
bl P

P ,
2,

, where b refe

PlI log)(  [4-2]

rs to each of the possible bases; is the probability of base b at the lth 

uences (e.g. non-site sequences in 

the g

ratios with respect to a background sequence 

mod

blP ,  

position; Pb is the frequency of base b in the background seq

enomes). This formulation is equivalent to the relative entropy and the Kullback-Leibler 

distance, between the foreground motif model and the background sequence model (for review 

see Stormo 2000). Usually the base composition in the background sequence model is 

assumed to be independent and identically distributed (i.i.d.). One simple approach is to 

assume that each base in the background is equally probable and thus Pb is 0.25 for each base. 

In order to search for a particular pattern in a given sequence, a PFM value is usually 

converted into a sum of a series of log-likelihood 

el B:  

∑
= −+

−+
=

||

1
2 ))1((

))1((
log),(

M

l

l

lixB
lixP

ixW  [4-3]

This conversion gives a position specific scoring matrix (PSSM), which is also called a 

position weight matrix (PWM) (for review see Wasserman and Sandelin 2004). Given a 
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sequence region, a PWM can be used to evaluate the log-likelihood ratio between the 

foreground motif m

can be interpreted as that the foreground m

pattern than is the background model. The PWM scores have been shown to be proportional to 

the binding energy contribution 

4.1.1

odel and the background sequence model. A higher log-likelihood ratio 

odel is more likely to generate a given sequence 

of the bases (Berg and von Hippel 1987; Stormo 2000). A 

PWM can be used to scan for candidate TFBSs in a long sequence. For finding TFBSs in a 

sequence of length N, all N - |M| + 1 sub-sequences of length |M| must be enumerated and 

scored. 

.2. Algorithms for discovering motifs 

In an in silico motif finding problem, the positions, patterns, and lengths of 

over-represented motifs in a set of related sequences may be initially unknown. Motif finding 

algorithms must be capable of optimizing these parameters given a set of sequences. In order 

to simplify the motif finding problem, existing motif finding algorithms usually require a 

user-defined motif length. Consequently, the parameters that need to be learned are the motif 

patterns, and their respective positions in individual sequences. Based on the models used, 

m  methods, 

which are briefly introduced in the following, respectively. 

4.1.1.2.1. Consensus based methods 

n the given set of sequences. 

otif finding methods can be classified into consensus based and profile based

Consensus based motif finding methods discover over-represented motifs by exhaustive 

enumeration of a set of motifs (Tompa 1999; Marsan and Sagot 2000; Pavesi et al. 2001). 

These methods usually use the following two steps to discover over-represented motifs: 

z Enumerate all possible m-mer substrings i

z Score and rank the m-mer substrings by using some statistical measures, such as the 

z-score. 

  



4.1. Computational detection of transcription regulatory regions 135
   

Consensus based methods can be very fast, if a suitable indexing structure, such as the 

suffix tree (Marsan and Sagot 2000), is used for organizing the sequences. While some 

evidence suggested that consensus based motif finding methods may suffer from high false 

positive rates (Osada et al. 2004), a recent survey reveals that these methods can have a 

performance comparable to that of profile-based methods (Tompa et al. 2005). However, there 

are considerations in using consensus based methods. Firstly, generating one consensus 

optim

an evaluate how likely a particular motif is to be 

A basic form of the likelihood functions used in many profile-based motif finding 

systems (for review see Stormo 2000) is the information content of a motif, as the formulation 

presented in [4-2]. The positions of a motif in individual sequences are referred to as the 

missing data. An important task of the optimization procedure is to search for the solution of 

missing data which may maximize the likelihood function. Two of the most widely used 

al for predicting new sites is not straightforward. Similar substrings must be clustered 

into fewer groups in a post-processing stage (Marsan and Sagot 2000). Secondly, for 

computational efficiency, some consensus based methods such as YMF (Sinha and Tompa 

2000) and Weeder (Pavesi et al. 2001) restrict the number of mismatches allowed in a pattern. 

When several positions in a set of TFBSs with respect to a TF are weakly constrained, as in 

the cases of eukaryotes, consensus based methods may not work well (Pavesi et al. 2001). 

4.1.1.2.2. Profile based methods 

Profile based motif finding methods discover over-represented motifs by selecting 

oligonucleotides from the set of input sequences and then aligning them to generate profiles. 

These methods generally consist of two components: 

z A likelihood function which c

over-represented given a set of sequences. 

z An optimization procedure which can maximize the likelihood function. 
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optimization algorithms are the Expectation Maximization (EM) (Lawrence and Reilly 1990; 

Baile

EM algorithm

y and Elkan 1994) and Gibbs Sampling (Lawrence et al. 1993). 

 

nction with 

missing data. The EM algorithm iterates between two steps: in the first step, the expected 

values of the missing data are estimated, conditioned on the proposed model parameters; in the 

second step, given the expected values of the missing data, the new model parameters that can 

maxi

and the second step is the maximization step (M-step). These two steps are iterated until a 

conv

There have been many extensions to the original EM based motif finding algorithm 

(Lawrence and Reilly 1990). For instance, the MEME (multiple expectation max ion for 

motif elicitation) algorithm is designed to model motifs with zero-or-one occurrences per 

sequence (ZOOPS) (Bailey and Elkan 1994), although the original EM motif finding 

algorithms were designed to find one occurrence per sequence. Another significant 

improvement to EM made in the MEME algorithm is its capability to detect multiple motifs 

within a single run. 

The EM algorithm is a general approach for maximizing a likelihood fu

mize the log likelihood function are chosen. The first step is the expectation step (E-step) 

ergence criterion is satisfied. 

imizat

Gibbs Sampling 

In mathematics and physics, Gibbs Sampling is a sampling algorithm that is used to 

explore the joint probability of two or more random variables. It is a special case of the 

Metropolis-Hastings algorithm, which is a type of Markov chain Monte Carlo algorithm. A 

Gibbs Sampling approach for motif finding also consists of an iteration of two steps: 

predictive update step and sampling step (Lawrence et al. 1993), which correspond to the 

E-step and the M step of an EM algorithm respectively. However, unlike the deterministic 
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process used in EM to find the missing data (i.e. the start sites of a motif in individual 

sequences), a stochastic process is adopted in the Gibbs Sampling motif finding algorithm 

(Lawrence et al. 1993). At the predictive update step of Gibbs Sampling, a sequence z is 

chosen and the other sequences are used to derive the model parameters, given the current site 

positions. At the sampling step, the probability of generating the site in each position of 

sequence z can thus be estimated conditioned on the current motif model. The new site 

position in sequence z is sampled with the probability distribution of the site positions. 

Several improvements have been made to enhance the capability of the original Gibbs 

Sampling based motif finders (for review see Pavesi et al. 2004). The capabilities of the 

enhanced Gibbs Sampling motif finders include finding multiple motifs simultaneously 

(Thompson et al. 2003), modelling two-block motifs (GuhaThakurta and Stormo 2001; Liu et 

al. 2001), etc. 

4.1.1.3. Considerations when using motif finding methods 

Although many motif finding algorithms have been developed, computational detection 

of functional motifs in real genomes remains a challenging problem. Several independent 

surveys indicated that, in the context of genome-wide TFBS finding, the performance of 

available motif finding algorithms is far from being satisfactory (Hu et al. 2005; Tompa et al. 

2005). An important finding is that most of the existing motif finding systems are not very 

unctional sites, particularly when complex genomes, such as the 

human and mouse genomes, are investigated. 

ptima. 

z The background model used in many methods may be too simple to reflect the true 

effective in discriminating f

Several possible reasons to the poor performance of existing motif-finding approaches 

have been proposed: 

z The optimization procedure may get stuck in local o

 



138 Chapter 4. Modelling functional elements associated with ncRNAs
 

background in complex genomes. 

sues (for review 

see Pavesi et al. 2004; MacIsaac and Fraenkel 2006). In the following subsection, I introduce 

methods that may be more suitable for prediction of functional sites in complex genomes. 

z The architecture of functional sites may not be properly modelled as a single motif. 

For instance, TSSs may associate with two or more TFBSs.  

A number of improvements have been made in order to address these is

4.1.2. Computational detection of functional sites 

In transcription, TSSs are determined by the binding of multiple TFs to a set of TFBSs in 

close proximity to TSSs (for review see Fickett and Hatzigeorgiou 1997). For example, the 

transcription initiation of mammalian tRNA genes by RNA polymerase III is regulated by the 

binding of TFs to the A and B boxes (Hsieh et al. 1999) (Figure 4-1), which are within certain 

distances downstream of TSSs (Pavesi et al. 1994). 

 

One computational approach for TSS finding is to model the promoters of genes, since 

prom

Figure 4
 

-1. The transcription initiation of mammalian tRNA genes is regulated by A and B boxes 

oters are in close proximity to TSSs. Although a number of TSS finding systems based 
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on promoter modelling have been developed, most of them are specifically designed for 

ng genes (for review see Fickett and Hatzigeorgiou 1997). For 

the purpose of finding the TSSs of ncRNAs, a system that can be used to learn new models 

given a new set of training sequences is of interest. 

arious states for modelling multiple signals associated with splicing 

and translation, have been used for finding eukaryotic protein-coding genes (Burge and Karlin 

1997). Presumably ad hoc designed HMMs should be able to model complex regulatory 

elements by adequately connecting the states of relevant TFBSs. However, there are some 

concerns for applying HMMs to TSS modelling. First, it is generally difficult to guess a 

suitable HMM topology for any types of regulatory elements. Second, the parameter tuning of 

complex HMMs may easily be trapped in a local optimum (Durbin et al. 1998). 

w

modules wh

and Stormo 2001

module models may potentially be applicable to finding 

promoters. However, for the purpose of predicting TSSs, there are concerns with these 

systems. First, the distance constraints between motifs in a module are generally un-modelled, 

or m  2003), which appears to 

be unsuitable for describing the distance range between TFBSs, as observed in the tRNA gene 

promoters (Figure 4-1). Second, these module finding systems may report just an approximate 

area for regulatory modules, but not an actually functional site, which is not what we would 

expect from a TSS prediction algorithm. 

I chose to use an available system, Eponine (Down and Hubbard 2002), which was originally 

finding the TSSs of protein-codi

A possible approach to model TSSs is using Hidden markov models (HMMs). Complex 

HMMs, which recruit v

Over the past few years, several ne  systems have been developed to model regulatory 

ich may consist of multiple TFBSs (Wasserman and Fickett 1998; GuhaThakurta 

; Bailey and Noble 2003; Zhou and Wong 2004; Aerts et al. 2005). Motif 

finding systems that use regulatory 

erely modelled by using a linear gap penalty (Bailey and Noble

Here, for the purpose of modelling the TSSs of ncRNA genes in the mammalian genomes, 
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designed to model the TSSs of mammalian protein-coding genes. One feature of Eponine is 

that it has been designed to perform predictions of functional sites in genomes. Eponine has 

been demonstrated to be effective in discriminating TSSs (Down and Hubbard 2002) and 

transcription termination sites (TTSs) (Ramadass 2004) in mammalian genomes. In the 

follo tro

4.1.2.1. Modelling functional sites using Eponine

wing subsection (4.1.2.1. ), I in duce the basics of the original Eponine implementation. 

 

4.1.2.1.1. The Eponine Anchored Sequence Model 

ositioned constraint (PC), which consists of:  

 to the 

reference site. 

The Eponine Anchored Sequence Model (EAS) is a classification model that is aimed to 

be applied to individual points within a large genome, i.e. exact reference positions on the 

genome sequence, such as the base pair at which transcription starts (TSS). An essential 

component of the EAS model is a p

z A position weight matrix (PWM) which models a signal that may contribute to the 

classification of a particular functional site. 

z A discrete probability distribution to describe the position of a PWM relative

In the EAS model, the score of a PC can be calculated as: 

||

)),()(log(
),(

W

aixWiP
ax i

∑
+∞

−∞=

+⋅
=φ  [4-4] 

where x is a DNA sequence; a is a pre-defined reference site for each sequence x; P(i) is a 

discrete probability distribution for modelling the distance of a motif from the reference site 

(i.e. TSS, TTS, etc.); is the PWM score for offset i relative to the reference site a. 

P(i) is usually in the form of a discrete Gaussian distribution. It should be noted is that, the 

PWM used in the Eponine models is actually a probability frequency matrix (PFM, see [4-1]) 

normalized with background base compositions. The difference between the PWM used in 

),( aixW +  
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Epon is equivalent to the 

logarithm of the former. For simplicity, the term PWM is still used in describing the Eponine 

models, in order to be consistent with the terminology used in the papers relevant to Eponine 

(Down and Hubbard 2002; Down et al. 2006).  

A particular point about the this scoring function is that, this function may allow, not only 

a strong motif with a very sharp position distributi n relative to a particular reference site, but 

also short motifs with very broad distributio

in

a

in eukaryotic promoters. However, it should be noted that, by using such a scoring function, 

the EAS model is not designed to

sig

son is that, in 

optim

ine and the general form of PWM (see [4-3]) is that, the latter 

o

ns. This is caused by the summation of the 

position-constra ed PWM scores across a region on a sequence. This design may be 

advantageous to the situ tion where there are general compositional biases toward some 

particular oligonucleotides, as what we have observed in the case of CpG overrepresentation 

 find optimal motifs that are over-represented in a set of 

sequences. Therefore, the EAS model is specifically de ned to discriminate functional sites 

in the genomic context, i.e. the individual points within a large genome. 

It should be noted that the final score of each PC for each sequence must be normalized 

by ||W , the number of columns in each PWM. At first glance this normalization seems to be 

unnecessary; however, it is critical for learning the EAS models. The rea

izing the parameters of the EAS models, the widths of PWMs are not a pre-defined and 

fixed value. The learning system of Eponine learns a set of optimal PWMs from a pool of 

candidate PWMs of varied widths. If a PWM score is not normalized, a PWM with more 

columns may be preferred. Similar normalization strategies has been used by some of the 

motif finding systems where the lengths of motifs are not pre-defined, such as the Gibbs Motif 

Sampler (Lawrence et al. 1993). 
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Learning the EAS models 

com quivalent to the generalized linear model (GLM) (McCullagh and Nelder 

s complex model is equivalent to a basis function in GLMs. 

[4-5] 

The EAS model is so built by taking the weighted sum of a number of PC scores. This 

plex model is e

1983), where each PC in thi

The general formulation of a GLM can be expressed as: 

Cxx
m

The term, x, represents a sequence. 

mm += ∑ )()( φβη  

φ  is a set of basis functions. β  is a set of weights 

associated with individual basis functions. “C” is the constant. For binary classifications (e.g. 

classifying sequences into positive and negative ones), one logistic function, 

η−ησ
+

=)(  [4-6] 

 the raw output of GLMs to fit a sigmoid curve. Thus, the output 

of this transformation can be used to decide whether an input x belongs to a particular class. 

For training an EAS model, the parameters that need to be learned include PCs, and the 

weights that associate with PCs. Each PC cons

e1
1

can be used to transform

ists of a PWM and an associated probability 

position distribution, which also need to be learned. At the initial stage of training, the 

parameters of PWMs and associated position distributions should be largely unknown. A 

trainer should be able to recruit informative PWMs and discard non-informative ones. The 

Eponine trainer uses a combined strategy consisting of the relevance vector machine (RVM) 

algorithm (Tipping 1999) and a Monte Carlo sampling process: 

z A number of random PWMs of certain widths, and random Gaussian position 

distributions, are initialized. 

z Use the RVM algorithm to estimate the weights of PCs and thus prune 
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non-informative PCs. 

z Recruit new PCs by using a Monte Carlo sampling process to adjust the widths and 

weights of PWMs, as well as the parameters (i.e. mean and width) that decide the 

shape of Gaussian position distributions. 

The RVM algorithm is the core algorithm for learning informative PCs. Since the RVM 

is so important for training the EAS model for classification, it is discussed in the following. 

The Relevance Vector Machine 

The RVM is a Bayesian approach to learn parameters of GLMs (Tipping 1999). It can 

take a set of basis functions, corresponding to PCs in the EAS model, and then use a “pruning 

prior” to discard the basis functions that do not contribute significantly to a particular 

classification problem. 

In general, the Bayesian way for estimating parameters for classification can be written 

as:  

)|(
)(),|(),|(

XTP
PXTPTXP βββ ×

=  

),|( TXP

[4-7]

β  is the posterior probability of a model with parameter set β , given paired 

X and T, where X = (x1, x2, …, xN), represents the N input points (i.e. input and target data, 

sequences in this thesis), and T = (t1, t2, …, tN), represents respective targets (or responses). 

),|( βXTP  is the likelihood of the model given the data. )(βP  is the prior probability of 

β  and )|( XTP  is the normalization constant. For binary classifications where tn = [0, 1], 

the likelihood can be calculated by: 

1

, where 

nn t
n

t
nXTP −

=

−=∏ 1))(1()(),|( ησησβ  [4-8]
N

n

nη  is the predicted output (of a GLM) for an input xn. 
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When there is no prior knowledge of the model parameters (e.g. β m’s in [9]), a 

non-informative prior can be used. A non-informative prior can be a uniform distribution or a 

very broad exponential-family distribution. However, choosing an informative prior may 

enable the learning of a sparse model, which contains only a few basis functions. An 

advantage of training a sparse model is reducing the chance of overfitting to data. To achieve 

sparsity, the RVM framework uses an automatic relevance determination (ARD) Gaussian 

prior over each weight (Tipping 1999): 

mmmm

, where the hyperparamet

),0|()|( 1−= GP αβαβ  [4-9]

er, mα , is the inverse variance of each mean-zero Gaussian 

distribution. This choice of prior implies that there is a strong preference that many mβ ’s are 

close to zero. After optimizing parameter β  and hyperparameter α , basis functions that are 

not informative for classification can be decided. If mα  is extremely large, the variance of the 

respective Gaussian distribution will be very small and the distribution, )|( mmP αβ , will peak 

at 0. A zero weight means that the associated basis function is non-informative and could be 

dropped. 

For optimizing GLMs, the RVM algorithm has been shown to achieve a better sparsity 

than do other relevant algorithms (Tipping 1999). Thus, by using the RVM algorithm, the 

Eponine trainer is capable of exploring a large parameter space in order to select a set of PCs 

which can optimize the EAS model for classification. (Down and Hubbard 2002). 

4.1.2.1.2. The Eponine Windowed Sequence model (EWS) 

Using the EAS model for functional sites requires a set of positive training sequences, 

where reference points must be labelled in these sequences. TSSs and TTSs are extremely 

fortunate cases because lots of experimental evidence is available to indicate relatively 

definable regions for these sites. However, for other cases where the existence of common 
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regulatory elements in a set of functionally related sequences is only suspected, it is difficult to 

adequately label training sequences with reference sites and thus the EAS strategy is not 

expected to work properly. An alternative is the Eponine windowed sequence (EWS) model, 

tions in individual sequences 

are varied or unknown. 

which is more suitable for modelling common motifs whose loca

The basic formulation of basis functions used in the EWS model is: 
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where the interval [u, v] is the u  position to the v  position that are accessible by the 

basis function 

+− vu

th th

φ , on sequence x; Pk is the discrete probability distribution of the distance 

between the k  PWM (Wth
k) and the first PWM (W1). This complex basis function is called the 

convolved sensors basis function (CSBF) in the EWS models. 

A CSBF may contain more than one position constrained PWM. The reason for 

normalizing CSBFs with 1/k is similar to the use of 
||

1
W

 for normalizing the PWMs in the 

EAS models (see subsection 4.1.2.1.1. ), because currently the number of PWMs in a CSBF is 

not fixed. Otherwise, without a normalization factor, a CSBF with more PWMs may be 

preferred by the Eponine trainer. The normalization factors, 1/k and 
||

1
W

, are modifications to 

the original Eponine implementation (Down 2002; Down and Hubbard 2004). 

