
Chapter 1

Introduction

1.1 Human genetic variation

Over the last century, there has been an increasing e�ort to understand and map

genetic variation between humans, and the consequent functional e�ect of this. This has

been accelerated in recent decades with the development of microarray and sequencing

technologies, and in particular of high-throughput genetic sequencing. Initiatives such

as the Human Genome Project [1], 1000 Genomes Project [2], HapMap project [3], and

most recently the 100,000 Genomes Project highlight e�orts within the field to chart

common variation and the increasing scale at which this is being achieved.

1.1.1 The basis of genetic variation

Genetic variation stems from alteration of DNA sequences, referred to as ’variants’ or

’mutations’. These events can occur as a result of endogenous processes, such as errors in

DNA replication, chromosome segregation and recombination, or as a result of damage

from endogenous or exogenous chemicals (Fig 1.1, [4]). While processes involving

chromosome and DNA function are highly regulated, they - like any cellular function
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- are not 100% e�cient. In the case of DNA replication, around 6x109 nucleotides

must be copied in each cell division. Although the major DNA polymerases involved

in this DNA synthesis have intrinsic proofreading and exonuclease capacity, allowing

the ability to detect and remove incorrectly inserted bases, this does not occur in a

very small proportion of cases and errors are maintained. This is often the case at

regions in the genome with repeat sequences. In these areas, where there are repeats

of particular nucleotide or oligonucleotide sequences, replication slippage may occur,

leading to insertion or deletion of nucleotides. On a larger scale, errors in chromosome

segregation and recombination may lead to variation in copy number of substantial

regions of DNA or entire chromosomes. In the germline, these events often lead to

embryonic lethality or developmental disorders, however they can also occur in somatic

cells - a typical occurrence in cancer development.

Alongside faults in the processes described above, chemical damage to DNA can

cause mutations, deriving from both endogenous and exogenous sources (Figure 1.1).

Given the aqueous environment within cells, hydrolytic damage is common. This

can lead to the cleavage of covalent N-glycosylic bonds between a base and its sugar,

producing an abasic site, or to the deamination of some bases to leave a carbonyl group.

Further elements of the cellular milieu produced by normal metabolic reactions can lead

to oxidative damage, in particular reactive oxygen species (ROS). The sugar-phosphate

backbone can be damaged as a result, or DNA bases can be attacked leading to

the production of derivatives, many of which are mutagenic. An alternate source of

endogenous damage is the erroneous methylation of adenosine. This causes distortion

of the double helix and disrupts DNA-protein interactions. While the majority of

chemical damage derives from these intrinsic mechanisms, exogenous agents can also

play a role. Examples are the production of ROS within cells due to ionizing radiation

from external sources, leading to oxidative damage as described above. Non-ionizing
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ultraviolet radiation can also cause damage, resulting from the covalent bonding

between adjacent pyrimidines. Finally, environmental chemicals can covalently bond

to and distort the DNA helix, such as the large aromatic hydrocarbons found in the

smoke of cigarettes and vehicles.

Fig. 1.1 Mechanisms of DNA damage and repair, from Helena et al. [4]

If not repaired, these changes in DNA sequence may have a wide range of conse-

quences, or no discernible e�ect at all. A large proportion of variants do not have a

functional e�ect for several reasons: firstly, much of the genome is non-coding and

has no known function. Secondly, there is a high level of genetic redundancy, with

substitutions at the third base in a codon sequence often producing the same amino

acid (synonymous mutations), and also redundancy in the sequence as a whole - for

example, there are hundreds of almost identical ribosomal RNA genes. Finally, even

in situations where a variant in a coding gene results in a di�erent amino acid pro-

duced (nonsynonymous), this may be functionally unimportant within the protein

and therefore tolerated. Despite this, variants with phenotypic e�ects do arise, and

while they may occasionally have a beneficial e�ect, and may even become positively
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selected for in the population, in many cases the mutations are harmful. Variants

which have become fixed in the population have been catalogued in dbSNP [5]. Many

methods have been used over the years to study the e�ects of genetic variants, and a

brief history and description of modern methods follows.

1.1.2 Approaches for studying human genetic variation

In the early decades of genetic research, familial history was used in genetic linkage

studies. The basis of this approach is the increased frequency of co-inheritance of genetic

markers close in genomic location than would be expected by chance. Huntington’s

disease was the first for which the locus - on chromosome 4 - was identified purely

by linkage [6]. Following this, developments were made in mapping cystic fibrosis to

chromosome 7 [7–10], While this method provided a lot of novel insight in disorders

arising from a single gene and with high penetrance - the percentage of individuals with

a given genotype who exhibit the associated phenotype - these approaches were more

di�cult for complex diseases arising from the combination of many low penetrance

variants. With the evolution of technologies to assay genome sequences, however, it

has become increasingly possible to understand the role of common genetic variants

both in disease and healthy phenotypes.