In order to explain how the score calculation in [4-10] is performed, I use a CSBF 

consisting three position-constrained PWMs as an example (Figure 4-2). Given a sequence x, 
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the score on the first position is calculated by multiplying the three scores given by 

position-constrained PWMs 1 ~ 3. Although in the plot there is just a single fixed point for 

each position-constrained PWM (Figure 4-2, upper-left), it should be noted that the score for 

each position-constrained PWM is a summation over a position distribution P. The final score 

of a CSBF given sequence x is the optimal one in all the scores on the interval [u, v]. 

 

Learning the EWS models 

For training the EWS model, two types of parameters must be learned: 1) the probability 

distribution of positions and 2) PWMs. For distributions of positions, the trainin

Figure 4-2. How to calculate the score of a CSBF consisting of three PWMs and associated position 

g process is 

very

distributions 

 similar to that for training the EAS models (see subsection 4.1.2.1.1. ), except that the 

reference site is replaced with one of the position constrained PWMs in each CSBF. The 

Monte Carlo sampling process is used to optimize the choice of CSBFs. A new member PWM 

is randomly sampled from the pool of CSBFs, and then the so generated new CSBFs, will be 

re-weighted and pruned by using a RVM strategy. Through iterating the Monte Carlo 

sampling process and the pruning process using the RVM, an EWS model consisting of a set 
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of CSBFs could be learned. 

4.2. Modelling local RNA motifs 

In the previous parts of this thesis, ncRNA classifiers and the modelling of transcription 

regulatory elements of ncRNAs have been discussed. Due to the particular types of signals 

that are used in these m

le-stranded regions in transcripts 

can also be part of functional motifs (for review see Mattaj 1993). The local RNA motifs 

cal RNA 

structures,

 using these 

algorithm

ethods, there are certain limitations on the scopes of their applications. 

Firstly, existing comparative algorithms may overlook the RNA structural motifs spanning 

only a region in a transcript. Secondly, when modelling transcription regulatory elements, any 

RNA motifs implicated in the regulation of ncRNA expression are essentially ignored. 

The transcripts of ncRNA genes are not the only RNAs that may contain RNA structural 

motifs. Evidence suggests that local RNA structures may be implicated in the regulation of 

protein translation (for review see Kozak 2005). Besides, sing

discussed here are considered as a composite of primary-sequence patterns and lo

 where different parts of a composite motif may be separated by unstructured and/or 

functionally unimportant regions of variable length. 

One type of computational approach for identifying local RNA motifs is to search for the 

consensus RNA motifs in a group of functionally related transcripts. Existing algorithms for 

finding consensus RNA motifs in transcripts can be generalized into three major categories: 

variants of the Sankoff’s algorithm, variants of stochastic context-free grammars (SCFGs), 

and variants of genetic algorithms. In the following subsection (4.2.1. ), I briefly introduce 

existing algorithms for finding local RNA motifs, and the considerations in

s.  

As previously discussed (see subsection 4.1.2. ), computational modelling of functional 

sites requires algorithms that can combine the contribution from multiple TFs. A similar 
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approach is required to combine the contributions of local RNA motifs to generate a predictive 

model. In an attempt to address this, I developed a new RNA motif extension to the Eponine 

modelling system. The addition of this new extension allows the modelling of functional sites 

as a composite of primary-sequence and secondary-structure motifs from a set of unaligned 

functionally related sequences. This is described in subsection 4.2.2.  

4.2.1. Available methods for finding consensus RNA motifs in 

sequences 

4.2.1.1. The Sankoff’s algorithm and variants 

Given a set of sequences, Sankoff’s algorithm can generate optimal primary-sequence 

align

wo modifications have been adopted by 

diffe

6

ethods is to find the best pairwise 

align

ment and secondary-structure minimum free energy (MFE, see subsection 1.3.1) 

simultaneously (Sankoff 1985). However, the time complexity is O(N3K) and the space 

complexity is O(N2K), where N is the sequence length and K is the number of sequences. It is 

therefore not practical to apply Sankoff’s algorithm to finding consensus RNA motifs in a set 

of sequences. Variants of Sankoff’s algorithm have thus been created in order to find 

consensus RNA motifs in an acceptable time. T

rent implementations in order to accelerate the search process. Firstly, only local hairpins 

are considered by inhibiting branching configuration. A branching configuration is the 

partition of one sequence into two structural regions in the base-pair dependent energy rule 

(Nussinov and Jacobson 1980). Inhibiting branching configuration is equivalent to taking out 

)1,( −kiW  from [1.2] of subsection 1.3.1.1. , reducing the time complexity from O(N ) to 

O(N4) for pairwise alignments. 

The second modification for accelerating Sankoff’s algorithm is to use progressive 

alignment methods. The strategy of progressive alignment m

ments first, and then other alignments or single sequences can be consecutively added to 

  



4.2. Modelling local RNA motifs 149
   

existing alignments. In the primary form of progressive alignment methods, once a group of 

sequences have been aligned, their relations cannot be altered at later steps. The procedure of 

combining alignments terminates when all sequences have been aligned. The time complexity 

can be O(L4N4), where L is the average sequence length; N is the number of sequences 

(Gorodkin et al. 2001). 

Progressive alignment methods can efficiently generate acceptable multiple sequence 

alignments; however, these methods are greedy and alignments can be trapped in a local 

optimum. The reason for this is that the best pairwise alignments do not necessarily contain 

ences, and globally optimal motifs may be only sub-optimal 

when

4.2.1

optimal motifs shared by all sequ

 comparing two sequences. When finding primary-sequence motifs, additional 

approaches can be used to improve multiple sequence alignments. Related techniques include 

iterative refinement methods, simulated annealing, Gibbs sampling, etc (For reviews see 

Durbin et al. 1998). Nonetheless, no variants of Sankoff’s algorithm use these approaches and 

the primary form of progressive alignment methods is still the most common strategy used by 

variants of Sankoff’s algorithms. 

.2. The stochastic context-free grammars (SCFGs) 

Just as in the prediction of RNA secondary structures, statistical models, such as SCFGs 

(see subsection 1.3.3) and McCaskill’s sampling algorithm (McCaskill 1990), can replace 

MFE for finding the consensus RNA motifs among sequences. PMcomp/PMmulti (Hofacker 

et al. 2004) uses McCaskill’s sampling algorithm to do pairwise/multiple structural alignments. 

Its time complexity and space complexity is as high as O(N ) and O(N ) respectively for 

pairwise alignments. The computational complexity of PMcomp/PMmulti is not less than that 

of Sankoff’s algorithm. For multiple structural alignments, it also uses progressive alignment 

methods in order to restrict computational complexity. For pure SCFGs-based algorithms that 

can do ab initio structural alignments, the computational complexity is at least as high as for 

6 4
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the original Sankoff’s algorithm. In order to reduce complexity, variants of SCFGs (Knudsen 

and Hein 1999; Knudsen and Hein 2003) take alignments that are generated by popular 

multiple-sequence-alignment programs, such as ClustalW, and then refine alignments using 

SCFGs. One problem with this approach is that the quality of initial multiple sequence 

alignments nearly determines the performance of variants of SCFGs. If the initial alignments 

were trapped in a local optimum in terms of RNA motifs, it seems unlikely that further 

refinement at the structural level could give optimal answers (Knudsen and Hein 1999). In 

addition, perfectly identical RNA secondary structures, which may not be always practical for 

modelling RNA motifs in genomes, are sometimes assumed (Knudsen and Hein 2003). 

4.2.1.3. Genetic-algorithm based approaches 

Unlike the current implementations of variants of Sankoff’s algorithm or variants of 

SCFGs, GA-based approaches are less easily trapped in a local optimum. Although GA-based 

approaches are not guaranteed to find the optimal solution, they can be very good in predicting 

RNA structures (Chen et al. 2000; Taneda 2005). One problem with the current GA-based 

approaches is that primary-sequence motifs are not generally considered as part of RNA 

motifs; few GA-based approaches have been designed to find both types of motifs 

simultaneously. 

4.2.1.4. Uncategorized RNA-motif finding approaches 

There are other types of consensus RNA-motif finding algorithms that cannot easily be 

classified into the above categories. One type of algorithms is to take folded sequences and 

then align the predicted RNA structures. These programs do not predict RNA structures by 

themselves. Instead, the structure of each sequence may be taken from the prediction made by 

MFE-based RNA secondary-structure prediction algorithms, such as Mfold (Zuker 1989) and 

RNAfold of the Vienna package (Hofacker 2003). MARNA (Siebert and Backofen 2005), 

RNAForester (Hochsmann et al. 2004), and RNADistance (Hofacker 2003) are three examples. 
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For instance, from the predicted RNA structures for sequences, MARNA identifies seeds of 

both prim

ce alignment programs, such as 

ClustalW. These algorithms take compensatory mutations as the evidence for supporting the 

existence of a global RNA motif (Coventry et al. 2004; Washietl et al. 2005). One concern 

wi

under certain circumstances, be incapable of revealing the consensus RNA structures between 

sequences. Their performance should be sensitive to the sequence identities between given 

sequences, although the required identities were not clearly defined in their original papers. 

ocal RNA structural motifs in order to 

create an ncRNA modelling tool, which can be applied to finding RNA-motif associated 

functional sites in genomes. 

ary-sequence and RNA structural motifs and then feeds these motifs to T-Coffee 

(Notredame et al. 2000). One concern with such algorithms is that their performance can be 

influenced by the accuracy of the optimal global structures predicted. Besides, these 

algorithms may be vulnerable to the cases where the consensus RNA motifs between a set of 

sequences is quite different from the optimal structures for individual sequences. 

Another type of algorithms, such as RNAalifold (Hofacker et al. 2002) and MSARI 

(Coventry et al. 2004), are designed to find consensus RNA motifs in primary-sequence 

alignments that are generated by using popular multiple sequen

th these algorithms is that, they depend on the primary-sequence alignments, which may, 

 

Consequently, currently available algorithms are not practical enough for modelling 

regulatory RNA motifs in genomes, since there are so many considerations and restrictions in 

using them. Given a set of functionally related regions in transcripts, there should be an 

algorithm that can model both common primary-sequence and structural motifs efficiently. 

The resulting model should be potentially applicable to genome-wide regulatory RNA motif 

finding. Therefore, I extended Eponine to include l
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4.2.2. Extending Eponine to include RNA structural motifs 

Both the EA models of the Eponine package (see subsection 4.1.2.1. ) are 

useful for modelling primary-sequence m nd  to other reference 

sites. Similarly th nsion should model both RNA structural motifs 

and the relations of structural motifs to other sites. RNA motifs should be considered as yet 

another type of e in sequences, except that RNA motifs possess structural 

features, includin s. In brief, the Eponine RNA-motif extension aims at 

modelling the regulatory RNA motifs that are constituted by specific arrangement of both 

primary-sequence m ctural motifs, with appropriate scoring scheme

Primary-sequence motifs are modelled by PWM S models. Similarly, 

a for

m

Co

reasons, I decided that CMs may not be adequate for extending Eponine models. Firstly, 

tra

be

assessed and updated. The time complexity of evaluating each CM is at least O(L3), where L is 

the length of each candidate region for a particular hairpin (Durbin et al. 1998). Secondly, it is 

difficult to adapt the scores of CMs on sequences for EAS and EWS models. Distributions of 

the CM scores may vary greatly across different types of RNA motifs. There is no obvious 

solution for combining the CM scores and the PWM scores in order to model 

primary-sequence and structural motifs simultaneously. 

S and EWS 

otifs a the relations of motifs

e Eponine RNA-motif exte

motifs that ar

g stems and loop

otifs and stru . 

s in the EAS and EW

mal description of structural features must be chosen in order to extend both the Eponine 

odels to include structural motifs. One possibility for modelling individual hairpins is to use 

variance Models (CMs), which are SCFG-based RNA profiles. However, for several 

ining an Eponine RNA-motif model that consists of CMs can be very time-consuming, 

cause numerous CMs can be temporarily generated in the training process and each must be 

Another question for modelling RNA motifs is how to properly address variations of 

structural features. Although variations in hairpins are commonly believed to be disastrous for 
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some structural RNA genes, evidence indicates that a certain degree of variation exists in 

RNA structural motifs of similar functions. An example is the transcription termination signals 

of bacterial genes, where the sizes of stems can vary from 5 to 30 base pairs and the lengths of 

odel these variations explicitly. To explicitly 

model such variations, CMs need additional techniques, such as duration modelling. Duration 

modelling is a technique used for addressing the 

the Eponine trainer learns a model describing 

the structural features of the consensus RNA motifs of these sequences. In the following two 

subsections, I introduce the im

loops vary from 3 to 9 bases (de Hoon et al. 2005). 

Using existing probabilistic models cannot properly address dimensional variations of 

RNA structural motifs. For instance, standard CMs using general topologies can tolerate small 

size variations of hairpins, but they cannot m

length distribution explicitly (Durbin et al. 

1998). However, if such techniques are used, the computational complexity will be much 

higher. In addition, other structural features, such as folding energies of hairpins, may still 

need to be modelled by other yet unmentioned techniques. 

Therefore, in developing the RNA motif extension of Eponine, I decided to use a local 

RNA structural model which is not based the classic probabilistic model of RNA structures, 

such as CMs. The new model should be able to model a variety of features of local RNA 

hairpins. There are two steps in training the models: firstly, candidate hairpins for each 

sequence should be first located; and secondly, 

plementation of the Eponine RNA-motif extension, including 

the approaches to locate local hairpins (subsection 4.2.2.1. ) and the way structural features are 

modelled (subsection 4.2.2.2. ).  

4.2.2.1. Locating local hairpins 

The RNA motifs, which the Eponine RNA-motif extension is designed to model, are 

specific arrangements of a set of single-stranded and double-stranded regions in sequences. 

Consequently, predicting and evaluating RNA secondary structures of given sequences is 
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necessary. It is reasonable to assume that any position in each sequence can be the start point 

of a hairpin structure. Proposed 

at each position of each sequence. 

Predicting hairpins that may be functionally important is not straightforward. Firstly, 

optim

tif

nome-wide RNA motifs finding; all regions in each sequence can 

be consecutively evaluated by sliding the windows through all positions. Similar strategies 

have been used by other algorithm

etc. For finding consensus RNA 

motifs among sequences, only optimal folding for each sequence may not be sufficient. 

RNA motif models should evaluate all hairpins that may start 

al structures can be predicted only for regions of restricted length, but not for the 

full-length region of long sequences. The time complexity for predicting optimal structures by 

using either MFE or SCFGs is proportional to the cubic sequence length. Given any fragment 

of genomic sequence, one practical strategy for finding candidate functional mo s is to chop 

the original sequence into consecutively windowed regions and then predict hairpins for 

individual regions. Although this approach may sacrifice some hairpins that span a region 

larger than the window size, stable hairpins within windowed regions can still be predicted. It 

is also reasonable to infer that long-range interactions in large hairpins should depend on 

stable hairpins within windowed regions. By evaluating hairpins in windowed regions, trained 

models can be applied to ge

s for genome-wide ncRNA finding (Rivas and Eddy 2001; 

di Bernardo et al. 2003). The time complexity of folding windowed RNA secondary structures 

for multiple sequences is thus O(LNM3), where L is number of sequences; N is the average 

number of windows per sequence; M is the length of windowed regions. 

Secondly, predicting the sub-optimal hairpins for each sequence seems necessary. 

Evidence suggests that optimal structures do not necessarily represent the functional forms of 

various regulatory RNA motifs. In addition, RNA folding may alter in response to certain 

conditions, such as the binding of ligands, increases in di-ionic strength in solution, interaction 

with RNA binding proteins, post-transcription modifications, 
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Exhaustively enumerating all possible hairpins that may fold in each sequence is 

computationally expensive and impractical. There are at least two simpler approaches for 

predicting sub-optimal hairpins for each sequence. The first approach is to collect the optimal 

hairpin for each position of each windowed region (Figure 4-3, algorithm A). For each 

position i within a windowed region, the optimal hairpin, which is conditioned on that position 

i must pair with another position j, is saved, where i < j < window size. By scanning sliding 

windows for each sequence, optimal hairpins that start at individual positions in each sequence 

are co

3

2

st, the second approach for collecting sub-optimal hairpins for each sequence is 

m igure 4-3, 

algorithm

al hairpins are not necessarily the 

components of optimal global folding. The second approach can be much faster than the first 

llected. These site-specific optimal hairpins are not necessarily the components of 

globally optimal structures. This approach is similar to Zuker’s suboptimal folding algorithm, 

and to the inside and outside directions of the CYK algorithm (Durbin et al. 1998). The 

consideration of this approach is time complexity. In addition to the time complexity O(N ) for 

calculating the energy matrix in using Zuker’s MFE algorithm, additional time complexity, 

O(window size ), is required in order to trace respective optimal hairpins for all possible 

paired positions in each windowed region. 

By contra

much si pler. Only the optimal structure for each windowed region is predicted (F

 B). From the optimal structure, individual hairpins are extracted, and then saved 

with their respective start positions. By scanning sliding windows for each sequence, a series 

of optimal hairpins that start at distinct positions in each sequence are collected. Just like the 

situation of the first approach, these site-specific optim

one, because much less folding space is explored (Figure 4-3). 
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Figure 4-3. Two modes (algorithm A: the stringent mode and algorithm B: the fast mode) for finding local 
hairpins for windowed regions 

In order to compare the performance of different approaches for predicting RNA 

structural motifs, human tRNAs of exactly the same length, 72 bases, were used as the test 

data set. Windows of different sizes were also tried to investigate possible effects. The targets 

for this evaluation included D arm, anticodon arm, and T arm (Figure 1-3), of 168 human 

tRNA

 

 

s. The implementation for predicting RNA structures follows Zuker’s MFOLD 

algorithm and uses the same parameters (Zuker 1989). The result reveals that the first 

approach (Algorithm A, Table 4-1) is better than the second one (Algorithm B, Table 4-1); 

however, it also suggests that the second approach is still useful, if the results of the second 

approach are compared to the predictions made by RNAfold (default, RNAfold, Table 4-1) 

(Hofacker et al. 1994-2006) with default parameters. 
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Algorithm A  
 D arm Anticodon armT arm 
Window size: 50 112 150 132 
Window size: 100 112 150 131 
 
Algorithm B    
 D arm Anticodon armT arm 
Window size: 50 80 146 131 
Window size: 100 64 142 131 
 
RNAfold  
 D arm Anticodon armT arm 
default 35 28 58 

In addition to the successful identification of three distinct hairpins of tRNAs, both 

Algorithms A and B predict extra hairpins. The biological significance of these extra hairpins 

is not clear. It is possible that these second

assessed by using its default parameters. 

ary structures could never fold in real tRNAs 

because they are relatively unstable compared to the optimal structures of individual tRNAs. 

By using the Eponine learning scheme, this redundancy should not be a serious problem, 

beca

for distinguishing positive training sequences from negative training sequences. In the 

follo he fast mode, 

respectively, of the Eponine RNA-motif extension. 

Table 4-1. Performance of different algorithms for three hairpins of 168 human tRNAs 

Al
th th

Algorithm B: The fast mode. Individual hairpins are extracted from the optimal structure for each windowed 

Values in cells are the numbers of correct predictions (made by different algorithms) for respective arms. For 
D arm, the criteria of correct prediction is existence of a hairpin at 9th or 10th position, with stem size 3 ~ 4 

~ 10 bases. For anticodon arm, the correct prediction should be at 26th or 27th 
 5 base pairs and loop size 7 ~ 9 bases. For T arm, the correct prediction should be 

at 48th or 49th position with stem size 4 ~ 5 base pairs and loop size 7 ~ 9 bases. The performance of RNAfold 
is 

gorithm A: The stringent mode. Individual hairpins are extracted from all optimal structures conditioned on 
that the i  base should pair with the j  base in each windowed regions, where i < j < window size. 

region. 

base pairs and loop sizes 7 
position, with stem size 4 ~

use only stable hairpins that can be consistently found in individual sequences are useful 

wing text, algorithms A and B are referred to as the stringent model and t
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4.2.2.2. Modelling structural features with probability distributions 

Having evaluated the capability of the module responsible for locating local hairpins in 

sequences, consideration is now given to applying the Eponine training framework to model 

RNA motifs. One important issue is about designing a scoring scheme of the secondary 

structures in sequences. 

Before m

hairpins, th

(Figure 1-2, A), there is only one single-stranded region (hairpin loop), and one 

non-interrupted double-stranded region (stem). Numerical parameters, which can potentially 

be applied to distinguishing one 

free energy

include loop  If functions of RNA structural motifs depend on adequate 

com

primary-s motifs and features of RNA hairpins. Each feature of a hairpin seems 

analogous to

Each over all possible symbols in the used 

alphabet; sim

rho-independent transcription 

termination signals is 9 (de Hoon et al. 2005), the mode of the corresponding discrete 

probability distribution should be 9. The deviation of each distribution can represent the 

degree of variations, such as different stem sizes that are observed in rho-independent 

transcription termination signals. 

oving further to discuss the scoring of complex RNA motifs composed of many 

e scoring of a simple hairpin is first considered. In an oversimplified hairpin 

simple hairpin from the other, include dimensions of hairpins, 

 of the local region, free energy of the stem region, etc. Dimensions of each hairpin 

 size and stem size.

binations of individual features, then it seems reasonable to draw an analogy between 

equence 

 each column of a PWM. 

 column of PWMs is a discrete distribution 

ilarly, each feature of hairpins can be modelled with a probability distribution. 

The mean of each distribution is the most frequently found value for one particular feature. 

For example, because the most frequently found stem size for 
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The probability of emitting a sequence x that harbours an RNA structural motif (RM) is: 

R
R

r
rr ixFPixRM

1

1

))),(((),( ∏
=

4-12]=  [

, where R is the number of features that are used to model each hairpin; Pr is the proposed 

probability distribution of the rth feature of a particular RNA structural motif; the model of this 

structural motif is P = (P1, P2, P3…, PR); Fr is the function that returns the numerical value of 

the rth feature of a hairpin, which folds at the ith position of sequence x. R
1  is used to 

normalize the score of each hairpin. It seems this normalization is unnecessary; however, it is 

very important for modelling primary-sequence and structural motifs simultaneously. For each 

primary-sequence motif, the PWM score is the normalized joint probability of individual 

positions. For generating a scoring scheme that can sensibly combine scores from both PWM 

scores and RM scores, a similar normalization that is applied to PWM scores should also be 

applied to hairpin scores. 

Compatibility between RM scores and PWM scores is one of most critical issues in 

developing the Eponine RNA-motif extension. If the extension uses an inappropriate scoring 

sche

By using joint probability of structural features to score each hairpin, many structural 

featu

me that may make the order of magnitude of RM scores significantly different from that 

of PWM scores, the trained models may be biased to contain only RMs or only PWMs. Before 

the use of normalized RM scores, empirical rules have been used in order to make 

non-normalized RM scores compatible with PWM scores. For example, by comparing 

distributions of the scores of PWMs and non-normalized RMs, some multiplication factors 

were derived for transforming RM scores. However, the optimal value of the multiplication 

factor may change greatly under different conditions, especially when more than two different 

structural features are used to model RNA structural motifs. 

res can be modelled explicitly. By contrast, some features, such as stability of a particular 
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hairpin, cannot be modelled explicitly by using CMs. In addition, with normalized RM scores, 

distinct features can be treated as individual columns of a PWM. Theoretically, it is possible 

for the Eponine trainer to randomly choose distinct features to learn an optimal sensor for an 

RNA structural motif, just as the addition and subtraction of columns in learning the optimal 

PWM for modelling a primary-sequence motif (for details see subsection 4.1.2.1.1. ). 

Currently, the probability distribution for modelling each structural feature is a discrete 

Gaussian distribution; however, it should be noted that a discrete Gaussian distribution may 

not be the best one for describing all the distributions of stem size, loop size, local energy, etc. 

If there is a strong peak in the distribution of structural features, the width (deviation) of a 

Gaussian distribution should be assigned a small value, such that the there are light tails in this 

distr res is flat within a certain range, 

the width of the Gaussian distribu

local regions. 

4.2.2.3. Applying RM scores to the EAS and EWS models

ibution. However, in cases where the distribution of featu

tion must be a large value in order to simulate the flatness in 

 

With the RM scoring schem

extension is odel RNA motifs that are composed of primary-sequence patterns and 

secondary-structure motifs. In the following, the way the RM scoring scheme is adapted into 

the existing Eponine sequence m

The formulation of basis functions for the EAS model is:  

e created in the previous section, the Eponine RNA-motif 

 able to m

odels is introduced. 

4.2.2.3.1. Using RM scores in the EAS model – the Eponine Anchored RNA-motif model 
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For modelling structural motifs: 

)),(exp(),(' aixRMaixW +=+  [4-14]

and  

| 'W | = 1 [4-15]

 a particular position in a sequence. | | is assigned with 1, because the 

normalization has been performed in the calculating the value of each RM (see [4-12]). Apart 

model is referred to as the Eponine Anchored RNA-motif 

model (the EAR model) 

iner uses the RVM to re-estimate their respective weights, which correspond to 

weights of basis functions in GLMs. 

The operation “exp” is used for avoiding the exceptional situations where the returned 

value from a RM is 0. This situation may occur when there are no significant RNA motifs 

starting at 'W

from that, for modelling primary-sequence motifs, 'W  is simply replaced with W. Such an 

extension to the Eponine EAS 

The new Eponine trainer uses a Monte Carlo sampling process for learning an optimal set 

of positioned RMs: 1) the mean and width of distributions are assigned randomly; 2) new RMs 

are generated by sampling features from all hairpins predicted in all training sequences; 3) 

new RMs can also be generated by adjusting the mean or the width of randomly chosen 

distributions of structural features in existing RMs. After positioned RMs are updated, the 

Eponine tra

4.2.2.3.2. Using RM scores in the EWS model – the Eponine Windowed RNA-motif model 

The formulation of basis functions for the EWS model is:  
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For modelling structural motifs,  is substituted with RM. For modelling 'W
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primary-sequence motifs, 'W  is substituted with W. Such an extension to the Eponine EWS 

model is referred to as the Eponine Windowed RNA-motif model (the EWR model). 

The Eponine trainer uses a Monte Carlo sampling process, which is similar to the 

optimization of RMs for the EAS models, to optimize the parameters of RMs for the EWS 

models. 

 

Consequently, by using the scoring scheme designed to simultaneously model RNA 

structural and prim otifs, Eponine is now capable of modelling the consensus 

moti et of anchore hored sequences. 

4.3. Summary 

In this chapter, I introduced methods for motif finding and fu in 

preparation for modelling regulatory regions that may be implicated in the transcription of 

nc  complex 

genomes, there are three main requirements: 

z High selectivity in classification of functional sites in a large genome. 

loped a new RNA-motif extension to the Eponine sequence models. 

ary-sequence m

RNA fs in a s d or unanc

nctional site finding 

RNAs. For the purpose of finding functional sites, such as TSSs and TTSs, in

z Modelling an association of multiple motifs to describe functional sites. 

z Modelling the distribution of individual motifs with respect to a particular functional 

site location. 

At the time of preparation of this thesis, Eponine appears to be one system that takes all 

these issues into consideration. Therefore, in the next chapter, the Eponine sequence models 

are applied to the modelling of the TSSs of mammalian RNA polymerase III genes. 

In addition, I deve
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This

at: 

thod. 

z The models so trained may consist of primary-sequence patterns and 

secondary-structure motifs, which may give insights to the functional regions in a 

set of sequences. 

z It is a local RNA-motif modelling tool, which means that a global conservation of 

RNA secondary structures in the set of sequences under investigation is not 

required. 

 in genomes the 

tifs. 

 new extension is particularly designed for finding the consensus RNA motifs in a set of 

sequences. The unique features of this new tool include th

z It is an alignment-independent me

z It may still work if not all the sequences under investigation fold into the same RNA 

motifs. 

z The models so trained may potentially be useful for discriminating

functional sites associated with RNA mo

Chapter 6 is dedicated to the evaluation of the capability of the new RNA-motif 

modelling tool. The potential applications of the Eponine RNA-motif extension in 

genome-wide ncRNA finding will also be explored. 

 

 



 

Chapter 5.  Modelling the transcription regulatory

elements of mammalian RNA polymerase III genes 

Most existing ncRNA finding algorithms are designed to find structural ncRNAs. These 

algorithms can be regarded as being structure-dependent, because they use the potential of a 

particular genomic region to fold into high-order RNA structures as a signal of the existence 

of ncRNAs. However

 

, structure-dependent ncRNA finding algorithms will fail to predict 

non-

RNAs (Fichant and Burks 1991; Pavesi et al. 1994; Lowe and Eddy 

1997). However, the identification of transcription regulatory elements is currently used as a 

screening step, not as a determination step, in genome-wide ncRNA finding. If transcription 

regulatory element methods are used alone for genome-wide ncRNA finding, the 

false

structured ncRNAs, whose functions do not depend on folding into high-order structures. 

In addition, a non-transcribable genomic region may be misclassified as an ncRNA locus 

simply because a region of structure-formation potential is predicted by structure-dependent 

algorithms. Therefore, to address the problem of genome-wide ncRNA finding, it is useful to 

consider complementary structure-independent approaches, in addition to structure-dependent 

algorithms. In this chapter, the possibility of using a type of structure-independent 

genome-wide ncRNA finding approach is explored, based on the modelling of the 

transcription regulatory elements. 

Transcription regulatory elements have been used as a signal for finding particular classes 

of ncRNAs, such as t

-positive rate can be very high. For instance, eufindtRNA, which is an internal-promoter 

finding program, predicts over 1,300 candidate loci for tRNAs on human chromosome 1 (in 

the NCBI 35 assembly), but only less than ~10% (120) of them may be functional tRNAs 

based on evaluation using structure-folding potentials. 

It is essentially unknown why the methods designed to predict the transcription 

164 
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regulatory elements of ncRNAs appear to suffer from high false positive rates. Some possible 

le that existing promoter models were not built 

spec

z Learning a new model for selectively predicting tRNAs, as well as novel ncRNA 

genes transcribed by RNA polymerase III (pol III genes), in the mammalian 

genomes. 

z Finding evidence to support the functionality of the predicted non-tRNA pol III 

genes. 

 used to predict functional sites, such as transcription 

start sites (TSSs) and transcription termination sites (TTSs), in complex genomes. Given a set 

of training sequences, the Eponine trainer can  le nt signals, in 

the form of P ” (i.e. the distance distribution) of 

PWMs to a particular type of functional sites (for a detailed discussion see section 4.1, chapter 

4). Eponine is one of the few systems that have been applied to learning a model capable of 

selec

explanations are as follows. Firstly, it is possib

ifically for finding mammalian tRNA genes. The specificity of these tools may have been 

sacrificed, to a certain extent, in order to make them sensitive enough for finding tRNA genes 

in multiple organisms. Secondly, internal promoters may be just part of the signal required for 

determining the transcription specificity of tRNA genes in mammalian genomes. It is possible 

that other non-promoter transcription regulatory elements, such as enhancers/silencers and 

LCRs, may play a role in the specific initiation of tRNA transcription. Thirdly, some of the 

non-tRNA loci which appear to contain the internal-promoter-like patterns might correspond 

to novel non-tRNA ncRNA genes. 

Consequently, the specific aims of this chapter include: 

The Eponine system, described in chapter 4, appears to be suitable for these purposes. 

Eponine models have previously been

simultaneously arn the importa

WMs, and the “architectural relationship 

tively predicting the TSSs of protein coding genes in mammalian genomes (Down and 
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Hubbard 2002). Given Eponine’s success in modelling RNA polymerase II (pol II) TSSs, one 

interesting question is whether Eponine models are useful for predicting the ncRNAs 

transcribed by pol III in mammalian genomes. Therefore, in this chapter, the Eponine system 

ng the transcription regulatory regions of 

mam

d for creating a new model for discriminating pol III genes in the mammalian 

genomes. 

ammalian 

pol III type II genes 

ned for managing a heterogeneous set of functional sites that are each associated with 

distinct combinations of transcription factor binding sites (TFBSs). For that reason, a brief 

introduction to the types of promoter architectures of eukaryotic pol III genes is given in the 

following. 

g site of TFIIIC. A “C 

box” (sometimes also as the “C block”), which is the binding site of TFIIIA, is unique to type 

I genes. A “B box” (sometimes also as the “B block”), which is the binding site of TFIIIB, is 

was taken as a quick approach for modelli

malian pol III genes. 

In this chapter, the Eponine Anchored Sequence (EAS) model (see section 4.1, chapter 4) 

was trie

5.1. Modelling the transcription start sites of m

In this section, the Eponine Anchor Sequence (EAS) model was used to model the 

transcription start sites (TSSs) of pol III genes. A suitable training set should consist of the 

genes that contain promoters with similar architectures, because the EAS model is not 

desig

There are three distinct types of promoter architecture that have been found in eukaryotic 

pol III genes, where each type of promoter is associated with a unique combination of distinct 

TFBSs (see Table 5-1) (for review see Paule and White 2000). The promoters of type I and 

type II genes are intragenic. Type I (e.g. 5S rRNAs) and type II (e.g. tRNAs) genes share an 

“A box” (sometimes also known as the “A block”), which is the bindin
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unique to type II genes. Although “A boxes” for tRNAs and 5S rRNAs can be exchanged, the 

distances to their respective TSSs vary: it seems that the distance for tRNA genes is 10 bases, 

while the distance for 5S rRNAs is 50 bases. Although there are no TATA boxes for 

mammalian type I and II genes, the transcription factors (TFs) that interact with intragenic 

TFBSs seem to guide TATA-Box Binding Protein (TBP) to the upstream regions of type I and 

II genes and TBP can recruit pol III to the correct transcription start sites. On the other hand, 

promoters of type III genes are 5’ to the TSS in the upstream region. Unique TFBSs of type III 

genes are the TATA box, the proximal sequence element (PSE), and the distal sequence 

element (DSE). 

Type Genes Core TFs TFBFs 
Type I 5S rRNAs, etc. TFIIIA, TFIIIC, TFIIIB, TBP, polIII  A box and C box 

(Intragenic regions) 
Type II tRNAs, VARNAs, TFIIIC, TFIIIB, TBP, pol III A box and B box

7SL, etc. 
 

(Intragenic regions) 
Type III U6 snRNAs, 7SK, 

etc. 
TFIIIC1, TFIIIB, TBP, SNAPc, pol III PSE, TATA box, DSE 

(Upstream regions) 

Given these distinct architectures, when creating a model that may discriminate tRNA 

genes as well as other pol III genes, the sources of training sequences needs to be limited to 

those of pol III type II genes. In the set of pol III type II genes, VARNA1 genes can be another 

source of training sequences, in addition to tRNAs. To date, more than 40 VARNA1 genes 

have been found. Although there are other pol III type II genes such as 7SL, these genes are 

not as numerous as VARNA1 genes. VARNA1s are encoded in adenoviruses (Weinmann et al. 

1974) and they are transcribed by the mammalian RNA pol III machinery. Hence, VARNA1 

genes can be considered as mammalian pol III type II genes, because there is evidence that the 

promoters of VARNA1 genes are similar to these of mammalian tRNA genes (Cannon et al. 

1986; Wu et al. 1987). 

Table 5-1. The TFs and the TFBSs associated with three distinct types of eukaryotic pol III genes 
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Thus, in this section (5.1), VARNA1s and tRNAs were used as training sequences to 

generate an Eponine EAS model for pol III type II TSSs. 

s and methods 5.1.1. Material

5.1.1.1. Training and test data sets 

For the purpose of creating an EAS model, one set of positive sequences and one set of 

negative sequences are required. 

The human tRNA genes and adenovirus VARNA1 genes were used as the positive 

sequences. The set of mouse tRNA genes predicted by tRNAscanSE were not included 

because the set might contain a large number of pseudogenes (Mouse Genome Sequencing 

Consortium 2002). A set of negative sequences were recruited by taking random samples from 

the human genome. The preparation of these sequences for training and testing is described in 

the following subsections (subsections 5.1.1.1.1. , 5.1.1.1.2. , and 5.1.1.1.3. ). 

5.1.1.1.1. Preparation of human tRNA sequences 

Therefore, the recruited tRNA genes were partitioned into two groups, one for training 

and the other for testing. Due to the high redundancy in the set of human tRNA genes, proper 

partitioning became an issue. For instance, there can be as many as 20 nearly identical copies 

for a particular anti-codon type of tRNA genes. When using a random sampling process, it is 

unlikely that all the highly similar tRNA genes would be grouped into a single set. Here, I 

took advantage of the forty tRNA-gene subgroups already prepared in section 2.2, chapter 2, 

In order to avoid over fitting of a learned model to training data, validation is necessary. 

One type of validation is to evaluate the performance of trained models on test data that is 

independent of the training set. If the performance of a trained model is significantly worse 

than on the training data, this may indicate that this model has been over fitted to the training 

data. 
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where these subgroups were generated according to the anti-codon types and pairwise 

sequence identities of tRNA genes (for details see materials and methods of section 2.2, 

chapter 2). These forty subgroups were re-merged into two groups, group 1 and 2, based on 

the pairwise identities between the consensus sequences of the subgroups. The grouping 

process was carried out in a progressive manner, where the two groups with the highest 

consensus identity were merged first, and then the groups with the next highest identity were 

successively merged. 

Group 1 and group 2 consisted of 200 and 167 

inter-dependence between the training set and the test set was further assessed by comparing 

the inter-group and intra-group sequence identities. Each sequence was used to search for its 

most similar sequences in the same group and in the other group, respectively. The results 

reveal that there is a clear sequence-identity difference between these two groups, since all the 

intra-group best pairwise identities were greater than 83% and all the inter-group best pairwise 

identities were smaller than 78% (Figure 5-1). The results suggest that the tRNA genes in 

group 1 are distinct from the tRNA genes in group 2. The tRNA genes in group 1 (group-1 

tRNA genes) were used for training and the tRNA genes in group 2 (group-2 tRNA genes) 

were used for testing. 

human tRNA genes, respectively. The 
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ons containing VARNA1 genes were retrieved from GenBank by 

using the keyword “VARNA1”. VARNA1 sequences were extracted from these regions by 

using the locations indicated in the GenBank annotation. By using TGICL (TIGR 2002-2003), 

VARNA1 genes were clustered into 5 subgroups (for the detailed procedure for the sequence 

clustering, see section 2.2, chapter 2). The 5 subgroups were further merged into two 

independent groups. Group 1 and group 2 consisted of 9 and 32 VARNA1 genes, respectively. 

distributions between intra-group and inter-group sequences of 

 

When preparing the tRNA sequences for training and test, the first base of the 

cloverleaf-like structure of each recruited tRNA gene was used as the anchoring point. 100 

bases upstream and 150 bases downstream with respect to the anchoring point in each human 

tRNA gene were retrieved. The purpose of including the upstream and downstream flanking 

regions of the recruited tRNA genes in training sequences is to explore if there are motifs 

other than the A box and B box that can be used to model the TSSs of pol III type II genes.  

5.1.1.1.2. Preparation of VARNA1 sequences 

VARNA1 genes were used as another source of sequences for building a pol III type II 

TSS model. Forty-three regi

Figure 5-1. Separation of the sequence identity 
tRNA genes. 
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An assessment on the sequence independence, as mentioned in preparing the human tRNA 

genes for training, was also performed here. The results show that all the intra-group best 

pairwise identities were greater than 95%; all the inter-group best pairwise identities were 

smaller than 86%. The results suggest that the VARNA1 genes in group 1 are distinct from the 

VARNA1 genes in group 2. 

Group-1 VARNA1 genes together with group-1 tRNA genes were used for training 

(Table 5-2, Training). Group-2 VARNA1 genes and group-2 tRNA genes were used for 

tes tually correspond to 9 distinct 

ones, because many of them have exactly the same sequences. Likewise, the 9 genes used for 

training correspond to 7 distinct ones. 

ting (Table 5-2, Testing). The 32 genes used for testing ac

 Training Testing 
Human tRNA genes 200 (group 1) 167 (group 2) 
Adenovirus VARNA1 genes 9 (group 1) 32 (group 2) 
Subtotal 209 199 

When preparing the VARNA1 s

bl

equences for training and test, the first base of each gene 

was used as the anchoring point; 100 bases upstream and 150 bases downstream with respect 

to the anchoring point in each VARNA1 gene were retrieved. The purpose of including 

flanking sequences for training is the same as described to prepare tRNA sequences for 

training in the previous subsection (see subsection 5.1.1.1.1. ). 