Accelerated by these next-generation sequencing technologies, it has been possible

to deeply characterise genetic variation in the population as a whole. This has been

highlighted by large-scale international consortia such as the HapMap project [3] and

1000 Genomes Project [2]. The scale of these studies will continue to grow, exemplified

by the 100,000 Genomes Project currently underway. This extensive work to map

common genetic variation opened the door to genome wide association studies (GWAS).

The GWAS approach is to ask whether a particular variant appears more often

in individuals with a phenotype of interest than expected by chance (Figure 1.2). It
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is common to use a case-control set up, where two groups are compared: those with

the disease/phenotype of interest, and controls without. An odds ratio is calculated,

reflecting the odds of the variant in the two groups, with an OR > 1 signifying higher

prevalence in the case group. The power to detect significant e�ects depends on the

sample size, distribution of e�ect sizes of causal genetic variants, and the frequency

of these in the population, and the linkage disequilibrium (LD) between the observed

genotyped DNA variants and the unknown causal variants. GWAS approaches have

also been applied to quantitative phenotypes, such as height or concentration of given

biomarkers.

The first GWAS, published in 2005, focused on age-related macular degeneration

(AMD). In a comparison of 96 cases and 50 controls, Klein et al. identified a role of the

CFH gene in AMD [11]. A major breakthrough followed in 2007 with the publication of

the Wellcome Trust Case Control Consortium [12], in which 3000 shared controls were

compared with around 2000 patients for each of seven common disease phenotypes.

Not only was this the largest study of its kind at the time, but it also set the precedent

for future GWAS studies in a number of ways. Population stratification was carefully

considered, HapMap data was used for genotype imputation in a novel manner [13],

and significant attention was given to genotype calling.

Since then, the number of GWAS has increased year-on-year, and vast progress has

been made in identifying and understanding genetic variation in the human population.

However, the nature of the studies above means that the findings often do not reveal

the mechanistic basis or causative role of genetic variants, as the causal variant is

usually not directly genotyped but rather in linkage disequilibrium with the genotyped

SNPs. This necessitates methods to move closer to an understanding of the biology

underlying a process or phenotype of interest caused by observed genetic di�erences

(Figure 1.2b).
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Fig. 1.2 Genome-wide association study design, from Tam et al. [14]: a) The aim of
a genome-wide association study (GWAS) is to detect associations between allele or
genotype frequency and trait status. The first step is to identify the disease or trait to
be studied and select an appropriate study population. Genotyping can be performed
using SNP arrays combined with imputation or whole-genome sequencing. Association
tests are used to identify regions of the genome associated with the phenotype of
interest at genome-wide significance, and meta-analysis is a common step to increase
the statistical power to detect associations. b) Functional characterization of genetic
variants is often required to move from statistical association to causal variants and
genes, especially in the non-coding genome. Computational methods are used to predict
the regulatory e�ect of non-coding variants on the basis of functional annotations.
c) Target genes can be identified or confirmed using chromatin immunoprecipitation
and chromosome conformation capture methods, and experimentally validated using
cell-based systems and model organisms. d) Genetic variants exist along a spectrum of
allele frequencies and e�ect sizes. Most risk variants identified by GWAS lie within
the two diagonal lines. Rare variants with small e�ect sizes are di�cult to identify
using GWAS, and common variants with large e�ects are unusual for common complex
diseases.
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A key example is the expression quantitative trait loci (eQTL) approach, in which

SNPs driving di�erences in expression levels of particular genes are identified. These

eQTLs can be described as acting in cis, typically considered with a 1Mb window,

or in trans from a more distant genomic location, typically 5Mb or further, or on a

di�erent chromosome entirely (Figure 1.3). By studying the transcription of genes,

captured in RNA sequencing experiments, a more direct output of genetic variation

can be captured. This intermediate phenotype can explain cellular events at a level

closer to mechanism, uncovering novel biological insight into the disease or process of

interest.

Fig. 1.3 The expression quantitative trait loci (eQTL) approach, from Westra &
Franke [15]: eQTLs can be either local e�ects (cis-eQTLs), or distant, indirect e�ects
(trans-eQTLs).
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1.2 Single cell RNA sequencing

1.2.1 Evolution of single cell RNA sequencing technologies

While transcriptomic studies have, for many years, provided insight into mRNA

expression and regulation, technological advances have allowed the quantification of

transcripts at an unprecedented resolution. By sequencing the mRNA component of

individual single cells, it has now become possible to study gene expression at an entirely

new level, opening the door to novel biological questions which could not be addressed

using population-level RNA sequencing. For example, the variability in splicing [16–20]

and allelic expression [18, 21–23], between cells has been shown, along with analysis

of the stochastic gene expression and transcriptional kinetics [24, 25]. Furthermore,

single-cell RNA-sequencing (scRNA-seq) data have allowed fine-grained analysis of

developmental trajectories [26–28] and identification of rare cell types [29, 30].