5.1.1.1.3. Preparation of negative sequences 

Two sets of ten thousand random sequences were sampled from the human genome as 

negative training and test sequences, respectively. These random sequences were 250 bases in 

length. 

Ta e 5-2. The training and test data sets for creating an EAS model for pol III type II TSSs 

 

 



172 Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymerase III genes
 

5.1.1.2. Evaluation of the performance of EAS models against the test data set 

When evaluating the accuracy of trained EAS models against the test data set prepared as 

described in 5.1.1.1. , the 100th base of each test sequence was taken as the anchoring point. A 

true positive was determined, if any region within 5 bases away from the anchoring point of a 

 as a hit. A false positive was determined, if any region 

ithin 5 bases away from the anchoring point of a negative test sequence was predicted as a 

hit. 

5.1.1.3. Presentation of the performances of different models

positive test sequence was predicted

w

 

The performances of all trained models will be presented in the form of 

coverage-accuracy (C-A) plots. Coverage (sensitivity) is the proportion of true positive 

y predictive value) is the 

of predicted sequences. For example, with a 

specific threshold, if 150 out of 199 positive test sequences are successfully predicted and 5 

ences are incorrectly classified as the pol III type II genes, the 

d the coverage is 75.4% (150/199). 

The C-A plot can be considered as an alternative presentation of Receiver Operating 

Characteristic (ROC) curves, except that the size of negative test sequences is not considered 

in the former plot. Plotting these characteristics is especially useful when comparing the 

performances of two competing models when using an extremely large negative data set, such 

as random sequences from the human genome. Suppose that there are two models, where 

m test sequences, while model Y 

pred

sequences that can be correctl  predicted; accuracy (positive 

proportion of true positive sequences in the set 

out of 10000 negative test sequ

accuracy is 96.8% (150/(150+5)) an

odel X predicts 150 false positives from 10,000 negative 

icts 100 false positives. Both models can predict 150 true positives from 200 positive test 

sequences. The false positive rates are 1.5% and 1% respectively. In contrast, the accuracies 

for these models are 50% (150/(150+150)) and 60% (150/(150+100)), respectively, and thus 

the difference between their performances can be easily seen in a C-A plot. Consequently, for 
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evaluating the performances of methods that are designed for finding functional sites in large 

and complex genomes, C-A plots are more suitable than the classic ROC curves. 

5.1.1.4. Evaluation of the performance of EAS models against real genomic sequences 

The performance of EAS pol III type II TSS models was also evaluated against human 

ion was NCBI 35. 

Thes

When using EAS pol III type II TSS models to scan a chromosome, each position can be 

the start of a putative pol III type II gene. Consecutive hits would be clustered together if all of 

their scores were higher than a particular threshold. Such hits were regarded as a single record 

of prediction. 

chromosomes 11 and 13. The human genome assembly used in this evaluat

e sequences were retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/). 

5.1.1.5. Determining overlapped genomic hits predicted by using different methods 

An EAS pol III type II TTS model predicts the transcription start sites in genomes. By 

contrast, existing tRNA gene finding algorithms, such as eufindtRNA and tRNAscanSE, 

predict a range, namely the start and end positions for each putative tRNA gene. To determine 

the overlapped hits predicted using different methods, the following approach was used. If a 

tRNAscanSE (or euf m of an EAS pol 

ethods were 

cons

5.1.2. Results 

indtRNA) predicted hit was within 100 bases downstrea

III type II TTS model predicted site, the two hits predicted by different m

idered to represent the same gene. 

5.1.2.1. Naïve training by using default parameters 

Using the training sequences prepared as described in 5.1.1. , an Eponine Anchored 

Sequence (EAS) model for the mammalian pol III type II promoters was trained. Figure 5-2 is 

a schematic presentation of the constraint distributions relative to the anchoring point as 

 



174 Chapter 5. Modelling the transcription regulatory elements of mammalian RNA polymerase III genes
 

indic

expe

ated by the blue triangle. The anchoring point in this figure corresponds to the 

transcription start site of pol III type II genes. The relative width of the position distributions 

for each hairpin is shown by the width drawn. The sequence under each constraint is motif 

consensus sequence. The sequence logos of the motifs in this model were presented in Figure 

5-3. In the remaining part of this thesis, other Eponine models will be presented using this 

convention. 

There were several problems with this model. Firstly, the model was unable to 

distinguish bona fide tRNA genes from random sequences (data not shown). Secondly, both 

the patterns of A box and B box were much shorter than what have been suggested by 

rimental approaches (DeFranco et al. 1980; Galli et al. 1981). Further investigation 

revealed that between VARNA1s and the human tRNAs, the 8th to 22nd positions, which are 

supposedly the “A box”, are very different. 

 

 

 

 

Figure 5-2. An EAS model for pol III type II promoters (naïve training)  
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Weight: 6.52, position: 6, width: 7.36 Weight: 11.28, position: 53, width: 3.18 

  

W

 

 

eight: 6.91, position: 68, width: 5.99 

 

Figure 5-3. The sequence logos of position-constrained motif matrices of the naïve EAS model (Figure 5-2) 
for III type II promoters 

The value of “weight” for each motif corresponds to the weight associated with each basis function in the 
GLM of an EAS model. The value corr iscrete 
Ga sian distribution used to model t to th width” 
cor idth of the disc tion (for oth arameters see 
subsectio ) 

Figure 5-4. Comparison between the sequence logos of the 8th-22nd positions of VARNA1s (left) and tRNAs 
(ri

 pol 

of “position” for each motif 
he position of a motif relative 

esponds to the mean of the d
e reference site. The value of “us

responds to the w
.1.1

rete Gaussian distribu er details about these p
n 4.1.2

ght) 
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5.1.2.2. Optimizing the anchoring points 

From the results presented above, VARNA1s, which are viral genes rather than real 

mammalian genes, seem to be unsuitable for training pol III type II promoter models. 

However, on investigation it was found that the poor training was probably due to the 

incorrect assignment of the anchoring points for the recruited sequences. The first base of the 

cloverleaf-like structure of tRNAs, is in fact not the transcription start site. The real 

pstream of the first base of 

clov

 

transcription start sites of mammalian tRNAs are at the 5’ regions u

erleaf-like structures. After transcription, the 5’ dangling sequences of the raw tRNA 

transcripts must be cut off by RNase P (for review see Gopalan et al. 2002). On the other hand, 

transcription start sites of VARNA1s are generally used as the first bases for VARNA1 genes 

in the GenBank annotation. 

After adjusting the anchoring points of the recruited sequences, manual alignments reveal 

that respective “A boxes” of VARNA1s and the human tRNAs are quite similar (Figure 5-5). 

These results show that when inconsistent anchoring points are provided, the Eponine trainer 

for the EAS models can be incapable of optimizing the PWMs. 

Figure 5-5. Comparison between sequence logos of the presumable internal promoter regions of VARNA1s 
(left) and tRNAs (right) (after adjusting anchoring points of VARNA1s) 
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5.1.2.3. The EAS pol III type II promoter model 

Using the sequences with correct anchoring points, a new EAS pol III type II promoter 

model was trained. This model is called “model 1” in the remainder of section 5.1. This model 

appears to be quite complex (Figure 5-6). There are five distinct motifs at the 6 , 19 , 43 , 

52 , and 53  positions. Respective weights for these motifs in the generalized linear models 

are 4.76, 8.34, 4.37, 9.01, and 12.58. 

 

 

th th rd

nd rd

 

 

 

Figure 5-6. An EAS pol III type II promoter model (after adjusting the anchoring points of VARNA1s) (model 
1) 
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Weight: 12.57, position: 6, width: 1.45 

 

Weight: 4.37, position: 19, width: 1.87 Weight: 4.76, position: 43, width: 0.87 

 

Weig : 9. position: 52, width: 1.30 

 

Weight: 8.34, position: 53, width: 1.30 

Figure 5-7. The sequence logos of position-constrained motif matrices of model 1 (Figure 5-6)  

The annotation used in this figure follows the convention of Figure 5-3 

  

ht
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The motifs in the new model fit the current knowledge about transcription regulation of 

m nd 19th positions correspond to 

the 5’ and 3’ parts of the “A box” respectively. The motifs that start at 43rd, 52nd, and 53rd 

positions, which are similar to on  th itions 

represent discrete preferred sites of the “B box” in mammalia

the location of the “B box” is consistent wi

flexibility in distance between the “A box” and the “B box” in eukaryotic tRNA genes 

(Cam

5.1.2.3.1. The performance of model 1 – using the recruited test sequences 

The performance of model 1 was initially assessed against 199 positive test sequences 

re 00 negative test sequences 

prepared as described in 5.1.1.1.3. The results reveal that model 1 can achieve 100% accuracy 

at 70% coverage on this data set (Figure 5-8, model 1). The high accuracy suggests that model 

1 may have a low false positive rate. Besides, at this accuracy and coverage, ~50% distinct 

VARNA1 sequences in the test data set were successfully predicted. These results suggest that 

model 1 can potentially be applicable to genome-wide pol III type II gene finding. The 

performance of model 1 is further evaluated using real genomic sequences in the following 

subsection (5.1.2.3.2. ). 

ammalian pol III type II genes. The motifs that start at 6th a

e another, correspond to e “B box”. The three pos

n tRNA genes. The variation in 

th the previous reports which indicated the 

ier et al. 1990; Pavesi et al. 1994). 

cruited as described in 5.1.1.1.1. and 5.1.1.1.2. , and a set of 10,0
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5.1.2.3.2. The performance of model 1 – using human chromosomes 11 and 

Figure 5-8. C-A plots of model 1 and model 2 on the test data set 

13 

 assess the performance of model 1 in the context of real genomic sequences, 

this model was used to scan human chromosomes 11 and 13. In this subsection, a threshold 

chosen (Figure 5-8, m

In order to

corresponding to 100% accuracy and 66% coverage assessed against the test data set was 

odel 1). It was found that the sizes of clustered hits were generally 

within the range of 1 to 3 bases, and none of them were longer than 5 bases (for definition of 

clustered hits see subsection 5.1.1.4. ). This suggests that model 1 can detect pol III type II 

TSSs with good positional accuracy. 

To compare the predictions made by using different methods, overlapped hits were 

determined as described in subsection 5.1.1.5. The methods discussed here include 

tRNAscanSE, eufindtRNA, and model 1. The predictions made by eufindtRNA were also 

compared here because eufindtRNA is a pure pol III type II promoter finding algorithm, not 

considering the structure-formation potential in a candidate region. In brief, eufindtRNA can 

be considered as an algorithm based on pure motif models. By contrast, tRNAscanSE is a 

hierarchical system which filters initial predictions made by other algorithms (e.g. 
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eufindtRNA, etc.), using structure-formation potential (for more details about how 

tRNAscanSE works see subsection 2.1.1.1. , chapter 2). 

 

performance of this model arable to exist ). 

Notably, the TSSs predicted by using model 1 and eufindtRNA frequently overlapped with 

MIRs terspersed repeats (Smit and Riggs 1995), which are 

tRNA-derived short inters itive elements (SINEs). Th xpected lengths of MIRs 

are ~ stream and downstream of the first base of each prediction 

were checked, as many as ~66% and ~51% of the TSSs predicted by model 1 on human 

chromosomes 11 and 13 respectively overlapped with MIRs (Table 5-3, model 1). Besides, 

~57% and ~46% of the TSSs predicted by eufindtRNA on human chromosomes 11 and 13 

respectively overlapped with MIRs (Table 5-3,

100% (10/10) of the predictions made concurrently by both methods overlapped with MIRs 

igure 5-9 and Figure 5-

The results reveal that, for discriminating tRNA genes in the human genome, the

 is comp ing algorithms (Figure 5-9 and Figure 5-10

. MIRs are mammalian in

persed repet e e

260 bases. If the 300 bases up

 eufindtRNA). In addition, 90.1% (20/22) and 

(F 10). 

 

 

Figure 5-9. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 
the EAS pol III type II promoter model: model 1) for human chromosome 11 
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 Human chromosome 11 Human chromosome 13 
EufindtRNA 63.9% (106/166) 45.2% (33/73) 
Model 1 65.2% (116/178) 50.7% (36/71) 

MIRs – functional transcripts or pseudogenes? 

s surprising that more than half the pol III type II TSSs predicted b

3. Ratios of MIRs in different predictions for pol III type II genes on human chromosomes 11 and 13 

It wa y both model 1 

and 

chromoso

the sets of

In o

units, tw

eufindtRN

ictions made by different approaches (tRNAscanSE, eufindtRNA, 
 1) for human chromosome 13 

Table 5-

Figure 5-10. Intersection of the tRNA pred
the EAS pol III type II promoter model: model

eufindtRNA are MIRs. Since less than 6% and 3% of the sequences on human 

mes 11 and 13 respectively are MIRs, there is obviously an enrichment of MIRs in 

 predicted TSSs. 

rder to explore whether these predicted TSSs correspond to functional transcription 

o approaches were taken. Firstly, the MIRs predicted by both model 1 and 

A were used as negative sequences for training a revised EAS pol III type II TSS 
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model (see subsection 5.1.2.4. ). If MIRs are pseudogenes, their promoters should have been at 

least partially degraded and thus including MIRs in negative training sequences may improve 

the specificity of the Eponine pol III type II TSS model. Secondly, the conservation of these 

MIRs in human-mouse syntenic regions was examined (see subsection 5.1.2.5. ). If some 

MIRs are synteny-conserved, they are more likely to be functional elements. 

5.1.2.4. Model 2 – using MIRs as the negative training sequences 

T

his new model is referred to as model 2. There are six distinct motifs 

at position 5, 15, 18, 18, 21, and 53. While the final motif in model 2 corresponds to the “B 

 represented by five motifs and there are overlaps between motifs. 

The 

xt of 

real 

this subse ted 

against the test data set was chosen when using model 2. Given this threshold, the number of 

predictions made by model 2 on human chromosomes 11 and 13 was comparable to that 

previously made by using model 1 (see the denominators in Table 5-4). Besides, model 2 had 

good

subsectio

he MIRs that were detected by both model 1 and eufindtRNA on human chromosomes 

11 and 13 were added into the set of negative training sequences. The trained model (Figure 

5-11) appears to be more complex than the model trained using random human genomic 

sequences as the only source of negative training sequences (Figure 5-6) however maintains 

the motifs of model 1. T

box”, the “A box” is now

performance of model 2 is slightly better than model 1 (Figure 5-8), since its accuracy is 

higher than model 1 when coverage is 90% ~ 100%. 

5.1.2.4.1. The performance of model 2 – using human chromosomes 11 and 13 

In order to compare the performance of model 2 with that of model 1 in the conte

genomic sequences, model 2 was also used to scan human chromosomes 11 and 13. In 

ction, a threshold corresponding to 100% accuracy and 55% coverage evalua

 positional accuracy, similar to that of model 1 (for the positional accuracy of model 1 see 

n 5.1.2.3.2. ). 

Using model 2 to scan human chromosomes 11 and 13, far fewer of the TSSs predicted 
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overlapped with MIRs than when using the previous model (model 1) (Table 5-4). Only ~16% 

and 10% of predictions on human chromosomes 11 (Figure 5-13) and 13 (Figure 5-14) 

respectively overlapped with MIRs. Besides, no MIRs on human chromosomes 11 and 13 

were predicted concurrently by eufindtRNA and model 2. However, one problem with model 

2 is that, the prediction coverage of tRNA genes on human chromosome 13 is decreased from 

100% to 60% (Figure 5-14) and on human chromosome 11 is decreased from 68% to 63%. 

The result suggests that it is difficult to train a pol III type II TSS model that can completely 

avoid predicting TSSs which appear to be only associated with MIR elements. 

 

 

 

 

Figure 5-11. An EAS pol III type II model (using MIRs as negative training sequences) (model 2) 
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44 

Weigh

 

Weight: 18.85, position: 21, width: 2.66 

 

  

Weight: 4.18, position: 5, width: 2.66 Weight: 5.33, position: 15, width: 2.89 

 

 

Weight: 8.11, position: 18, width: 3.

 

t: 4.45, position: 18, width: 4.64 
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Weight: 11.80, position: 53, width: 4.50 

 

 Human chromosome 11 Human chromosome 13 
Model 1 65.2% (116/178) 50.7% (36/71) 
Model 2 16.0% (25/156) 10% (9/90) 

 

 

 

the EAS pol III type II promoter model: model 2) for human chromosome 11 

Figure 5-12. The sequence logos of position-constrained motif matrices of model 2 (Figure 5-11)  

The annotation used in this figure follows the convention of Figure 5-3. 

Figure 5-13. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 

Table 5-4. Ratios of MIRs in the predictions made models 1 and 2 for pol III type II genes on human 
chromosomes 11 and 13 
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One interpretation of these results is that modelling TSSs alone, i.e. without considering 

the structure-formation potentials, is insufficient to distinguish functional pol III type II genes 

from inactive MIRs. However another interpretation is that the predictions are correct and that 

this finding implies that some MIRs are still being actively transcribed. There is evidence to 

suggest that transcripts of repetitive elements may not be completely non-functional. For 

example, mouse B2 

Figure 5-14. Intersection of the tRNA predictions made by different approaches (tRNAscanSE, eufindtRNA, 

RNAs, which are the transcripts of a class of tRNA-derived SINEs, can 

specifically bind RNA polymerase  repress transcript synthesis in response to 

heat shock (Allen et al. 2004; Es e EA  also 

predict TSSs which are not associated with tRN  W

may be false positives, it is also po spond t l genes. 

Consequently, in the following subsection (5.1.2.5. ), I explore the functionality of the 

s as well 

as no

the EAS pol III type II promoter model: model 2) for human chromosome 13 

 II holozymes to

pinoza et al. 2004). Th S pol III type II models

As or MIRs.

ssible that some corre

hile some of these predictions 

o novel functiona

predicted TSSs that do not correspond to tRNA genes. These sites may include MIR

n-MIR elements. The synteny-conservation of these regions was taken as an indicator of 

their functionality. If regions near the predicted TSSs are conserved in the human-mouse 

syntenic regions, this supports the idea of them being functional transcripts. 
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5.1.2.5. Investigating the human-mouse synteny-conservation of the predicted pol III type II 
TSSs 

The human-mouse synteny-conservation of the pol III type II TSSs predicted by model 1 

and eufindtRNA were examined. The method used here followed the same procedures as 

f the predicted TSSs on 

huma

pe II TSSs not associate with tRNA genes. 

 Methods Non-tRNA predictions Non-tRNA predictions in 

syntenic regions in the 

mouse genome 

described in section 2.1, chapter 2. The results reveal that only a few o

n chromosomes 11 and 13 are synteny-conserved (Table 5-5). Most of those that were 

synteny-conserved were found in the intronic regions of protein-coding genes (Table 5-6). In 

general, the identities between the human and mouse synteny-conserved signals are lower than 

80%, except that on human chromosome 13 one pair of human-mouse synteny-conserved 

signals predicted by model 1 has 95% identity. Does this case represent a novel pol III type II 

gene? It is difficult to make this conclusion because the high identity may be evolutionarily 

constrained by the function of the protein-coding genes, but not necessarily by the function of 

any pol III type II genes. In addition, most of the alignments of the other synteny-conserved 

predictions in Table 5-6 contain many indels. 

Therefore, the conclusion is that synteny-conservation provides no clear evidence to 

support the functionality of the predicted pol III ty

Model 1 165 5 1

EufindtRNA 150 5 2

Human chromosome 11

Model 1 and eufindtRNA 22 0

Model 1 66 2

EufindtRNA 68 0

Human chromosome 13

Model 1 and eufindtRNA 10 0

Table 5-5. The synteny conservation of the non-tRNA pol III type II signals on human chromosomes 11 and 
13 
1: there are 3 MIRs in these 5 synteny-conserved signals. 2: all the 5 synteny-conserved signals are MIRs. 
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Overlapping with known genes  Synteny-conserved 
Methods 

signals Protein-coding regions Unknown 
Model 1 5 5 (introns) 0 Hum n chromosome 11 

tRNA 5 3 (introns 2 
a

Eufind ) 
Model 1 1  2 1 (exon) Human chromosome 13 
EufindtRNA 0 0 0 

5.1.3. iscu

I attempted to model pol III TSSs using the Eponine system because of its success when 

ap

Hu

ge a general pol III TSS model proved impractical 

due to the substantially different promoter subgroups, so it was decided to concentrate efforts 

on modelling the largest pol III type II subgroup. It was possible to train models that could be 

used to scan entire human chromosomes predicting the TSSs of majority of known pol III type 

II genes (tRNAs) while making relatively few other predictions. However the proportion of 

other predictions was much higher than when Eponine was used to predict TSSs for pol II 

genes (Down and Hubbard 2002). Numerous TSSs predicted by using the EAS pol III type II 

model overlapped with MIR repetitive elements. A similar phenomenon was also observed 

when

There are a number of possible ways of explaining these results including the following:  

ble . Distri ns of the synte -conserve l III type II p oter sig n intronic and exonic 
ons 

nkn ea  there are no g s annotat  the regions pre ted to be II type II genes 

 D ssion 

Ta 5-6 butio ny d po rom nals i
regi

“U own” m ns that ene ed in dic  pol I

plied to the similar problem of modelling RNA polymerase II (pol II) TSSs (Down and 

bbard 2002). However, the results from modelling of the TSSs of mammalian pol III type II 

nes have been less clear. Firstly, creating 

 the tRNA-gene finder, eufindtRNA, which primarily identifies the internal promoters, 

was used. The biological significance of these MIRs that may have good pol III type II 

promoters is unknown. No evidence can be found to support the suggestion that these MIRs 

might generate functional transcripts. 
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z If we assume the majority of predictions that do not match known pol III type II 

genes are false positives, maybe this indicates that the Eponine system is not 

sufficient to model pol III type II TSSs completely. One possibility might be that the 

o sed in t n as un a Ms 

enting internal pro ers of malian pol III type II genes with the 

aller t  used for pol training

Alternativel ight be that the interna moters are insufficient for regulating 

crip of mammalia pol III t II genes, ma

type II predictions non functional. Other non-promoter regulatory regions, such as 

silencers, ght be necessary for the 

transcription a malian pol III type II genes. The observation that 

xist in clusters might fit with some additional regulatory 

With respect to the first possibility, further exploration of promoter modelling using 

 be considered as future 

work

M nte Carlo method u he Eponi e trainer w able to le rn optimal PW

repres  the mot mam

datasets used here, which were sm han II . 

z y, it m l pro

the trans tion n ype king apparently valid pol III 

locus control regions (LCRs) and enhancers/ mi

 regulation of m m

tRNA genes tend to e

process. 

other motif-finding approaches to predict pol III type II TSSs could

. Since the original goal of the first part of this chapter was to test Eponine as a quick 

approach for modelling the TSSs of mammalian pol III type II genes, a comprehensive 

assessment of the performances of other approaches for modelling and discovering the TSSs is 

beyond the scope of this chapter. 

With respect to the second possibility I explored if it is possible to detect any evidence 

for non-promoter transcription regulatory regions associated with mammalian tRNA gene 

clusters. However, the initial attempt to look for signals in regions around these tRNA gene 

clusters (as described in section 2.2, chapter 2) was inconclusive (data not shown) and thus 

future work is needed. 
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5.2. Summary 

In this chapter, an attempt was made to model the transcription regulatory regions of 

mammalian tRNA genes. In the first part of this chapter, the transcription start site of 

mammalian pol III type II genes, including tRNA genes and VARNA1 genes, was modelled 

by using the Eponine Anchor Sequence (EAS) model. Important findings are as follows: 

z The performance of the EAS pol III type II TSS models is comparable to that of 

existing methods, such as eufindtRNA, for identifying the TSSs of tRNA genes. 

z Both the EAS pol III type II TSS models and 

One future work is to try other motif-finding approaches to predict pol III type II TSSs. 

Another future work is to search for non-promoter regions regulating transcription of pol III 

the internal-promoter based tRNA 

gene finder may predict many repetitive elements, MIRs. 

z By using MIRs as the negative training sequences, the performance of the new EAS 

pol III type II model cannot be further improved.  

type II genes that are clustered in mammalian genomes. 

 



 

C

 chapter 4 of this thesis, a new RNA-motif modelling tool based on the functional-site 

modelling tool -- Eponine was created. This new tool is particularly designed for modelling 

functional sites that may be associated with local RNA motifs. In addition, the models so 

train of di ing parative 

algorithm hat c e used for g, this tool is not dependent on 

sequence alignm . Thus thi ide an alternative approach for 

geno w  nc  finding. 

apter, I assessed the capability e Eponine RNA-m if exte n. Two types 

of capabilities are of interest: 

 the consensus RNA 

motifs, consisting of both primary-sequence and secondary-structure motifs, in a set 

of transcripts 

z The capability of the models so learned to discriminate a particular type of ncRNAs 

in genomes 

Three types of different ncRNAs with distinct structural features were used to perform 

the capability assessment. The modelling of the mammalian tRNAs is discussed in subsection 

in subsection 6.1.2. The modelling of the pseudoknots in the 3’ untranslated regions (UTR) of 

viral genes is discussed in subsection 6.1.3.  

hapter 6.  Finding RNA motifs in genomes 

In

ed should be capable scriminat ncRNAs in genomes. Unlike other com

s t an b  genome-wide ncRNA findin

ents s tool may potentially prov

me- ide RNA

In this ch of th ot nsio

z The capability of the Eponine RNA-motif extension to find

6.1.1. The modelling of the rho-independent transcription terminators of bacteria is discussed 

192 
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6.1. Using the Eponine RNA-motif extension 

6.1.1. Modelling RNA-motifs of mammalian tRNAs 

of mammalian tRNAs was chosen as the starting case for assessing the capability 

of

fe s are also widely used as a data set for 

s and ncRNA 

classifiers. 

he models trained using the fast mode do not perform significantly worse than the 

models trained using the stringent mode, maybe the fast mode could be sufficient for the 

purpose of discriminating ncRNAs in genomes. 

 

The set 

 the Eponine RNA-motif extension, since the consensus clover-leaf secondary structure 

atures of tRNAs have been studied for decades. tRNA

evaluating the performances of RNA secondary-structure prediction program

In this subsection, further assessment is made of the performances of the stringent and the 

fast modes of the Eponine RNA-motif extension (for definitions of the stringent mode and the 

fast mode, see Figure 4-3 and subsection 4.2.2.1.). It was shown that when identifying the 

canonical secondary structures of tRNAs, the stringent mode was better than the fast mode 

(see Table 4-1). An issue which was not investigated is the effect of using different 

structure-scanning modes on performance in the context of discriminating ncRNAs in 

genomes. If t

Consequently, there are two purposes of this subsection. Firstly, the performances of pure 

structural-motif models trained using the stringent mode and the fast mode, respectively, are 

compared. Secondly, I demonstrate that the Eponine RNA-motif extension can be used to train 

a discrimination model consisting of both primary-sequence patterns and RNA 

secondary-structure motifs. 
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6.1.1.1. Materials and methods 

6.1.1.1.1. Recruiting the genomic sequences for training and testing 

The sets of human tRNA genes created in section 5.1, chapter 5, were used for assessing 

the capabilities of the Eponine RNA-motif extension. The human tRNAs of group 1 were used 

for training models, and the tRNAs of group 2 were used for testing the performances of these 

trained models (Table 6-1, positive sequences). In order to realize the effect of using genomic 

sequences on modelling consensus RNA motifs, the flanking regions of human tRNA genes 

were included. The first base of the cloverleaf-like structure of each tRNA was used as the 

anchoring point; 100 bases upstream and 150 bases downstream with respect to the anchoring 

point in each human tRNA gene were retrieved. Two thousand random sequences and ten 

thousand random sequences were sampled from the human genome as negative training 

se

human genome assembly used for random sampling was NCBI 35. These sequences were 

hese random sequences were 

250 

quences and negative test sequences, respectively (Table 6-1, negative sequences). The 

retrieved from the Ensembl ftp site (ftp://ftp.ensembl.org/pub/). T

bases in length. 

 Positive sequences Negative sequences 

Training data 200 genomic sequences of 2000 random sequences from 

human tRNAs (group 1) the human genome 

Test data 167 genomic sequences of 10,000 random sequences from 

human tRNAs (group 2) the human genome 

6.1.1.1.2. Determination of the performance of EAR models against the test data set 

The training sequences described in the previous subsection were used to train the 

Epon A

When eva e of trained models, the 100th base of each test sequence was 

taken as the anchoring point. A true positive was determined if any region within 5 bases away 

Table 6-1. The training and test data sets for modelling the human tRNAs 

ine nchored RNA-motif models (the EAR models, see subsection 4.2.2.3.1, chapter 4). 

luating the performanc
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from the 

determine  a negative sequence 

was predicted as a hit. 

6.1.1.1.3. Setting the parameters of the Eponine RNA-motif extension 

The size of windowed regions for predicting the local RNA structural motifs was set to 

50 bases when running the Eponine RNA-motif extension. As a result, only the base pairs 

within each windowed region of 50 bases would be considered in the trained models. The 

windows were limited to 50 bases in this subsection for several reasons. Firstly, finding a 

consensus global RNA structure in a set of sequences is not the objective of designing the 

Eponine RNA-motif extension. It is instead designed to use consensus local RNA motifs for 

discriminating a particular type of ncRNAs in genomes. Secondly, one purpose of this 

subsection is to compare the performances of different RNA-motif scanning modes, i.e. the 

stringent mode and the fast mode (for the details of these two modes, see section 4.2, chapter 

4). If evidence strongly suggests that long-range canonical base pairs are essential for 

discr nating a pa cular type of n NAs, e size of w owed r n certainly be 

increa t the cost  computational time. 

6.1.1.2. Results

anchoring point of a positive sequence was predicted as a hit. A false positive was 

d if any region within 5 bases away from the anchoring point of

imi rti cR  th ind egions ca

sed a  of

 

6.1.1.2.1. Pure secondary-structure m dels o As

 using the ingent mode, a EAR l consisting of eight hairpins was trained 

(Table 6-2 and Figure 6-1 A). While it might seem that too many hairpins were found, the 

eight hairpins can be grouped into five distinctly positioned hairpins, namely, hairpins that 

start at 10th, 15th, 27th, 49th, and 59th positions respectively in tRNA molecules. Among these 

predicted consensus hairpins, hairpins that start at 10th, 27th, and 49th positions clearly 

correspond to three well-known hairpins, D arm, anticodon arm, and T arm, respectively in 

tRNAs. The hairpin that starts at 59th position can be viewed as a shifted T arm, because some 

o f human tRN  

By str n mode
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tR t base of 

clo hout introns. 

 

We

Width of stem 

n 

NA genes contain intronic sequences and the distance between the firs

verleaf-like structure and T arm is therefore longer than that in the tRNAs wit

ight Position distribution Loop size distribution Stem size size distributio

Width of position Width of loop size 

2.0 3 0.7 5 10 0.48 10 1.2 

2.13 10 0.41 8 0.5 4 0.2 

1.83 15 0.33 6 2.6 3 0.3 

2.51 26 1.07 9 0.0 4 0.2 

2.32 27 1.96 7 0.1 5 0.5 

2.08 49 1.00 7 1.0 3 0.6 

1.54 50 10.14 7 0.3 5 0.1 

1.68 59 0.00 5 1.0 4 0.2 

 

el, these ten hairpins can be categorized 

into four distinctly positioned hairpin groups, namely, hairpins that start at 3rd, 10th, 27th, and 

o three 

well

stringent mode for locating local hairpins 

A fast-mode EAR model consisting of ten hairpins was also trained (Table 6-3). Just as 

the hairpin groups in the stringent-mode EAR mod

Table 6-2. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the 

The titles, “Weight”, “Position”, and “Width”, are used as described in Figure 5-3. “Loop size” is the mean of 
the discrete Gaussian distribution used to model a loop region. “Stem size” is the mean of the discrete 
Gaussian distribution used to model a stem region. 

47th positions respectively in tRNA molecules. The latter three correspond t

-known hairpins, D arm, anticodon arm, and T arm respectively in tRNA molecules. 

It seems that the model trained using the stringent mode for locating local hairpins is 

slightly simpler than the model trained by using the fast mode, although most likely this is 

caused by chance. In the current implementation of the Eponine RNA-motif extension, similar 

sub-models of individual hairpins are not merged and in different training runs the numbers of 

hairpins found may differ. In brief, the difference between the numbers of hairpins found by 
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two models does not suggest that one of the models may be better than the other one. 

 

Weight Position 

Width of position 

distribution Loop size

Width of loop size 

distribution Stem size 

Width of stem 

size distribution

1.97 3 2.27 23 0.7 3 0.1 

2.69 9 1.05 4 0.2 5 0.3 

2.78 10 0.08 8 0.7 4 0.1 

2.34 10 0.23 10 0.8 3 0.5 

1.51 26 1.83 7 0.1 6 1.1 

1.35 26 2.06 9 0.0 4 0.1 

1.82 27 1.00 7 0.7 5 0.1 

2.89 47 1.52 7 0.0 5 0.2 

1.73 50 0.59 7 2.9 3 0.0 

1.38 58 1.00 7 1.2 5 0.0 

 

Evaluating the performances of the fast mode and the stringent mode 

By using the test data set recruited as described in 6.1.1.1.1. the performances of the 

models trained respectively using the fast mode and the stringent mode of the Eponine 

RNA-motif extension were evaluated. The results suggest that the performance of the fast 

mode can be as good as that of the stringent mode (Figure 6-4, fast mode and stringent mode). 

Although using the fast 

Table 6-3. The trained parameters of an anchored RNA structural model for mammalian tRNAs by using the 
fast mode for locating local hairpins 

mode risks missing important hairpins, it can still be used for finding 

cons

The titles used in this table follow the convention of Figure 5-3 and Table 6-2. 

ensus RNA structural motifs in sequences when sufficient positive sequences are used for 

training. Since by using the fast mode the CPU time is about 40%-60% of the time taken by 

using the stringent mode, all models in the following were trained by using the fast mode, 

unless otherwise indicated. 
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(A) The stringent mode (B)The fast mode 

 

6.1.1.2.2. A mixed primary-sequence and RNA secondary-structure model 

Here, the capability of the Eponine RNA-motif extension to model both 

e human 

tRNA

are RNA structural motifs. The constraints drawn with two numbers under them correspond to RNA hairpins. 

stem size and the loop size that are separated by a colon. For example, in the right most hairpin in (A), 4:5 
ength of the loop is 5 bases. 

Figure 6-1. Two Eponine anchored RNA structural models for mammalian tRNAs 

The diagrams were prepared following the convention used in Figure 5-2, except that the motifs shown here 

These numbers are used to describe the dimension of a consensus hairpin. Each dimension consists of the 

means that the size of this stem is 4 base pairs and the l

primary-sequence and RNA secondary-structure motifs was evaluated by using th

s recruited as described in 6.1.1.1.1. The results reveal that the EAR model is capable of 

finding both primary-sequence and RNA secondary-structure motifs of tRNAs (Figure 6-2). 

Such models that contain both primary-sequence and RNA structural motifs are referred to as 

mixed models in this thesis. 
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Width of position Width of stem size 

Weight Position distribution Loop size Width of loop size distribution Stem size distribution 

5.06 8 0.45 Not available (a PWM of 7 columns) 

1.97 11 1.00 8 0.15 4       0.01 

1.76 15 0.45 Not available (a PWM of 2 columns) 

4.15 16 0.45 Not available (a PWM of 5 columns) 

1.48 28 1.00 7             0.46 6 2.39 

2.19 50 1.00 7 0.39 5 0.52 

2.40 61 16.11 7 0.04 5 0.05 

31.88 71 36.50 Not available (a PWM of 15 columns) 

Figure 6-2. An Eponine anchored and mixed (primary-sequence and RNA structural) model 

This figure is drawn following the convention used in Figure 6-1.  

Table 6-4. The trained parameters of the EAS mixed model presented in Figure 6-2 

 

The titles used in this table follow the convention of Figure 5-3 and Table 6-2 
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Position: 8 Position: 15 

  

 

Position  16 :

  

 

Position: 71 

Evaluating the performances of the mixed model of human tRNAs 

Figure 6-3. The sequence logos of position-constrained motif matrices in the Eponine EAS mixed model 
presented in Figure 6-2 and Table 6-4. 

“Position” corresponds to the “Position” column in Table 6-4. 

The capability of the trained mixed model to differentiate human tRNAs from random 

genomic sequences was also evaluated using the test data set recruited as described in 

6.1.1.1.1. The results reveal that a mixed model (“mixed model, fast mode”, Figure 6-4) can 

perform better than models consisting of only RNA structural motifs (“structure-only” models, 
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Figure 6-4). For discriminating tRNAs in the human genome, the false positive rate of the 

mixed model should be much lower than that of the models consisting of only RNA 

secondary-structure motifs (comparing the “structural-only” models with the mixed model, 

Figure 6-4). 

parison, a pure primary-sequence model, which did not consist of RNA motifs, 

was trained taking the training data set as described in 6.1.1.1.1. The performance of this pure 

primary-sequence model was also evaluated using the test data set recruited as described in 

6.1.1.1.1. However, in this evaluation, the accuracy of the mixed model for human tRNAs 

(“mixed model, fast mode”, Figure 6-4) was not as good as this pure primary-sequence model 

(“pure primary-sequence model”, Figure 6-4) when the coverage (sensitivity) was set to be 

higher than 90%. There were 10 false positives predicted by the mixed model, while only 2 

false positives were found by using the pure primary-sequence model. 

For com

 

Figure 6-4. Comparison of performances among models trained by different modes for classifying human 
tRNA genes from random genomic sequences 
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6.1.1.3. The false positives predicted by using the mixed model 

To explore why a mixed model discovered more false positives, the features of the 10 

high-scoring false positives were examined in detail. The conservation of the internal 

promoter in each sequence, and the conservation of local RNA motifs corresponding to the D 

arm, anticodon arm, and T arm in the canonical tRNA clover-leaf like structures were 

evaluated. 

The results reveal that most of the false positives predicted by the mixed model of human 

tRNAs contain only a subset of the motifs in the canonical tRNA structures (Table 6-5). In 

summary these false positives can be characterised as: 

z A sequence with a strong internal promoter (as determined by eufindtRNA) can be 

identified as a tRNA. 

z A sequence with a partial set of weak motifs, either in a combination of a weak 

internal promoter and a local RNA structural motif, or in a combination of two or 

more local RNA structural motifs, can be identified as a tRNA. 

z Most of the false positives overlap with repetitive elements. 
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Serial ID Internal promoters1 D arm anticodon arm T arm Repeat 

1 + - - - SINE/MIR 

2 - - - +2 LINE/L1 

3 + - + - LINE/L1 

4 - - + (ss) (offset) + SINE/MIR 

5 + - - - LTR/MaLR SINE/Alu 

6 + - + (ss) + (offset) SINE/Alu 

7 - - + (ss) (offset) + (offset) LINE/L1 

8 - - + (ss) + (ls) LTR/MaLR SINE/Alu 

9 + - - + (offset) LINE/L1 

10 + - - + (not available) 

 

nSE) for genome-wide tRNA finding. 

1

: there is an additional hairpin at the 3’ side of the T arm. This additional hairpin also contributes to the final 

(ss): a stem which is smaller than the corresponding canonical local RNA motif. 

(of

(not available): not overlapping with repetitive elements 

Table 6-5. The high-scoring false positives predicted by using the mixed model of human tRNAs 

: the internal promoters were determined by using eufindtRNA with a relaxed parameter set 
2

score.  

(ls): a stem which is longer than the corresponding canonical local RNA motif. 

Due to the scoring scheme used in Eponine, these findings are not really surprising. 