In order to obtain scRNA-seq data, cells must first be isolated individually in an

accurate and rapid manner. Initially, microscopic manipulation provided a reliable

method to isolate single cells through physical separation using a capillary pipette,

and may still play an important role in systems where few cells are available. However,

the high labour and low-throughput nature of this technique has resulted in it being

surpassed by higher throughput methods. Fluorescence-activated cell sorting (FACS)

provides an e�cient way to isolate a large number of cells in a rapid manner, and also

allows the selection of cells based on fluorescent labelling. Size or marker selection is

commonly used, and through ‘index sorting’, the data for each cell can be recorded

and used in downstream analysis. Despite the prevalence of this method, the high

number of starting cells required, along with the potential damage caused by the

staining and physical stress of the process, means it may be a problematic approach.

More recently, microfluidic techniques have emerged as a key method for capturing
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single cells, allowing isolation in small volumes within a closed system, often followed

directly by amplification and downstream reactions. The small volume in which these

reactions occur increases the capture e�ciency and lowers the reagent cost. Finally,

techniques involving the isolation of single cells in microdroplets, such as DropSeq

[31] and InDrop [32], have rapidly expanded the high-throughput nature of scRNA-

seq–allowing processing of tens of thousands of cells in a short space of time. The

small volume of reactions, once again, decreases the cost per cell. Over time, these

methods will continue to increase in speed, e�ciency and reliability, further improving

throughput of single-cell isolation.

Many protocols exist for the subsequent reverse transcription (RT), amplification,

and library preparation prior to sequencing. Poly(T) priming is used to select poly-

adenylated mRNA for reverse transcription, however, only an estimated 10–20 percent of

transcripts are sampled, particularly a�ecting lowly expressed genes [33]. Methods then

di�er in their approach to second-strand synthesis, either using poly(A) tailing, leading

to a 3’ bias, or template-switching to produce full-transcript coverage. Amplification

can be achieved through two methods: linear in vitro transcription (IVT) or exponential

PCR, each with its own advantages and drawbacks. Ziegenhain et al.[34] and Svensson

et al.[35] provide a comprehensive experimental and computational comparison of most

of the protocols commonly used. Following cDNA amplification, library preparation is

most commonly carried out using the commercially available Nextera kit and sequencing

on the Illumina platform, although other methods are available.

As a relatively new field, it is key to understand the structure and complexities

of scRNA-seq data, ensuring that appropriate analytical and statistical methods are

applied [36]. Particularly challenging is the high level of noise [37, 38], which derives

primarily from the nature of single-cell experiments (called ‘technical variation’ and is

mainly due to factors such as mRNA capture e�ciency and cDNA amplification bias),
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along with the biological heterogeneity of cells (‘biological variation’). Furthermore,

unlike with conventional RNA-sequencing where experimental biases are well studied

[39, 40], there are biases which are still not fully understood in single-cell experiments,

such as ‘dropouts’ due to the low amounts of starting material, leading to false negative

expression.

Single-cell RNA-sequencing is a lossy technique, and it is not completely understood

what causes the di�erent failure modes for samples. Practically, this means the

first step after acquiring reads from a scRNA-seq experiment is to perform quality

control. Reads are processed in a similar manner to bulk RNA-seq, allowing expression

quantification. There are several methods to do this, broadly split into those that

use a genome reference for alignment, such as STAR [41], TopHat/TopHat2 [42, 43]

and HISAT/HISAT2 [44, 45], and those that perform ‘pseudoalignment’, a quicker

alternative, such as Kallisto [46] and Salmon [47].

It is important to check the quality of both the raw data (which can be performed

using tools developed for bulk RNA-seq, such as FastQC [48] or Kraken [49]), along

with the aligned output. Imperative in scRNA-seq is the cell-by-cell quality control

[50], ensuring that cells of poor quality are removed from subsequent analysis. Many

metrics can be used to measure cell quality, such as the number of reads or genes

detected, the proportion of reads mapping to mitochondrial genes (which may signify

leaking of cytoplasmic RNA or cells undergoing apoptosis), or the proportion of reads

mapping to externally spiked-in RNA molecules if used in the experiment [51].

Depending on the analysis task, appropriate normalization of the data is needed.

Several normalization methods have been developed, many of which adjust for dif-

ferences in sequencing depth and/or make use of spike-in molecules and/or unique

molecular identifiers (UMIs) when available (reviewed in detail in [52]). Once cleaned

data are obtained, there are many routes of analysis depending on the biological
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question under investigation (Figure 1.4). In the next section, I will consider these

analysis from two viewpoints: cell-level approaches, such as the grouping of cells and

trajectory ordering, along with gene-level investigations, such as gene variability and

noise, co-expression, and identification of di�erentially expressed genes.