Given a GLM-based RNA-motif model such as the mixed model of human tRNAs, the final 

score of a genomic locus is actually a transformed weighted sum of PWM scores and RM 

scores. Thus, a mixed model consisting of many local motifs may be apt to identify truncated 

ncRNAs and other ncRNA-derived sequences. In fact, such behaviour is not unique to the 

Eponine RNA-motif extension. A similar observation has been made in the development of 

tRNAscanSE (Lowe and Eddy 1997), where the tRNA covariance model was shown to 

discover some truncated tRNAs and tRNA-derived SINEs which could not be identified by 

using promoter-based methods (such as eufindtRNA), and hierarchical and rule-based systems 

(e.g. tRNAsca

fset): a hairpin is a few bases away from the best positions in the canonical tRNA structure.  
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6.1.2. Modelling rho-independent transcription termination 

RNA-motif extension. Since many existing ncRNA-finding algorithms have also been shown 

 be capable of detecting the cloverleaf-like structures, the result of the modelling of human 

r to other 

t is subsection, a more difficult case (for reasons see the discussion in 

ara the rho-independent tra cription te ators, was used to evaluate 

ary-sequence 

A structur s, i t ent for regulating the transcription 

termination of bacterial genes (Uptain and Chamberlin 1997). Unlike modelling tRNA genes, 

ependent t cription ter ators is pic that has received less investigation. 

Apparently, only ad hoc algorithms can find rho-independent transcription terminators in the 

ba benton Carafa et al. 1990; Ermolaeva et al. 2000; Lesnik et al. 2001; 

de

be

th

ncRNA genes (such as tRNA genes). It is difficult to adequately align these regions. The 

id  around transcription termination sites are 

ge nments have identities greater than 60% (data 

no

be

reveal the structural relations am

The modelling of human tRNA genes partially demonstrates the capability of the Eponine 

to

tRNAs only reveals that the Eponine RNA-motif extension has a function simila

tools. Consequen ly, in th

the next two p graphs), ns rmin

the capability of the Eponine RNA-motif extension. 

The rho-independent transcription terminator, which consists of both prim

and RN al motif s an importan  functional elem

finding rho-ind rans min a to

cterial genomes (d'Au

 Hoon et al. 2005). Up to this point, no general-purpose RNA-motif finding algorithms have 

en used to find the consensus RNA motifs in these regions of transcription termination. 

One reason that makes rho-independent termination signals an unpopular data set is that 

e boundaries of rho-independent termination signals are not so well defined as known 

entities of pairwise alignments of the regions

nerally low. Fewer than 0.5% of pairwise alig

t shown), if the alignments are generated by randomly choosing raw sequences that have 

en used by de Hoon et al. (de Hoon et al. 2005). Whether these low-identity alignments can 

ong sequences cannot be confidently determined. However, 
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as has been discussed previously (see section 2.1, chapter 2, and section 4.2, chapter 4), most 

existing algorithms would not be expected to have good performance in finding structural 

signals in such data set. 

Some ad hoc algorithms were claimed to have high specificity and high sensitivity in 

detecting rho-independent transcription terminators. However, there must be some doubt 

about the generality of such results given the training and optimisation processes used. Firstly, 

some models were actually tested with exactly the same sequences that have been used for 

training respective models (d'Aubenton Carafa et al. 1990; Lesnik et al. 2001; de Hoon et al. 

2005). These models may be over fitted and unable to generalise to new data, something that 

has not been tested for because of the use of a non-independent test data set. Secondly, some 

algorithms discard all predictions in intragenic regions (Ermolaeva et al. 2000), even though 

the scores of these predictions exceed the computationally defined threshold. The eradication 

of this major source of false positives makes it impossible to properly estimate the accuracy 

and specificity of the predictions made by these algorithms. 

6.1.2.1. Materials and methods 

6.1.2.1.1. The data sets for training and testing the Eponine anchored RNA-motif model 

In order to train and test the EAR models for rho-independent transcription terminators, 

423 transcription terminators that have been used by de Hoon et al. (de Hoon et al. 2005) were 

divided into two data sets for training and testing respectively. Each sequence consists of 20 

bases upstream and 50 bases downstream of the respective transcription termination site 

annotated by Hoon et al. (de Hoon et al. 2005). 

Two sets of 2,000 negative sequences for training and testing models, respectively, were 

randomly taken from the B. subtilis genome (GenBank accession number: AL009126). These 

negative sequences were 70 bases in length. 
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6.1.2.1.2. Determination of the performance of EAR models against the test data set 

When evaluating the performance of EAR models for rho-independent transcription 

terminators against the test data set, the 20th base of each sequence was taken as the anchoring 

point. A true positive was determined if any region within 5 bases away from the anchoring 

point of a positive sequence was predicted as a hit. A false positive was determined if any 

region within 5 bases away from the anchoring point of a negative sequence was predicted as a 

hit. 

6.1.2.1.3. Scanning for rho-independent transcription terminators in genomes 

tative terminators of genes

When an EAR model for rho-independent transcription terminators was used to scan 

genomes, both strands of genomes were scanned. Each position in a genome can be the first 

base of a rho-independent transcription terminator. Consecutive hits would be clustered 

together if all of their scores were higher than a particular threshold and considered as a single 

prediction. 

Determination of pu  

For each gene, if a predicted rho-independent TTS on the same strand is within the range 

starting from 50 bases upstream of the stop codon, continuing till the 500 bases downstream of 

the stop codon, this TTS is considered as a putative terminator, unless if this TTS is within the 

coding region of the next gene. If there were more than one candidate hit for a particular gene, 

the one that was closer to the stop codon was used. 

Determination of intragenic terminators 

If an intragenic predicted hit is more than 50 bases from the stop codon of a gene, it is 

regarded as a true intragenic hit. 

6.1.2.1.4. The data set for training and testing the Eponine Windowed RNA-motif model 

o assess the capability of the Eponine Windowed RNA-motif model (the EWR model, T
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see subsection 4.2.2.3.2, chapter 4) to find consensus RNA motifs in a set of sequences where 

no reference points are known, a set of 423 B. subtilis genomic sequences that contain 

rho-independent transcription terminators was prepared. In order to make the assessment more 

challenging, the positions of rho-independent transcription terminators in respective sequences 

were randomly distributed between 1 and 100 (Figure 6-5). These sequences were randomly 

divided into a training set (212 sequences) and a test set (211 sequences). The negative 

sequences recruited for training and testing models were the same as described in subsection 

6.1.2.1.1.  

hen evaluating the performance of EWR models for rho-independent transcription 

term  a true positive was determined if any position in a positive sequence was 

predicted as a hit. A false positive was determined if any position in a negative test sequence 

was predicted as a hit. 

W

inators,

 

 

 

Figure 6-5. Preparation of a set of unanchored sequences that contain rho-independent transcription 
terminators at random positions 
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6.1.2.2. Results 

6.1.2.2.1. The Eponine anchored RNA-motif model (EAR model) 

The EAR mixed model for the rho-independent transcription terminators of B. subtilis 

consisted of five motifs (see Table 6-6 and Figure 6-6). This model is basically consistent with 

the current knowledge of the composition of the rho-independent terminators (For details see 

Lesnik et al. 2001), where the first two motifs (weights 0.85 and 5.30, Table 6-6) correspond 

to an A-region (adenosine-rich region); and a stable hairpin (weight 6.03, Table 6-6) is 

followed by a T-region (weight 13.62, Table 6-6) (thymidine-rich region in genome, 

corresponding to uridine-rich region in transcripts). An additional motif is at positive 5 

(weight 4.17, Table 6-6). However, its importance is not clearly understood. Since it overlaps 

with the hairpin motif it may be capturing sequences preference within the hairpin of 

ndent transcription terminators. The Eponine sub-model for the hairpin of 

cription term  

e is 9 b irs in lengt  length. The standard deviation for 

16.5 bases, which is obviously larger than the mean loop size 

(12, Table 6-6). The heavy tail in the distribution of the loop size is consistent with the 

previous models of the rho-independent terminators of either E. coli or B. subtilis (d'Aubenton 

 et rmola 200 t al. 2001; de Hoon et al. 2005). 

 

 

 

 

rho-indepe

rho-independent trans inators is at position 5 (weight 6.03, Table 6-6); the stem

siz ase pa h and the loop size is 12 bases in

the distribution of loop size is 

Carafa  al. 1990; E eva et al. 0; Lesnik e

 

 

  



6.1. Using the Eponine RNA-motif extension 209
   

 

Weight Position 

Width of position 

distribution 

Loop 

size 

Width of loop size 

distribution 

Stem 

size 

Width of stem size 

distribution 

0.85 -3 0.60 Not available (a PWM of 3 columns) 

5.30 1 0.63 Not available (a PWM of 5 columns) 

6.03 5 4.46 12 16.5 9 2.13 

4.17 5 1.38 Not available (a PWM of 4 columns) 

13.62 29 17.96 Not available (a PWM of 7 columns) 

 

 

 

Table 6-6. The trained parameters of an EAR model for bacillus rho-independent transcription terminators 

The titles used in this table follow the convention of Table 6-4. 

Figure 6-6. An EAR model for rho-independent transcription terminators 

This figure is drawn following the convention used in Figure 6-1. 
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Position: -3 Position: 1 

  

  

Position: 5 Position: 29 

 

For comparison, a pure primary-sequence model, which did not consist of RNA motifs, 

he training data set as described in 6.1.2.1.1. A structure-only model, 

whic

was trained taking t

h did not consist of primary-sequence motifs, was also trained using the same data set. 

C-A plots of different models for the rho-independent transcription terminators were 

calculated using the test data set of 211 positive sequences and 2000 negative sequences. The 

result reveals that the performance of the mixed model (see Table 6-6 and Figure 6-6) is better 

than that of the pure primary-sequence and structure-only models (Figure 6-8). 

Discriminating the rho-independent transcription terminators in real bacterial genomes 

In order to further assess the performances of the EAR mixed model and other algorithms, 

the sensitivities and specificities were estimated by using the result of scanning the full-length 

Figure 6-7. The sequence logos of the position-constrained motif matrices presented in Figure 6-6 and T ble 
6-6 

 “Position” corresponds to “Position” column in Table 6-6. 

a
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genomic sequences of B. subtilis and E. coli K-12 (GenBank accession number: U00096) 

(Table 6-7). The predictions that overlap with experimentally verified rho-independent 

transcription terminators were counted as true positives. In order to avoid bias in the 

evaluation, only known terminators that were not used for training the respective 

algorithms/models were used to estimate sensitivities. Predictions in intragenic regions were 

taken as false positives for estimating false positive rates. Although some of the 

rho-independent transcription terminators may possibly reside in intragenic regions, the 

location distribution of true terminators should be greatly biased towards intergenic regions. 

While it is likely that some of the predictions that fall in intergenic regions are false positives, 

the ratio of intragenic predictions over all predictions provide at least an estimate of the false 

positive rate. 

 

 

Figure 6-8. Comparison between the C-A plots of the mixed, the structure-only, and the 
primary-sequence-only models of rho-independent transcription terminators 
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Reference The name of the software Independent test data Sensitivity 

(A) Performance for finding rho-independent transcription terminators in B. subtilis 
False positive rate Intragenic hits 

(Ermolaeva et al. 2000) TransTerm Yes1 86.2% (399/463) NA2 NA2

(Lesnik et al. 2001) RNAMotif No NA NA NA

(de Hoon et al. 2005) NA No NA3 NA3 NA

This thesis, 2006 EAR mixed model Yes 85.3% (180/211) 14% (766/5477) 766

 
(B) Performance for finding rho-independent transcription terminators in E. coli 
Reference Sensitivity False positive rate Intragenic hits 

(Ermolaeva et al. 2000) 89%-98% NA2 NA2

(Lesnik et al. 2001) 80%-100% 39% (2586/6635) 2586

(de Hoon et al. 2005) 67% NA NA

This thesis, 2006 81% (119/147) 16.6% (431/2604) 431

The results reveal that 

: not available from respective papers and cannot be estimated by using results retrieved from related 
websites. 

the EAR mixed model is competitive for predicting 

rho-independent transcription terminators in the bacterial genomes. Although the parameters 

of the EAR mixed model were trained using sequences from B. subtilis, this model can find 

rho-independent transcription terminators in E. coli with a reasonable sensitivity (81%, this 

thesis, Table 6-7 B) and a similar estimated false positive rate (16.6%). 

rmance of different algorithms in finding rho-independent transcription 
ato

(A) The performances of different algorithms for finding rho-independent transcription terminators in B. 

taken as the numbers of false positives. The false positive rates are estimated by dividing the numbers of false 

retrieved from http://www.cbcb.umd.edu/software/TransTerm/. The statistics for RNAMotif is retrieved 

using positive sequences that are not used for training.  

le, see text for details. 

: not available because de Hoon et al.’s algorithm was trained by using rho-independent transcription 
terminators of B. subtilis as the positive training sequences.  

NA

Table 6-7. Comparison of the perfo
termin rs in B. subtilis 

subtilis. (B) The performances of different algorithms for finding rho-independent transcription terminators in 
E. coli. Numbers in parentheses are the values that are used to estimate the sensitivities and the false positive 
rates for different algorithms. The sensitivities are the ratios of experimentally verified terminators that can be 
successfully predicted by different algorithms. The numbers of predictions that are in intragenic regions are 

positives with the numbers of all predictions. The statistics for TransTerm is estimated by using the results 

directly from its original paper (Lesnik et al. 2001). The statistics for de Hoon et al.’s algorithm is taken 
directly from its original paper (de Hoon et al. 2005). 
1: no negative sequences are used for estimating accuracy and specificity; only sensitivity is estimated by 

2: not available because intragenic hits are considered as background and invalidated in final output. For 
realizing the meaning of this tab
3
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In order to compare the EAR mixed model with other algorithms, each case is discussed 

separately because there are specific considerations associated with each algorithm. Firstly, 

the sensitivity, 81% (this thesis, Table 6-7 B), is obviously higher than the sensitivity (67%, de 

Hoon et al., Table 6-7 B) for finding rho-independent transcription terminators of E. coli by 

using de Hoon et al.’s algorithm. The latter was also trained by using sequences from B. 

subtilis

random intragenic regions in B. subtilis. In addition, the 567 negative sequences, which have 

been used for training the algorithm, are re-used for testing (de Hoon et al. 2005). The real 

ty an e positiv   al.’s efore b

 unknown. 

Secondly, although the sensitivity (81%, this thesis, Table 6-7 B) of the EAR mixed 

m inators of E. coli seems to be not as 

good as the sensitivity (80% ~ 100%, Table 6-7 B) of RNAMotif, the false positive rate of the 

EAR mixed model is estimated as only 14.7%, which is much lower than that (39%) of 

RNAMotif, calculated in a similar way. It should also be noted that the sensitivity of 

RNAMotif was estima t had been used for 

training. No p  found in 

original papers or on related websites. 

Thirdly, the sensitivity (85.3%, this thesis, Table 6-7, A) of the EAR mixed model for 

, 

even though it is impossible to estimate the false positive rates of TransTerm due to its 

peculiar way of estimating the confidence of predictions (Ermolaeva et al. 2000) (For details 

see discussions in the 5  paragraph in the introduction of this subsection, 6.1.2. ). 

. Although de Hoon et al.’s algorithm was claimed to have a specificity of 94% for 

finding rho-independent transcription terminators of B. subtilis, the high specificity was 

actually estimated by using only 567 non-terminating sequences (de Hoon et al. 2005), but not 

specifici d fals e rates of de Hoon et algorithm should ther e regarded 

as

odel for predicting rho-independent transcription term

ted with exactly the same positive sequences tha

redictions made for other bacterial genomes using RNAMotif can be

finding terminators of B. subtilis was comparable to that (86.2%, Table 6-7, A) of TransTerm

th
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Consequently, among the algorithms mentioned above, the EAR mixed model is the only 

rho-independent transcription terminator finding approach for which reasonably robust 

indicators of both sensitivity and specificity are available. 

6.1.2.2.2. The Eponine windowed RNA-motif model (EWR model) 

rho-independent transcription terminators should still be considered an easy case when 

evaluating ncRNA-finding algorithms, since there is a clearly definable reference point, 

namely the transcription termination site, in each sequence. When no obvious reference points 

are known, finding consensus RNA motifs is difficult for most available computational 

approaches. The Eponine windowed RNA motif model (EWR model) is specifically designed 

for such situations. 

The results presented here (Figure 6-9) reveal that the EWR models are capable of 

finding key signals, corresponding to A-region (the motifs at offset 0 in sensors 1 and 2, Table 

6-8), the stable hairpin (the motif at offset 26 in sensor 1, and the motif at offset 16 in sensor 2, 

Tabl

 

 

e 6-8), and T-region (the motif at offset 58 in sensor 1, and the motifs at offsets 42 and 79 

in sensor 2, Table 6-8), for rho-independent transcription terminators in unanchored sequences 

(see subsection 6.1.2.1.4. ). Although the performance of this EWR model (Figure 6-11) is not 

really comparable to the EAR mixed model, nearly 70% accuracy could be achieved when the 

coverage is 70%. 
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 A endent transcriptional te

There are two convolved sensor basis functions (CSBFs, see subsection 4.1.2.1.2.) in the GLM of the EWR 

 

 

 

 

 

Figure 6-9. n EWR model for rho-indep rminators 

model for rho-independent transcription terminators. The upper one is referred to as sensor 1 and the lower 
one is referred to as sensor 2 in the following text. 
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Sensor 1: 

Offset distribution Loop size distribution Stem size distribution 

Width of position Width of loop size Width of stem size 

0 16.25 Not available (a PWM of 3 columns) 

26 0.58 6 7.02 11 0.08 

58 11.99 Not available (PWM, 5 columns) 

Sensor 2: 

Offset 

Width of position 

distribution Loop size 

Width of loop size 

distribution Stem size 

Width of stem size 

distribution 

0 17.92 Not available (a PWM of 2 columns) 

16 1.39 7 8.69 9 0.13 

42 8.62 Not available (a PWM of 5 columns) 

79 9.36 Not available (a PWM of 2 columns) 

 

 

 

 

ffset” refers to the mean of the discrete Gaussian distribution used to model the distance between each 
tif and the first motif. Other titles follow the convention of Table 6-4. 

Table 6-8. The trained parameters of an EWR model for bacillus rho-independent transcription terminators 

Sensor 1 is the convolved sensor basis function (CSBF) presented in the upper half of Figure 6-9 and sensor 2 
is the CSBF presented in the lower half of Figure 6-9 

“O
mo
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Sensor 1:  

  

Offset: 0 Offset: 58 

 

Sensor 2:  

  

Offset: 0 Offset: 42 

 

 

Offset: 79 

Fig n Table 6-8 and Figure 6-9 

“Offset” corresponds to “Offset” column in Table 6-8. Sensors 1 and 2 correspond to the sensors in Table 6-8 
an

ure 6-10. The sequence logos of position-constrained motif matrices presented i

d Figure 6-9 



218 Chapter 6. Finding RNA motifs in genomes
 

 

 

 

6.1.2.3. Discussion 

One obvious question about using the Eponine RNA extension to model rho-independent 

transcription terminators is the wide distribution of motif positions. For example, in the EAR 

mixed model (see subsection 6.1.2.2.1. ), the width of the position distribution of the T-region 

is 17.96 (weight 13.62, Table 6-6). In the EWR model (see subsection 6.1.2.2.2. ), there are 

also heavy tails for position distributions of both the A-region and the T-region (Figure 6-9). It 

seems that both of the EAR and the EWR models for rho-independent transcription 

terminators are inconsistent with the current view that the stable hairpin is immediately 

followed by the T-region. However, it should be noted that in the Eponine RNA-motif 

Figure 6-11. Comparison of the C-A plots of an EAR mixed model and an EWR model for rho-independent 
transcription terminators 
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extension, the first base of the respective hairpin is used as the position of each RNA structural 

odel, the distances between the reference point 

(pres

heir 5’ 

adjacent structural motifs. 

ponsible for the specific interaction with proteins, the most 

suitable anchoring point for hairpins could be the centre of the loop regions. 