Fig. 1.4 Overview of analysis methods for the interpretation of scRNA-seq data.
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1.2.2 Analysis of scRNA-sequencing data

Cell level analyses
Visualising and clustering cells

The cataloging and classification of cells is a long-standing biological challenge. Tradi-

tionally, cell types were determined morphologically or based on molecular cell surface

markers. However, with the availability of genome-wide expression data, the possibility

of transcriptome-based analysis of cell similarity provides an alternative indicator of

cell type.

The first step in understanding the distribution of cells is often to apply dimension-

ality reduction techniques: this represents the thousands of dimensions (genes) found

in scRNA-sequencing data with a much smaller number, attempting to maintain a

representation of some variation of interest. Furthermore, by considering only a two

or three dimensional space, visualisation provides a mean to qualitatively explore the

data. There are hundreds of dimensionality reduction methods available which the

researcher can elect to apply either to all observed genes or a selected subset of genes

of interest. The most widespread is Principal Component Analysis (PCA) [53], where

weighted sums of dimensions represent the data. The dimensions for each sample

are known as principal components. These dimensions explain decreasing amounts of

variation in the original data, with the first principal component capturing as much of

the variance as possible. Another commonly applied method is t-SNE (t-Distributed

Stochastic Neighbour Embedding) [54], a non-linear visualization technique which

considers local distances between data points (cells) by combining dimensionality reduc-

tion with random walks on the nearest-neighbour network with the goal of separating

far-apart clusters, while also ensuring all data points can be seen by eye to allow for

comparisons of cluster size. This is a variation of Multidimensional Scaling (MDS),

where PCA is applied on pairwise Euclidean distances to preserve pairwise distances
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in a low-dimensional space. A recent, and increasingly adopted method, is uniform

manifold approximation and projection (UMAP) [55], which has been shown to preserve

more of the global structure within datasets, with an improvement in run time and

reproducibility [56].

While powerful, and popular, these techniques can be heavily a�ected by the

problematic abundance of zeroes in single cell data; an issue which several methods

account for. ZIFA (zero-inflated factor analysis) [57] extends the linear factor analysis

framework, (based on correlations in the data rather than covariances), accounting for

dropout characteristics in the data. The R-package Destiny provides an alternative, non-

linear method using di�usion maps [58]: distance between cells reflects the transition

probability based on several paths of random walks between the cells. This assumes a

smooth nature of the data, and also includes imputation of drop-outs.

Unsupervised clustering techniques provide a mechanism to group cells by similarity.

While this unbiased approach has benefits, the small number of samples and absence of

a way to validate if groupings are “real” poses a problem, along with prior information

on the number or type of groups. The features of single cell data discussed above, such

as dropouts, biases and noise, also add to the di�culty of accurate clustering. Despite

these problems, several tools have been developed for use with scRNA-seq, along

with traditional methods such as hierarchical clustering [59]. SNN-Cliq [60] achieves

clustering by considering similarity calculated using a graph-based approach in which

a shared nearest neighbour (SNN) network is constructed using rankings of similarities

based on expression levels; dense clusters of nodes (cells) are then found. RaceID [29],

while also using similarity in expression between cells (based on Pearson correlation),

utilises a di�erent approach: k-means clustering. In k-means clustering each sample is

associated with a one of k prototypes, so that the total squared distance (inverse of

similarity) from samples to prototypes is minimal. After the initial step, RaceID uses
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an outlier detection algorithm and identifies cells which do not fit the model accounting

for technical and biological noise. This has been used in the detection of rare cell

populations. Another k-means-based tool, Single Cell Consensus Clustering (SC3) [61],

uses consensus clustering [62], an ensemble strategy, to average over parameter choices

in an attempt to make cluster assignments more robust. Another method, SIMLR

[63], uses multiple-kernel learning to infer similarity in a gene expression matrix with a

given number of cell populations. As multiple kernels are used, it is possible to learn a

distance measurement between cells that is specific to the statistical properties of the

scRNA-seq set under investigation. Two widely adopted strategies using a community

detection approach are Louvain [64] and Leiden [65] clustering, In the first method,

clusters are identified by moving nodes individually between groups until the quality of

clusters can no longer be improved. The network is then aggregated, with each cluster

becoming a node, and the steps of node movement and aggregation repeated. While

this leads to an e�cient approach, clusters may be badly connected - a problem which

the Leiden method tackles by improving upon the aggregation step, allowing clusters

to be split.

Cellular trajectory inference and branching analysis

Trajectory analysis is a simpler version of dimensionality reduction, where the assump-

tion is that a 1-dimensional “time” can describe the high-dimensional expression values.

The theory is that during a biological process, changes will happen gradually, so biolog-

ical observations can be ordered compared to each other in terms of pairwise similarity.

While clustering techniques have been used to define discrete population and states for

a long time, trajectory inference is younger in the field of scRNA-seq. However, many

methods have been developed in recent years, and Saelens et al. recently conducted

a comprehensive benchmarking of 45 of these methods [66]. Here, just a subset of

methods are described.
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One of the initial methods for so called pseudotime analysis of single cells was

Monocle [67], which used a minimum spanning tree (MST) strategy to order cells by

the distance to a start cell, based on a technique for putting microarray samples on

a trajectory [68]. In the updated versions of Monocle, the MST strategy has been

replaced by a more sophisticated tree embedding strategy [69, 70].

Di�usion pseudotime (dpt) [27] o�ers an alternative, in which geodesic pairwise

distances between samples on the data manifold are approximated using a di�usion

map representation. Trajectory is then defined as the distance from a start cell along

these distances. A di�erent strategy for trajectory inference is to consider a generative

model for the data, treating “time-points” as hidden (or latent). This leads to the

probabilistic interpretation of PCA, which in turn leads to factor analysis and ZIFA.

Here the expression of each gene can be described as a linear function of an unknown

“time”.

Non-linearity in the data, as described in [67] precludes PCA from being an e�ective

technique for this task. The Gaussian Process Latent Variable Model (GPLVM) allows

gene expression to follow any smooth (non-linear) function over time [71]. While more

computationally demanding than linear versions, this allows cells to be put in the most

likely ordering [71, 72]. This means that the most number of genes exhibit smooth

expression curves with as little noise as possible. Being a probabilistic model, the

benefit is that uninteresting structure in the data can be accounted for directly, such

as batch e�ects or technical factors. It is also possible to incorporate more information

about experimental design through priors [28].

The Ouija method [73] takes a di�erent approach to pseudotime in a couple of ways.

Firstly, it defines a generative model for gene expression in scRNA-seq data based on

ZIFA, to deal with the most common types of measurement noise. Secondly, it is based

on the assumption that a small number of switch-like markers for a biological process
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of interest are known. The cells are then ordered according to the most likely ordering

to confer with the switching genes.

A unique problem in single cell developmental data is that a set of progenitor cells

can develop into multiple distinct cell types. This means the cells will not follow a single

trajectory in the high-dimensional space. A couple of heuristics have been published: in

Wishbone [74], cells are clustered by the pairwise detour distance relative to a reference

cell, using geodesic distance. This method is reported to be correctly recovering the

known stages and bifurcation point of T-cell development in mouse. Another method,

that has been introduced by Haghverdi et al. [27], measures transition between cells

using a random-walk-based distance.

More principled model based approaches have been presented with SCUBA, which

considers transition of cell clusters over time [75], as well as with GPfates / OMGP [28],

where multiple smooth trajectories are explicitly modeled. After inference, each cell gets

assigned a posterior probability of having been sampled from a particular trajectory.

This method has been shown to be e�cient in reconstructing the developmental

trajectories of Th1 and Tfh cell populations during Plasmodium infection in mice.

An interesting recently developed method, partition-based graph abstraction (PAGA),

generates a graph-like map, estimating connectivity of partitions in the data [76]. This

approach provides a way to bridge the clustering type of analysis, as discussed above,

with the continuous nature of many biological processes, as modelled with conventional

pseudotime approaches.
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Gene level analyses

Unwanted factor removal

Uninteresting, largely technical variation can be observed in both bulk RNA-seq and

scRNA-seq experiments. This variation is usually correlated with some common

experimental factor, such as room temperature or stock of reagents. This form of

variation are known as batch e�ects. It is possible to handle batch e�ects by having a

careful balanced experimental design, such as uniformly distributing replicate conditions

across batches. For statistical analysis and inference, if the samples are spread over

multiple batches, this information can directly be accounted for [77]. Additionally,

several statistical methods have been developed to adjust for batch e�ects [78, 79].

One example is ComBat, which removes known batch e�ects using a linear model of

expression from batches where variance is based on an empirical Bayesian framework

[78].

Technical variation in scRNA-seq experiments could be due to mRNA capture

e�ciency, cDNA amplification bias and the rate cDNAs in a library are sequenced. To

estimate technical variation, several methods use spike-in molecules, which are added

with each cell in the same quantity. Risso et al. developed a sleuth of strategies called

RUVSeq that either performs factor analysis on a set of control genes such as ERCC

spike-ins or samples within replicate libraries to identify technical factors which can be

adjusted for [80]. Similar strategies have also been made by others [81–83].

Substantial amount of variation also results from di�erences in cell size or cell cycle

stage of each cell. To adjust for cell cycle e�ects, Buettner et al. have developed single-

cell latent variable model (scLVM), which is a two-step approach that reconstructs cell

cycle state before using this information to obtain adjusted gene expression levels by

linear regression [84]. They have also shown that removing cell cycle e�ects in T cells

reveals sub-populations associated with T-cell di�erentiation [84]. This highlights the
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importance of dissecting biological variation into interesting and uninteresting parts in

correctly characterizing sub-populations.

In recent years, many further methods have been developed for the integration

of discrete experimental batches. One example is canonical correlation analysis (im-

plemented in Seurat [85], which identifies a shared gene correlation structure across

datasets, using this structure to align the datasets. Haghverdi et al. developed a

mutual nearest neighbours (MNN) approach [86] to correct expression between batches.