Pseudoknots are seldom used for testing algorithms for finding consensus RNA motifs. 

Algorithms that were claimed to be capable of finding consensus pseudoknots in a set of 

sequences include GPRM (Hu 2002), ILM (Ruan et al. 2004), and comRNA (Ji et al. 2004). 

There are certain restrictions in using these algorithms. For example, GPRM and comRNA 

motif. Consequently, in the EAR mixed m

umably the first base of the transcription termination signal) and the T-region in different 

sequences varies in response to the variations in the dimensions (loop size and stem size) of 

the stable hairpin in rho-independent transcription terminators. For similar reasons, it is not 

surprising that the wide position distributions of the T-region were also found in the EWR 

model of rho-independent transcription terminators. Consequently, the current implementation 

of the Eponine RNA-motif extension may not model ideally the proximity of motifs to t

The inadequacy in modelling the exact relations between motifs and reference points 

separated by variable length structural motifs is a current weakness of the Eponine RNA-motif 

extension. For the purpose of modelling the relation between the hairpin and the T-region in 

the rho-independent transcription terminators, using the last base of the stem region as the 

location (reference point) for each structural motif might be helpful. However, switching the 

reference point for structural motifs is not expected to be a solution in all the situations, 

especially when the ncRNAs of unknown types are modelled as the most suitable reference 

points for a hairpin may vary from case to case. For example, in modelling the RNA motifs 

where the loop regions are res

6.1.3. Modelling pseudoknots 
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cann

findi

ot find primary-sequence motifs; users of GPRM must assign the expected number of 

hairpins in sequences; ILM requires pre-aligned sequences. 

Although the Eponine RNA-motif extension is not specifically designed for finding 

consensus pseudoknots in sequences, it is not prohibited from finding consensus hairpins that 

overlap with each other, such as non-juxtaposed and non-nested stem regions in pseudoknots. 

In other words, the Eponine RNA-motif extension has the potential to find consensus 

pseudoknots in a set of sequences. The additional advantage of using a classification machine, 

such as the Eponine RNA-motif extension, is that the trained model may be applicable to 

ng new functionally related pseudoknots in genomes. 

6.1.3.1. Materials and methods 

To assess the capability of the Eponine RNA-motif extension for finding consensus 

pseudoknots, 18 sequences of 3’ UTRs of genes of soil-borne rye mosaic viruses and 

soil-borne wheat mosaic viruses, which were also used by Hu (Hu 2002) for assessing GPRM, 

were recruited from the PseudoBase database (van Batenburg et al. 2001) as positive training 

sequences. Five hundred sequences of 40 bases in length were randomly sampled from the 

human genome and used as negative training sequences. The human genome assembly used 

for random sampling was NCBI 35. These sequences were retrieved from the Ensembl ftp site 

(ftp://ftp.ensembl.org/pub/). 

These training sequences were used to train an EAR model as well as an EWR model. 

When the EAR model was used to model these pseudoknots, the first base of each sequence 

was used as the anchoring point. 

6.1.3.2. Results 

The resulting EWR model for the 3’ UTRs of viral genes consisted of two consensus 

hairpins (Figure 6-12). The stem regions of these two hairpins were neither juxtaposed nor 
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nested. The distribution of the first base of the second hairpin peaks (offset: 5, hairpin ID 2, 

Table 6-9) at the end of the 5’ stem of the first hairpin (stem size: 7, hairpin ID 1, Table 6-9). 

The most probable positions of the two hairpins were consistent with the configuration of the 

pseudoknots in these 3’ UTRs of viral genes that were used for training. The result shows that 

e EWR models are capable of finding consensus pseudoknots in a set of sequences. 

An EAR model for the pseudoknots in 3’ UTR of viral genes was also trained. This EAR 

model also consisted of two hairpins (data not shown), which is consistent with the non-nested 

configuration of pseudoknots as shown in the EWR model. 

 

Hairpin ID Offset Width of position 

distribution 

Loop size Width of loop size 

distribution 

Stem size Width of stem size 

distribution 

th

1 0 2.7 4 8.8 7 0.8

2 5 2.7 9 4.1 4 0.2

 

 

Table 6-9. The trained parameters of an EWR model for pseudoknots in 3’ UTRs of viral genes 

The titles used in this table follow the convention of Table 6-8. 

Figure 6-12. An EWR model for the 3’ UTRs of viral genes 

The notation used to describe RNA hairpins follows the convention of Figure 6-1.  
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6.2. Discussions 

6.2.1. Considerations of using the Eponine RNA-motif extension 

In order to train an Eponine RNA-motif model, a number of positive training sequences 

are required. For example, a set of ten sequences is insufficient for finding the pseudoknots in 

entation and parameter settings of the 

ponine RNA-motif extension. Training an Eponine RNA-motif model may require tens of 

positive se e ms of g i nal R  requ s to be a 

weakness i e RN t en ion, r gorit  predict 

optimal RNA structures using only few sequences. Nonetheless, by using only a few 

sequences eque v lgori so have 

difficulty in finding consensus structures in a set of unaligned sequences (Gardner and 

Giegerich 2004). Even though the algorithm t e e  sequ o have a 

good perf e of the e  sted s f rea quences. 

Existing rally m d on m  wel quences 

(Hofacker Coventry et al. 2004; Gardner and Giegerich 

2004; Ruan et al. 2004). A sim i also true for the ncRNA c gorithms 

that utilise uenc  ectio a ter 2)

puter time 

quired for training a model. For example, it may take ~7 hours (24,108 seconds) and ~22 

ours (79,661 seconds) to train an EAR mixed model and an EWR mixed model respectively 

r human tRNAs (Table 6-10). Within the trainer, predicting all local hairpins in each training 

equence is not the most time-consuming step when using the Eponine RNA-motif extension. 

ith the current implementation of the fast model of the Eponine RNA-motif extension, it 

kes less than 3 seconds by using an x86-64bit machine (3.2 Ghz Pentium IV EMT64, 64-bit 

the 3’ UTRs of viral genes with the current implem

E

quences. In t r  findin  funct o NA motifs, this irement seem

of the Epon n A-mo if ext s compa ed to al hms that can

 or even one s nce, a ailable RNA-motif finding a thms may al

s that ake pr -align d ences seem t

ormance, non  m hav  been te on alignment  o l genomic se

tests have gene  been perfor e  align ents of l-trimmed se

 et al. 2002; Knudsen and Hein 2003; 

ilar situation s lassifying al

 pre-aligned seq es (see also subs n 2.1.3.5. , ch p . 

Another issue around using the Eponine RNA-motif extension is the com

re

h

fo

s

W

ta
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Linux) to predict local hairpins for a sequence of 250 bases in length. A significant proportion 

f time is actually spent using the Monte Carlo method to optimise parameters of PWMs and 

otifs. r e  is tha fourth f the CPU time used for training 

AR mix  m R nt rning para le only 

e (~6000/24108) is spent in predicting local RNA secondary 

ures (Table 6-10, tRNAs  m U ti ). 

pe e le

ber of positive 

nces 

ega e (x86-64bit) 

s) 

o

RNA m Fo xample, it  estimated t three- s o

an E ed odel of t NAs is spe  in lea meters of motifs, whi

one-fourth of the CPU tim

struct , EAR mixed odel, CP me

 Training ty Sequenc ngth seque

Num Number of n tive CPU tim

sequences (second

EAR mixed   model 250 200 2000 24108.83 
tRNAs 

EWR mixe  d model 250 200 2000 79661.45 

EAR mixed   model 170 212 2000 15162.24 Rho-independent tran ip

rs e

scr tion 

terminato EWR mix d model 170 212 2000 47300.76 

When a in s ind ic 

ces, m  o  n lding  w reg enomic 

es. U g e f m to sca the nom arching 

RNA m

tra

tim 64bit machine (3.2 Ghz Pentium IV EMT64, 64-bit Linux), scanning 

4-megabases x 2 (Table 6-11). 

 

Organism Genome length CPU time (Pentium-4) (secs) 

tra ed model i  applied to f ing a particular type of RNA motifs in genom

sequen ost f the time will be spe t on fo all indowed ions of g

sequenc sin the Eponin  RNA-moti odels n whole ge e for se

otifs can be very time-consuming. For example, using the EAR model to search for 

nscription termination terminators in the bacterial genomes took as long as one-week CPU 

e on an x86-

~

B. subtilis 4,214,630 x 2 strands 589755.91 

E. coli 4,639,675 x 2 strands 638613.26 

Table 6-10. T  e  the EW o s pendent 
ption termin

 time” i e 3 m 4 mac e w 64 S. 

Table 6-11. The execution time for using the EAR model of rho-independent transcription terminators to scan 
the genomes of B. subtilis and E. coli respectively 

he xecution time for training the EAR and R m dels of tRNA  and rho-inde
transcri ators 

“CPU s th CPU time of a .2 Ghz Pentiu  IV EMT6 hin hich runs the -bit Linux O
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6.2.2. Towards creating general EWR m dels of ver rate ncRNAs 

he scor  h NA f extens n ic 

tment of relevant featur m  trategy, 

ically  N ten n de ine the differential degrees of 

icance o a tu  fo ticula air en e most 

nt featu  n  pr owev  th ity et been 

ated. Len hs nd cu he o  fe  have been recruited 

other features could 

antly c tr  m le pins di s s may 

ore 

structu  d es et a 00  

vas and Eddy 2000), 

 combinations of different structural f ight  u en ncRNA 

 

ne unfi he w ro sing  Ep A- sion to 

a gener E   n  Ther a t ches to 

his goal. Firstly, the EW n  to fin th s various 

cla

va

cRNAs is left out when training that particular model. The trained model could then be 

valuated by using these ncRNAs. This process would be repeated until the k models had been 

valuated. 

Another possible approach for creating an EWR vertebrate-ncRNA-model is taking 

human-mouse syntenic alignments as the training sequences. The proposed approach can be, 

o teb

T ing scheme of t e Eponine R -moti io is designed to allow a dynam

recrui es. By using the Monte Carlo ethods and the RVM s

theoret the Eponine R A-motif ex sion ca term

signif f v rious struc ral features r a par r h pin and th  choose th

releva res for modelli g it. In this oject, h er, is capabil  has not y

evalu gt of stems a  loops are rrently t nly atures that

to model ncRNAs. It is possible that under certain circumstances, 

signific on ibute to the odel. Whi the hair of fferent clas es of ncRNA

vary in their stem and loop sizes, a recent report suggests that ncRNAs tend to have m

stable res than do ran om sequenc  (Clote l. 2 5). Although folding stability

alone proved to be insufficient for identifying ncRNAs in genomes (Ri

certain eatures m  be seful for g ome-wide 

finding.

O nis d piece of ork in this p ject is u the onine RN motif exten

create al WR model of vertebrate cRNAs. e c n be at leas  two approa

fulfil t R model ca be used d e consensu  features of 

sses of ncRNAs. In order to evaluate the performance of the trained model, a k-fold cross 

lidation can be used. ncRNA classes can be divided into k groups and each group of 

n

e

e
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not only a 

for und

po  to create a general ncRN lso

iscov NAs in mammalian geno evelo e Eponine 

RNA-motif extension provides a way to test hypotheses with regard to genome-wide ncRNA 

finding. The capability of this tool in genome-wide ncRNA finding is worthy of further 

exploration. 

. Sum ary 

In this chapter, using three types of ncRNAs  distinct RNA structural motifs, I have 

ility of the A-m  extension to m l the RNA motifs in 

ripts. The applications of this extension include the following:  

When a particular type of functional site known for a set of sequences, Eponine 

anchored RNA-motif models can be used. 

z Wh a functional site  nchoring poin a set of transcripts is 

unknown, Eponine windowed RNA-moti dels can be us

Eponine RNA models can be used for prediction, i.e. to search for novel sites of a 

particular type of ncRNAs in genomes. 

here a e limitations of the tentative applications of the Eponine RNA-motif 

extension: 

z The Eponine RNA-motif extension is designed to learn discrimination models 

consisting of local RNA motifs. This tool may not be capable of modelling the 

global consensus RNA secondary structure. 

z For the purpose of discrim tional sites in genomes, the trained 

model may be apt to fi se positives t consist of on  subset of functional 

motif

tential way

ered ncR

A model, but a

mes. The d

 a useful strategy to look 

pment of th

6.3 m

with

demonstrated the capab  Eponine RN otif ode

transc

z s is 

en is suspected but the a t in 

f mo ed. 

z 

T re som

inating novel func

nd fal  tha ly a

s. 
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There are some special issues that need to be taken into consideration in using the 

Eponine RNA-motif extension: 

z A n  are required for training the models. 

 In training the models, significant amount of time may pent in learning the 

parameters of PWMs and RNA motifs, due to the use of the Monte Carlo methods in 

opt ation. 

umber of sequences

z be s

imiz

  



 

Chapter 7. 

Alt in gorithms h een claimed to be 

ef  genom ents had 

et a f this thesis been appropriately ass d. In the first part of 

the wo factors, the abundance of covariations between 

ny- , ns tion ratios o RNAs, which may 

min f parative algorithm genome-wide ncRNA finding. 

only a few compe utations could be found in the 

ents of orthologous ncR s in vertebrate gen s. In general ologous ncRNAs in 

ra h  ca  provide sufficiently strong signals to 

indicate th t  motifs in ncRNAs. In addition, I showed that, when applied 

al ting comparative algorithms suffered from a high false 

negative rate. Based on these results, I conclude that existing comparative algorithms are not 

for brate genomes. Th nclusion is c stent with the recent 

paper us pt to f uctural ncR  ENCODE 

s m here a false discovery rate as high as 50% ~ 70% was 

ted 7)

n c that the synteny-conservation ratios of mammalian ncRNA 

orie  se  part of ch  2, I examined the 

ord e  the human and mouse genomes in detail to 

re t e no teny. Intere ly, I found that there 

pe  uplication m play a major role in 

the evolution of tRNA gene loc

 Conclusions 

hough several comparative ncRNA-find g al ad b

fective in ncRNA finding, their abilities to find ncRNAs from e-wide alignm

not y t the time of preparation o esse

this sis, I assessed the t

synte conserved ncRNAs and the synteny-co erva f nc

deter e the performance o com s in 

In chapter 2, I showed that nsatory m

alignm NA ome , orth

verteb tes are so conserved t at their alignments nnot

e existence of struc ural
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reference points were assigned to training sequences, although with poorer specificity. 

Potential future work involves trying to build gen A  the EWS 

m NAs in 

al

eralized ncRN  models using

ixed model approach, which may prove useful for finding undiscovered ncR

mamm ian genomes. 
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Appendix A . Tables related to the investigation of 

This appendix contains tables related to the investigation of tRNA-gene order conservation in 
 2.2) 

His1  TGG Pro1  GCT Ser5 

tRNA-gene order conservation in mammalian 

genomes 

the mammalian genomes (see chapter 2, section
 

TGC Ala1  GTG 
GGC Ala2  ATG His2  GGG Pro2  ACT Ser6 
CGC Ala3  TAT Ile1  CGG Pro3  TGT Thr1 
AGC Ala4  GAT Ile2  AGG Pro4  GGT Thr2 
GCA Cys1  AAT Ile3  TTG Gln1  CGT Thr3 
ACA Cys2  TTT Lys1  CTG Gln2  AGT Thr4 
GTC Asp1  CTT Lys2  TCG Arg1  TAC Val1 
ATC Asp2  TAA Leu1  GCG Arg2  GAC Val2 
TTC Glu1  CAA Leu2  CCG Arg3  CAC Val3 
CTC Glu2  TAG Leu3  ACG Arg4  AAC Val4 
GAA Phe1  GAG Leu4  TCT Arg5  CCA Trp1 
AAA Phe2  CAG Leu5  CCT Arg6  GTA Tyr1 
TCC Gly1  AAG Leu6  TGA Ser1  ATA Tyr2 
GCC Gly2  CAT Met1  GGA Ser2  TTA Ter1 
CCC Gly3  GTT Asn1  CGA Ser3  CTA Ter2 
ACC Gly4  ATT Asn2  AGA Ser4  TCA Sec1 

 
 
 
 
 
 
 
 
 

Table A 1. Lookup table of anticodon types and the tRNA-gene symbols 
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chr start end 

 
 
cluster ID chr start end  cluster ID 

1.1.10 1 16,719,667 17,088,832  20.11.2 11 75,624,205 75,624,588 

2.1.2 1 93,754,422 94,085,801  21.12.2 12 97,421,412 97,422,232 

3.1.42 1 142,481,551 148,284,076  22.12.5 12 123,972,254 123,990,536 

4.1.36 1 159,636,114 159,858,162  23.13.2 13 40,532,874 40,928,132 

5.1.2 1 165,950,586 165,951,420  24.14.14 14 20,147,335 20,222,086 

6.1.3 1 202,742,278 203,709,966  25.15.3 15 43,278,096 43,280,712 

7.1.2 1 247,134,677 247,135,141  26.15.2 15 76,939,959 77,824,124 

8.2.2 2 27,127,154 27,127,658  27.16.17 16 3,140,676 3,359,885 

9.2.2 2 130,749,494 130,811,242  28.16.2 16 22,114,533 22,216,043 

10.2.2 2 156,965,527 156,965,975  29.16.2 16 55,891,364 55,891,975 

11.3.2 3 133,430,634 133,433,403  30.16.5 16 69,369,615 70,017,969 

12.3.2 3 149,703,918 149,799,324  31.17.18 17 7,963,198 8,071,107 

13.5.17 5 180,456,676 180,582,073  32.17.2 17 19,352,086 19,704,837 

14.6.150 6 26,394,733 29,064,839  33.17.8 17 34,161,560 35,527,152 

15.6.8 6 58,249,836 58,304,654  34.17.3 17 70,541,596 70,542,875 

16.6.2 6 144,579,377 145,545,623  35.18.2 18 41,553,749 41,923,341 

17.7.20 7 148,638,214 149,035,764  36.19.2 19 1,334,361 1,334,635 

18.8.4 8 66,772,086 67,189,050  37.19.2 19 4,675,082 4,675,719 

19.11.8 11 59,074,678 59,090,501  38.X.3 X 3,766,418 3,843,344 

 
 
 
 
 
 
 
 
 
 

Table A 2 The start and end coordinates of the tRNA gene clusters in the human genome (assembly NCBI 36) 

Each cluster identifier (ID) is composed of three numbers separated by “.”. The first number is a serial number. 
The second number (or X) is the chromosome on which a particular cluster resides. The third number is the 
number of tRNA gene loci in a particular cluster.  

chr: chromosome 
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start end  cluster ID chr start end cluster ID chr 

1.1.3 1 73,971,393 74,985,840  25.8.3 8 113,517,230 113,949,306 

2.1.2 1 107,331,203 107,332,257  26.9.2 9 64,181,087 64,536,123 

3.1.2 1 134,861,508 134,861,945  27.9.3 9 104,258,153 104,266,736 

4.1.2 1 167,478,309 167,479,017  28.10.3 10 61,786,481 62,824,914 

5.1.26 1 172,870,617 173,506,186  29.10.2 10 79,652,093 79,652,361 

6.2.2 2 56,997,464 56,997,850  30.10.2 10 90,611,211 90,611,967 

7.2.2 2 118,738,191 118,747,667  31.11.8 11 48,661,965 48,700,478 

8.2.3 2 122,066,935 122,069,480  32.11.2 11 58,118,372 58,118,775 

9.3.2 3 3,109,391 3,135,216  33.11.18 11 68,853,198 68,941,443 

10.3.5 3 19,820,110 20,371,715  34.11.2 11 94,705,047 95,675,333 

11.3.2 3 51,446,283 51,447,407  35.11.6 11 97,518,539 97,805,084 

12.3.30 3 96,396,659 97,766,935  36.11.3 11 115,229,071 115,229,941 

13.4.2 4 56,953,853 57,727,180  37.12.2 12 16,346,839 16,877,619 

14.4.3 4 131,397,335 132,386,642  38.13.60 13 21,168,250 22,058,232 

15.4.2 4 149,499,077 150,476,012  39.13.46 13 23,277,886 23,618,045 

16.5.2 5 31,164,664 31,165,168  40.14.7 14 49,985,834 50,012,669 

17.5.5 5 125,693,626 125,698,919  41.16.2 16 3,012,435 3,364,711 

18.5.2 5 142,649,903 142,755,501  42.17.8 17 23,261,584 23,277,957 

19.6.52 6 47,908,583 48,294,102  43.17.2 17 35,195,954 35,288,056 

20.6.2 6 86,211,030 86,369,597  44.19.2 19 3,066,129 3,576,335 

21.7.2 7 28,081,759 28,502,820  45.19.8 19 12,069,281 12,079,383 

22.7.3 7 98,690,607 99,418,054  46.X.2 X 13,016,125 13,859,646 

23.7.2 7 120,626,628 120,708,747  47.X.15 X 131,542,096 131,936,800 

24.8.2 8 97,592,760 97,593,215  48.X.2 X 156,110,215 156,479,321 

 
 
 
 

Table A 3. The start and end coordinates of the tRNA gene clusters in the mouse genome (assem
M36). 