This method uses ’landmark’ cells, which are representative of cell types or clusters

across all datasets to be integrated. Park et al. provide an alternative approach, using

a batch balanced k nearest neighbour graph (BBKNN) [87] to combine batches. While

these examples highlight just some of many methods available, there will undoubtedly

be further work in this area, particularly given the increasing scale of scRNA-seq data

generated and desire to integrate across experiments.

Identification of highly variable genes

Several methods have been developed to identify genes that show high biological

variability. Brennecke et al. have first estimated technical noise using spike-in molecules

and modeled mean-variance relationship to identify highly variable genes [37]. Kim et

al. have presented a statistical framework to decompose the total variance into the

technical and biological variance based on a generative model, which would help in

identifying variable genes [22]. Another method, BASiCS, uses a Bayesian model which

jointly models spike-ins and endogenous genes and provides posterior distributions for

the extent of biological variability [88].

Identification of di�erentially expressed genes and marker genes

Identification of di�erentially expressed genes and marker genes of subpopulations is a

simple yet important analysis in scRNA-seq studies. Although originally developed

for bulk RNA-seq experiments, methods such as DESeq2 [89] and EdgeR [90] are also
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widely used in scRNA-seq experiments. DESeq2 identifies di�erentially expressed genes

by fitting a generalised linear model (GLM) for each gene, uses shrinkage estimation

to stabilize variance and fold changes, and applies a Wald or likelihood ratio (LR) test

for significance testing [89]. EdgeR fits a GLM with negative binomial (NB) noise for

each gene, estimates dispersions by conditional maximum likelihood, and identifies

di�erential expression using an exact test adapted for overdispersed data [90]. Monocle

also fits a GLM, but dispersion is estimated directly from the data for each gene, since

most single cell studies have enough samples to allow this [67]. For relative abundance

data, dropouts are handled by using a tobit noise model, while using a NB noise model

with imputed dropouts for count data.

One method developed for scRNA-seq experiments, called MAST, uses two-part

generalized linear model that is adjusted for cellular detection rate (dropouts) [91].

Another method, M3Drop, applies Michaelis-Menten modelling of dropouts in scRNA-

seq, that is used to identify genes di�erentially dropped out [92]. SCDE is a Bayesian

method to compare two groups of single cells, taking into account variability in

scRNAseq data due to drop-out and amplification biases and uses a two-component

mixture for testing for di�erences in expression between conditions [93]. Another

method, SINCERA identifies di�erentially expressed genes based on simple statistical

tests such as Wilcoxon rank sum and t-tests [94]. In comparison to these methods,

scDD identifies genes where the overall distribution of values have changed between

conditions. This answers a di�erent question which might be of interest in scRNA-seq

experiments [95]. Using a Bayesian modeling framework, scDD classifies each gene into

one of the four types of changes across two biological conditions: shifts in unimodal

distribution, di�erences in the number of modes, di�erences in the proportion of cells

within modes, or both di�erences in the number of modes and shifts in unimodal

distribution [95].
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Gene-centric expression dynamics through pseudotime analysis

Using an inferred trajectory as described above, samples can be analysed using a

continuous time covariate instead of a few discrete time points. This enables the use of

more sophisticated time-series based analysis techniques for modeling gene expression

dynamics, and allows us to ask more complex questions from the data.

The popular scRNA-seq package Monocle provides a wrapper for the vector gen-

eralised additive model (VGAM) package to investigate how expression changes over

the trajectory. Splines are used to model expression dependence on pseudotime to

allow non-linear trends. The VGAM package allows for more than just expression

levels to be modelled by the splines: with appropriate link functions, allelic expression

balance or isoform usage can be modelled [18]. Splines require several parameters to be

chosen however, and the choices greatly a�ect the results. A non-parametric non-linear

alternative to spline regression is Gaussian Process regression, which can be used in a

likelihood ratio based fashion to identify genes which are dependent on pseudotime

[71, 96].

Often, we want to ask particular questions from the data, in which case parametric

models are useful. In the SwitchDE method, genes which sequentially switch on or o�

can be identified, along with a parameter letting you learn when the switch happens

[97]. Similarly, an assumption can be that genes are described as a transient pulse

over the pseudotime. The package ImpulseDE identifies such genes, while providing

parameters for when in pseudotime the pulse occurs [98].

Correlation analysis and network inference

One important application of scRNA-seq studies is the identification of co-regulated

modules of genes and gene-regulatory networks constructed using gene-to-gene expres-

sion correlations. Here, genes with highly correlated expression levels across cells are

assumed to be co-regulated. Using single-cell transcriptomic data of Th2 cells, Mahata



1.2 Single cell RNA sequencing 21

et al. demonstrated how gene-gene correlations can be used to reveal novel mechanistic

insights; they have applied correlation analysis between steroidogenic enzyme Cyp11a1

and cell surface genes and identified Ly6c1/2 as a marker of the steroid-producing cell

population in mouse [99].