 The convention used to assign the cluster ID to each cluster is the same as that used in Table A 2 

 
 
 

bly NCBI 
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human clusters mouse clusters 

   

 

(NCBI36) (NCBI M36) 
conservation type 

quality of the human 

genome assembly 

qualitiy of the mouse 

genome assembly 

1.1.  10 NA synteny-non-conserved CSN FCS

2.1.2 
coord: 

3. 054.-1 
single-conserved FCS 

122284970.122285
FCS 

3.1.42 12.3.30 complicated CSN FCS 

4.1.36 5. FCS 1.26 gapped FCS 

5.1.2 4. FCS  1.2 perfect FCS

6.1.3 3. pe two FCS  1.2 sub perfect ty FCS

7.1.2 3 perfect FCS  2.11.2 FCS

8.2.2 1  FCS  6.5.2 perfect FCS

9.2.2 
c

1. 3
 

oord: 

34379 58.34379429.-1 
single-conserved FCS FCS

10.2.2 6. FCS 2.2 perfect FCS 

11.3.2 2 3 sub perfect type two FCS FCS17.9.

12.3.2 N WGS A synteny-non-conserved FCS 

13.5.17 3 FCS   1.11.8 gapped FCS

14.6.15 3 FCS  0 8.13.60/39.13.46 gapped FCS

15.6.8 N nteny-non-conserved CSN  A sy FCS

16.6.2 
c

1 2
 

oord: 

0.1261 761.12612843.-1 
single-conserved FCS FCS

17.7.20 1 52 gapped FCS FCS  9.6.

18.8.4 1 FCS 0.3.5 sub perfect type two FCS 

19.11.8 4 FCS  5.19.8 sub perfect type one FCS

20.11.2 2 FCS  2.7.3 sub perfect type two FCS

21.12.2 3 2 perfect FCS FCS  0.10.

22.12.5 1 rfect type one FCS FCS 7.5.5 sub pe

23.13.2 N synteny-non-conserved FCS S  A FC

24.14.1 4 FCS S 4 0.14.7 gapped FC

25.15.3 8. rfect type one FCS  2.3 sub pe FCS

26.15.2 
c

9. 4
le-conserved FCS  

oord: 

89924 02.89924474.-1 
sing FCS

27.16.17 4 d FCS 22.17.8 gappe FCS

28.16.2 2 sub perfect type one FCS S 3.7.2 FC

29.16.2 2 perfect FCS   4.8.2 FCS

30.16.5 2 3 gapped FCS FCS3 5.8.

31.17.1 3 FCS 8 3.11.18 sub perfect type one FCS 
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human clusters 

(NCBI36) 

m

(N

quality of the human 

ome assembly 

litiy of the mo

genome assembly 

ouse clusters 

CBI M36) 
conservation type 

gen

qua use 

32.17.2
c

1 4
S  

oord: 
single-conserved FCS 

1.6122 111.61224182.-1  
FC

33.17.8 3 S  5.11.6 gapped FCS FC

34.17.3 3 S  6.11.3 perfect FCS FC

35.18.2 NA synteny-non-conserved FCS SN C

36.19.2 2 S  9.10.2 perfect FCS FC

37.19.2 N S  A synteny-non-conserved FCS FC

38.X.3 N SN GS A synteny-non-conserved C W

 
 
 

 
 
 
 
 
 
 
 
 

Ta A 4. The  gene loci in th use genome 

For columns and 2 the cluster IDs are taken from Table A 1 and Ta e A 2 for hum  and mouse 
respectively. 

NA: not availa ster in the mouse genom

coo d: “coordi ouse genome. s used whe yntenic 
cou terpart in let. The convention used here is chr me:start:en d. 

FC : finished g quence (with gaps GS: whole g e shotgun 
sequence 
1: m WGS undary of the syntenic k 
2: m WGS A gene in this cluster 
3: m WGS between the 5' end tRNA gene and 5' boundary of the syntenic k 

 
 
 

ble  synteny conservation of clustered human tRNA e mo

 1 bl an

ble (when there is no corresponding clu e). 

r nate” of a singlet tRNA gene locus in the m This i n the s
n  the mouse genome is a sing omoso d:stran

S  conti  sequence; CSN: unfinished contig se ); W enom

ouse  between the 3' end tRNA gene and 3' bo  bloc

ouse  in the upstream region of the 5' end tRN

ouse  bloc
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singlet ID coordinate (NCBI36) coordinate (NCBIM36) 

quality of the human 

genome assembly 

quality of the mouse 

genome assembly 

nc.1 1.55196130.55196202.-1 NA FCS FCS 

nc.2 1.151910350.151910421.1 3.90561787.90561858.-1 FCS FCS 

nc.3 1.157378025.157378098.-1 1.175227004.175227077.1 FCS FCS 

nc.4 1.170424162.170424230.-1 NA FCS FCS 

nc.5 1.178450899.178450971.-1 NA FCS FCS 

nc.6 FCS CSN 1.220704970.220705042.1 NA 

nc.7 2.42891180.42891272.1 17.83770270.83770362.1 FCS FCS 

nc.8 2.70329627.70329697.-1 6.86369527.86369597.1 FCS FCS 

nc.9 FCS FCS 2.74977554.74977622.1 NA 

nc.10 2.117498979.117499050.-1 NA FCS FCS 

nc.11 2.218818794.218818886.1 NA FCS FCS 

nc.12 3.45705495.45705567.-1 9.123378123.123378195.-1 FCS FCS 

nc.13 S FCS 3.126895867.126895938.-1 NA FC

nc.14 3.170972712.170972784.1 3.30792108.30792180.1 FCS FCS 

nc.15 3.185848789.185848859.-1 NA FCS FCS 

nc.16 4.40603500.40603572.-1 NA FCS FCS 

nc.17 4.124649455.124649526.-1 NA FCS FCS 

nc.18 4.156604428.156604502.-1 NA FCS FCS 

nc.19 5.26234296.26234368.-1 NA FCS FCS 

nc.20 5.141754172.141754243.-1 NA FCS FCS 

nc.21 5.159324619.159324696.-1 NA FCS FCS 

nc.22 6.18944381.18944452.1 NA FCS WGS 

nc.23 6.37395973.37396045.1 NA FCS FCS 

nc.24 6.69971099.69971181.1 NA FCS FCS 

nc.25 6.126143086.126143157.-1 10.30500556.30500627.1 FCS FCS 

nc.26  FCS FCS 6.142620469.142620539.1 NA

nc.27 7.98905243.98905314.1 NA FCS FCS 

nc.28 11.1 6.29338834.29338905.1 FCS FCS 7.128210740.1282108

nc.29 7.138675986.138676058.1 6.38463539.38463611.1 FCS FCS 

nc.30 8.59667352.59667422.1 NA FCS FCS 

nc.31 8.96351061.96351142.-1 4.10801211.10801292.1 FCS FCS 

nc.32 8.124238651.124238723.-1 15.57806066.57806138.-1 FCS FCS 

nc.33 9.5085085.5085156.1 NA FCS FCS 

nc.34 82090854.82090925.-1 FCS FCS 9.14423938.14424009.-1 4.

nc.35 9.19393996.19394070.1 NA FCS FCS 
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singlet ID I36) coordinate (NCBIM36) genome assembly genome assembly  coordinate (NCB

quality of the human quality of the mouse 

nc.36 9.76707810.76707881.-1 NA FCS FCS 

nc.37 FCS FCS 9.112000624.112000696.1 NA 

nc.38 9.114656810.114656908.1 NA FCS FCS 

nc.39 FCS FCS 9.125695343.125695415.-1 NA 

nc.40 9.130142176.130142266.-1 NA FCS FCS 

nc.41 10.5935680.5935752.-1 NA WGS FCS 

nc.42 10.22558444.22558517.-1 2.18504798.18504871.-1 WGS FCS 

nc.43 10.69194267.69194348.1 10.62824833.62824914.-1 FCS FCS 

nc.44 11.9253366.9253439.1 NA FCS FCS 

nc.45 11.45246776.45246849.-1 NA FCS FCS 

nc.46 FCS FCS 11.50190455.50190526.-1 NA 

nc.47 11.51216476.51216548.1 NA FCS FCS 

nc.48 FCS 11.65872167.65872248.1 19.5038304.5038385.-1 FCS 

nc.49 11.108541249.108541330.1 NA FCS FCS 

nc.50 11.121935865.121935937.1 NA FCS FCS 

nc.51 FCS FCS 12.27734573.27734645.1 NA 

nc.52 12.54870415.54870496.1 10.127861413.127861494.-1 FCS FCS 

nc.53 12.73137449.73137521.1 NA FCS FCS 

nc.54 12.94953930.94954001.1 10.92882777.92882848.-1 FCS FCS 

nc.55 12.121426877.121426947.1 NA FCS FCS 

nc.56 13.30146101.30146174.-1 5.149539350.149539423.-1 FCS WGS 

nc.57 13.44390062.44390133.-1 14.74886929.74887000.1 FCS FCS 

nc.58 -1 FCS FCS 13.93999905.93999977.-1 14.116971871.116971943.

nc.59 14.22468750.22468822.1 14.53471901.53471973.1 FCS FCS 

nc.60 S FCS 14.31306567.31306637.-1 NA FC

nc.61 14.57776366.57776438.-1 12.71887725.71887797.-1 FCS FCS 

nc.62 14.72499432.72499503.1 NA FCS FCS 

nc.63 FCS FCS 14.88515195.88515267.1 NA 

nc.64 14.101853182.101853255.1 12.111293145.111293218.1 FCS FCS 

nc.65 FCS 15.23878474.23878545.-1 7.58267184.58267255.1 FCS 

nc.66 15.38673315.38673396.-1 2.118738191.118738272.-1 FCS FCS 

nc.67 15.63948454.63948525.-1 9.64536052.64536123.1 FCS FCS 

nc.68 15.87679308.87679380.1 7.79339932.79340004.1 FCS FCS 

nc.69 16.626737.626807.1 17.25602688.25602758.1 FCS FCS 

nc.70 16.14287251.14287322.1 16.13350901.13350972.1 FCS FCS 
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quality of the human quality of the mouse 

singlet ID coordinate (NCBI36) coordinate (NCBIM36) genome assembly genome assembly 

nc.71 FCS 16.72069717.72069789.-1 NA FCS 

nc.72 16.85975129.85975201.-1 8.124465281.124465353.-1 FCS FCS 

nc.73 349483.1 NA FCS FCS 17.15349410.15

nc.74 17.26901213.26901284.1 11.79520845.79520916.1 FCS FCS 

nc.75 FCS 17.44624889.44624960.1 11.95675262.95675333.-1 FCS 

nc.76 17.56218375.56218445.1 NA CSN FCS 

nc.77 FCS FCS 17.59957380.59957453.-1 NA 

nc.78 17.63446475.63446547.-1 11.106828956.106829028.1 FCS FCS 

nc.79 17.78045886.78045957.-1 NA CSN FCS 

nc.80 19.19713207.19713277.1 NA FCS WGS 

nc.81 19.38359803.38359876.1 7.34943530.34943603.-1 FCS FCS 

nc.82 19.40758590.40758662.1 NA FCS FCS 

nc.83 FCS 19.44594648.44594740.-1 7.28081759.28081853.1 FCS 

nc.84 19.50673700.50673785.-1 7.18459766.18459851.1 FCS FCS 

nc.85 19.54729745.54729817.-1 NA FCS FCS 

nc.86 19.57117208.57117280.-1 NA FCS WGS 

nc.87 20.17803142.17803219.1 NA FCS FCS 

nc.88 20.48385749.48385830.-1 NA FCS FCS 

nc.89 21.14848387.14848457.1 NA FCS FCS 

nc.90 21.17748978.17749048.-1 NA FCS FCS 

nc.91 22.42877870.42877955.1 NA FCS FCS 

nc.92 X.18602950.18603022.-1 X.156110215.156110287.1 FCS FCS 

Table A 5. The synteny conservation of non-clustered human tRNA gene loci (singlets) in the mouse gen

not available (when there is no corresponding cluster in the mouse genom

ome 

NA: e) 

The c

The assignment of a singlet ID follows the convention: “nc” (non-clustered). “serial number”.  

oordinates presented here follow the convention of that used in Table A 4. 

 

 



 

Appendix B. The program sets written for this thesis 

This ap
 

pendix lists the main program sets that were particularly written for this thesis 

Program set 1: 

Table B 1. Functions of the program sets written for this thesis 

Name: Search for synteny-conserved ncRNAs 
 
Description of function: 
Search for synteny-conserved ncRNAs in syntenic regions between two genomes, 

ncRNA

For eac  search for its 

homolo  genome(s). 

searche tially using 

the Inf
and the of covariations between each pair of orthologous ncRNAs that are 

and determine the number of covariations between each pair of orthologous 
s that are synteny-conserved. 

 
h ncRNA locus in a particular genome, this program set can

corresponding syntenic blocks, which are defined by the unique best reciprocal 
gue pairs (UBRHPs) that are determined by Ensembl, in other

For a particular ncRNA in one genome, its synteny-conserved counterpart is 
d for in the corresponding syntenic region of the other genome ini

WUBLAST. This blast hit is then structurally aligned, using cmsearch (a program in 
ernal package) (Griffiths-Jones et al. 2003), to its consensus RNA structure, 
 number 

synteny-conserved are determined. 
 

Name: 
Program set 2 

Search and process synteny-conserved tRNA-gene Cluster 
 
Description of function: 
Search for synteny-conserved tRNA-gene clusters in the syntenic regions between 

tRNA-

For a t e, this program set can search for its 

defined
by com ation between them. 

two genomes, and examine the gene-order difference between two orthologous 
gene clusters. 

 
RNA-gene cluster in the human genom

corresponding synteny-conserved clusters in other genomes in the syntenic regions 
 by UBRHPs. A pair of orthologous tRNA-gene clusters are further analyzed 
paring the gene-order conserv

238 
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Name: 
Program set 3 

Align two ordered list of (tRNA-)gene symbols 
 
Description of function: 
Examine the gene-order conservation between two lists of (tRNA-)gene symbols. 
 

program
a pair of syntenic regions from two genomes. 

Using the dynamic programming library functions provided by biojava, this 
 set can align two lists of tRNA-gene symbols, which may be derived from 

 
 set 4 Program

Name: RNA folding package 
 
Description of function: 
Predict s 

 
This p the Zuker’s RNA secondary 

d 
in (Zuk
order 
thermo

 the RNA secondary structure of a given sequence, and report the location
and sizes of stems and loops in this sequence. 

rogram set provides an implementation of 
structure predicting algorithm. The thermodynamic parameters follow the ones use

er 1989). A set of adjunctive functions are provided in this program set, in 
to facilitate the retrieval of local hairpins and the calculation of their 
dynamic stabilities. 
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Program set 5 
Name: Eponine RNA motif extension, anchored 
 
Description of function: 
Prepare local hairpins and perform training of an Eponine anchored model which 

nsist of a set of RNA motifs. may co

This p tend Eponine anchored models to 
g an Eponine anchored 

model, d region using Zuker’s 

uses th to propose a new model. Other 

Monte 
RNA m
distanc ions between each motif and the anchored point of each sequence. 

 
rogram set provides a mechanism to ex

model RNA motifs. For each sequence recruited for trainin
 local RNA structures are predicted for each windowe

RNA secondary-structure predicting algorithm. Then SimpleStemLoopBasisSource 
e parameters of local hairpins as the basis 

classes with the suffix BasisSource can optimize the parameters of a model using 
Carlo sampling approaches. The parameters of an anchored model containing 
otifs may consist of distributions of hairpin dimensions and/or stability and 

e distribut
 

 set 6 Program
Name: Eponine RNA motif extension, unanchored 
 
Description of function: 
Prepare local hairpins and perform the learning of an Eponine unanchored model 

 
This pr ides a mechanism to extend the Eponine unanchored models 

unanch ach windowed region in 

parame  a new model. Other classes with 

Carlo s g 
RNA m of hairpin dimensions and/or stability and 

which may consist of a set of RNA motifs. 

ogram set prov
to model RNA motifs. For each sequence recruited for training an Eponine 

ored model, local RNA structures are predicted for e
this sequence using Zuker’s algorithm. Then ConvolvedSensorsBasis uses the 

ters of local hairpins as the basis to propose
the suffix BasisSource can optimize the parameters of a model by using Monte 

ampling approaches. The parameters of an unanchored model containin
otifs may consist of distributions 

distance distributions between motifs. 
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Lines 
Chap Program set Number of File size 

2 Search-for-synteny-conserved-ncRNAs   
 z syntenic_proteins.pm 870 36k 
 z protein_boundary.pm 320 9k 
 z infernal.pm 192 5k 
 103 6k z best_blast_hit.pm 
 z cmsearch_hit.pm 103 2k 
 z paired_cmsearch_hit.pm 486 13k 
 z other miscellaneous modules and scripts 1580 40k 
    
2 Search-process-synteny-conserved-tRNACluster   
 z tRNAClusterDB.pm 130 3k 
 z tRNASeqFasta.pm 321 3k 
 112 2k z tRNAInfo.pm 
 z tRNAClusterDB_protein_boundary.pl 889 16k 
 aneous modules and scripts 274 z other miscell 8k 
    
2, 3 Align two ordered list of (tRNA-)gene symbols   
 z AligntRNAName.java 511 15k 
 z Other miscellaneous classes 209 7k 
    
4  , 6 RNA folding package  
 z Stem.java 32 1k 
 z AbstractStem.java 52 2k 
 z SimpleStem.java 204 5k 
 z StemTools.java 93 3k 
 632 19k z StrucTools.java 
 z StrucReport.java 183 4k 
 60 2k z Pair.java 
 z Zuker.java 822 23k 
    
4, 6 Eponine RNA motif extension, anchored   

Table  sizes of the program sets written for this thesis  B 2. Number of lines and file
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 z AbstractStructureSampler.java 168 5k 
 z SimpleStemLoopConstraint.java 793 23k 
 9k z SimpleStemLoopBasisSource.java 348 
 z LocalEnergyDistBasisSource.java 59 2k 
 z LocalEnergyOffsetBasisSource.java 59 2k 
 z LoopSizeDistBasisSource.java 71 2k 
 z LoopSizeOffsetBasisSource.java 71 2k 
 59 2k z StemEnergyDistBasisSource.java 
 z StemEnergyOffsetBasisSource.java 59 2k 
 z StemSizeDistBasisSource.java 69 2k 
 z StemSizeOffsetBasisSource.java 71 2k 
    
4,  motif extension, unanchored    6 Eponine RNA
 z AbstractStrucSampler.java 223 6k 
 k z ConvolvedSensorsBasis.java 798 24
 z NewStruc1.java 380 10k 
 z ist.java 65 2k SampleLocalEnergyD
 z SampleLocalEnergyOffset.java 65 2k 
 z SampleLoopSizeDist.java 71 2k 
  76 2k z SampleLoopSizeOffset.java
 z SampleStemEnergyDist.java 65 2k 
 65 2k z SampleStemEnergyOffset.java 
 z SampleStemSizeDist.java 74 2k 
 75 2k z SampleStemSizeOffset.java 

 
 
 

  