One method to elucidate regulatory interactions in bulk RNA-seq studies is called

the weighted gene co-expression network analysis (WGCNA) [100]. In such a network,

nodes represent genes and edges represent co-expression as defined by correlation and

relative interconnectedness. The method has also been applied in a scRNA-seq study

where the authors have identified a number of functional modules of co-expressed genes

that can describe each embryonic developmental stage in mouse [101].

Although these methods are useful, the inferred networks are undirected; that is,

they do not provide direct regulatory relationships among genes. One method, SCENIC,

aims to address this by constructing gene regulatory networks from scRNA-seq data

[102]. SCENIC defines co-regulated modules, or ’regulons’, using GENIE3 [103] to

identify the targets of transcription factors, and cis-regulatory motif analysis.
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1.3 The human innate immune system

The innate immune system is the body’s first line of defence against damage, rapidly

sensing and responding to infectious or harmful agents. Due to the diversity of potential

threats, a range of mechanisms are utilised to act against infections. These are prompted

by detection of pathogen-associated molecular patterns (PAMPs) - conserved structures

which are predominantly expressed by large groups of pathogens, rather than the host.

One major group of PAMPs is nucleic acids (Gurtler Bowie, 2013). Although there

may be complexity in detecting various RNA and DNA structures due to the similarity

with host nucleic acids, their essential role for pathogen survival means they are a useful

signal, particularly for viruses in which there may be a limited amount of alternative

distinguishing molecular features.

1.3.1 The type I interferon response

To detect these pathogenic signals, there are several classes of pattern recognition

receptors (PRRs) in various cytoplasmic or membrane-bound locations. These include

Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs),

among others. These receptors may function in signalling - activating downstream

pathways to instigate a response - or have a direct e�ector function, blocking pathogenic

replication and propagation [104]. In the case of viral infections, distinct sensors play a

role in the recognition of viral RNA and DNA. In the case of RNA, RIG-I and MDA5

sense cytosolic non-self RNA, with specificity towards di�ering lengths of dsRNA

[105]. In contrast, the presence of viral DNA is sensed through cGAS, leading to the

production of cGAMP and consequent activation of STING [106].

Despite specific recognition pathways, activation of viral sensors converges in

downstream signalling, leading to activation of NF-ŸB, TBK1 and IRF3 to induce
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production of type I interferons (IFNs). In this thesis, the response to RNA viruses is

studied, using synthetic dsRNA to mimic the presence of viral nucleic acids in host

cells. The induction of the type I interferon response through dsRNA sensing is shown

in Figure 1.5.

Fig. 1.5 Induction of the Type I Interferon response.

Interferons are a subset of the class of immune signalling cytokines, and can be

subdivided into type I (IFN-–, IFN-—, IFN-‘, IFN-Ÿ, IFN-Ê), type II (IFN-“) and

type III (IFN-⁄), based upon receptor specificity [107]. Of the type I IFNs, which bind

the heterodimeric IFNAR1-IFNAR2 receptor, IFN-– and IFN-— are the most studied.

There are 14 IFN-– genes and only one IFN-— gene in humans. When bound to type I

IFNs, the IFNAR1-IFNAR2 heterodimer activates JAK1 and TYK2 [108], leading to

phosphorylation of STAT1-STAT2 heterodimers [109]. Consequent migration into the
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nucleus, association with IFN regulation factor 9 (IRF9) and binding to IFN-stimulated

response elements instigates transcription of IFN-inducible genes.

Type I interferons play an important role in the response to viral infections (reviewed

in [110]), and are able to be produced at low levels by most cell types. Certain cells

have been shown to function in producing high levels of these proteins, invoking a

systemic response. Plasmacytoid dendritic cells (pDCs), for example, were identified as

’natural interferon producing cells’ [111]. However, fibroblasts mainly produce IFN-—,

considered the central cytokine responsible for stimulating cells locally. This leads to

altered gene expression, chemokine production, antigen presentation and the induction

of an adaptive immune response (Figure. 1.6).

Fig. 1.6 The role of interferons and inter-cellular communication in the immune response.
(Ivashkiv Donlin, 2014 [112])
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1.3.2 Cell-to-cell heterogeneity in innate immunity

As with many biological processes, the innate immune response is considerably het-

erogenous between cells in an individual, despite cells being genetically identical. This

derives both from the stochastic nature of biochemical reactions within cells (intrinsic)

along with communication between cells and other environmental factors (extrinsic).

Fluctuation in gene expression is one of the largest causes of variation in clonal pop-

ulations, reviewed in [113]. This is due to the low molecular abundance of some key

elements (such as transcription factors) along with the number of chemical reactions

required to turn genetic sequence to functional product. Although modelled for many

systems, a severely reduced view is often taken, with only transcription and translation

included.

Within immunology, stochastic expression of many interleukin genes has been

observed, such as IL-2 [114] and IL-10 [115]. In fibroblasts, large variation in the

induction of IFN-— in response to viral infections has been shown [116]. Furthermore,

heterogeneity in response of coarse-grained cell populations has been studied, such as

macrophages [117, 118] and monocytes [? ]. The considerable advance in single-cell

technologies in recent years, however, will allow further illumination of inter-cellular

variability in innate immunity. For example, scRNA-seq was recently used to reveal

novel dendritic cell and monocyte sub-populations [119]. However, scRNA-seq holds

exciting possibility not only for cell classification, but also in understanding the innate

immune response. One example is the discovery of bimodal transcript splicing in

bone-marrow derived dendritic cells in response to lipopolysaccharide (LPS) treatment

[16].
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1.3.3 Genetic variability in the innate immune response

The hereditary nature of some susceptibility to infectious diseases has long been known,

alongside the variation between individuals in the response to particular pathogens.

Early investigations involved twin studies, which showed a higher concordance in

identical to non-identical twins for some infections, particular those which are chronic

and have low infectivity. Examples of these findings for viral infections include polio-

myelitis and hepatitis B [120]. More recently, the development of high throughput

technologies, as described above, has enabled the identification of single nucleotide

polymorphisms (SNPs) associated with particular infections. Just two examples of

many available are Hepatitis C clearance, for which a SNP in IL28B has been identified

[121], and reduced influenza virus clearance (a SNP in IFITM3; [122]).

Unlike adaptive immunity, in which receptor sequences undergo rearrangement in

somatic cells, the innate immune system’s pattern recognition receptors are germline

encoded, along with signalling components and e�ector mechanisms. Therefore all

aspects of innate immunity, from recognition to action, are likely to be subject to

genetic variation. Genetic analysis of patients with susceptibility to particular infections

has pinpointed elements of the innate immune, and more specifically type I interferon,

response as playing a key role. For example, Zhang et al. [123] described two

children with herpes simplex encephalitis, both with a heterozygous mutation in

TLR3. In dermal fibroblasts from these individuals, treatment with a synthetic dsRNA

(polyinosinic:polycytidylic acid; also known as poly(I:C)) did not induce expression of

IFN-—, IFN-“ or IL-6. More recently, Ciancanelli et al. [124] characterised a patient

with compound heterozygous null mutations in interferon response factor 7, who

su�ered a life threatening primary influenza infection. In this case, dermal fibroblasts

and iPSC-derived epithelial cells from the patient produced reduced amounts of type I

IFN and showed increased viral replication. There have been further studies showing
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deficiency in innate immune signalling pathways in the fibroblasts of a�ected individuals,

such as those with an IRAK1 [125] or DOCK2 [126] mutation.

Moving beyond individuals with a deficient innate response or specific susceptibility,

expression quantitative trait loci (eQTL) approaches been used to characterise genetic

variability within healthy populations. Some studies have identified SNPs in particular

mechanisms, such as the TLR4 pathway [127]. In recent years, however, investigations

have expanded from studying one pathway or pathogen to eQTL mapping in broader

innate immune stimulation. Two studies in which this has been conducted are Fairfax

et al., 2014 [128], where primary CD14+ monocytes were treated with IFN-“ or LPS,

and Lee et al., 2014 [129], in which dendritic cells were stimulated with influenza virus,

LPS, or IFN-—. These studies identified treatment-specific eQTLs, highlighting the

importance of considering genetic variation within the biological context of interest.

However, in these studies changes in expression were measured only at a cell population

level and at distinct time points. Further insight is needed into the genetic e�ect on

variability of innate immune components, gained from single-cell expression studies,

along with the dynamics and regulation of the response.
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1.4 Using single-cell RNA sequencing data to

study genetic variation in the innate immune

response

While there have been significant advances in understanding the genetic basis of

variation in the innate immune response in recent years, there is still a way to go in

defining the intra- and inter-individual components of this variability, particularly in

healthy individuals. In order to do this, a dataset spanning a large number of donors,

profiled at single cell resolution, is required. To this end, this thesis outlines the

establishment of an experimental system using relatively homogenous dermal fibroblast

populations of 70 human individuals obtained from the Human Induced Pluripotent

Stem Cell Initiative (HipSci). Assaying these cells using two stimulation conditions - a

synthetic dsRNA, and Interferon-— - over time allows us to study key questions:

(1) How does the interferon response vary between human individuals and can this

variation be attributed to common genetic variants?

(2) How do di�erent cells from the same donor respond to a danger signal that

should elicit interferon, and how do they respond to a direct interferon stimulus?

Alongside this, the heterogeneity in unstimulated human fibroblasts is characterised,

to understand the variation and clonality seen in genetically identical populations of

fibroblasts. The single-cell resolution provides unprecedented insight into not only the

human genetics of the innate immune response, but also the role of cell-to-cell variation

in this response.


