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3.1 Introduction

Prior to characterising di�erences in the innate immune response within and between

individuals, it is important to understand heterogeneity in resting fibroblasts. Fibrob-

lasts are a diverse cell type, characterised by synthesis of structural proteins and role in

the extracellular matrix. It is known that there are a variety of subtypes across tissues,

however the breadth and molecular functions in humans are incompletely characterised.

Within the skin, there are several fibroblast classes, such as papillary, reticular, and

hair follicle fibroblasts. Fibroblast sub-types in the skin are reviewed in depth in

Lynch Watt, 2018 [136]. In this chapter, I investigate heterogeneity in cultured dermal

fibroblasts by comparing to scRNA-seq data from primary skin samples.

Even within cells classified as the same type, there can be considerable transcrip-

tional heterogeneity. This is reviewed in depth in [38], where the distinction is made

between the stochasticity in biochemical processes (termed ’noise’) and variability in

the observable molecular phenotypes. In brief, this phenotypic variability, which can

be assayed with single cell technologies, is a combination of stochastic noise along with

deterministic regulatory mechanisms. While the role of variability across biological con-

texts has yet to be fully elucidated, it is particularly important in immune-stimulation

contexts to first understand sources of transcriptional heterogeneity within the resting

state prior to activation. The second part of this chapter is focused on characterising

heterogeneity in unstimulated cultured fibroblasts.

Thus far, heterogeneity has been considered solely at a transcriptional level. How-

ever, elements such as ageing, environment and genetic factors can impact mutational

processes, thereby shaping the acquisition of somatic mutations across the life span [137–

141]. The maintenance and evolution of somatic mutations in di�erent sub-populations

of cells can result in clonal structure, both within healthy and disease tissues.
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Targeted, whole-genome and whole-exome DNA sequencing of bulk cell popula-

tions has been utilized to reconstruct the mutational processes that underlie somatic

mutagenesis [142–146] as well as clonal trees [147–149]. Availability of single-cell DNA

sequencing methods (scDNA-seq; [150–152] combined with new computational ap-

proaches have helped to improve the reconstruction of clonal populations [153–159].

However, the functional di�erences between clones and their molecular phenotypes

remain largely unknown. Systematic characterisation of the phenotypic properties of

clones could reveal mechanisms underpinning healthy tissue growth and the transition

from normal to malignant behaviour.

An important step towards such functional insights would be access to genome-wide

expression profiles of individual clones, yielding genotype-phenotype connections for

clonal architectures in tissues. Recent studies have explored mapping scRNA-seq

profiles to clones with distinct copy number states in cancer, thus providing a first

glimpse at clone-to-clone gene expression di�erences in disease [160–163]. Targeted

genotyping strategies linking known mutations of interest to single-cell transcriptomes

have proven useful in particular settings, but remain limited by technical challenges

and the requirement for strong prior information [164–166]. Generally-applicable

methods for inferring the clone of origin of single cells to study genotype-transcriptome

relationships are not yet established. In the final part of this chapter, I present a method

developed by Davis McCarthy and Yuanhua Huang to infer clones from scRNA-seq

data. Using cultured fibroblasts from the HipSci resource, I investigate mutational and

transcriptional heterogeneity across clones.
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3.2 A comparison of in vitro and ex vivo fibroblasts

A pilot experiment was used to investigate heterogeneity in the HipSci fibroblast

samples used. In this study, fibroblasts from three individuals were pooled together

before droplet capture (10X Genomics) and further processing, in order to minimise

confounding batch e�ects. Using a novel method - cardelino, described further below

in Section 3.2 - the donor of origin for each cell was deduced, using the scRNA-seq

data and genotype information available for these lines as part of the HipSci project.

Dimensionality reduction techniques were used to map the high dimensional tran-

scriptomic data onto a more easily interpreted low dimension space. Figure 3.1a shows

the e�ect of various cellular factors, both technical and biological, using t-Stochastic

Neighbourhood Embedding (tSNE) - a non-linear dimensionality reduction method.

Cell cycle, assigned using the Seurat package on the basis of cycle phase marker expres-

sion, and donor of origin are major factors that di�erentiate the cells (leftmost panels).

Number of unique molecular identifiers (UMIs), an indicator of transcript capture and

sequencing depth, along with mitochondrial percentage, an indicator of cell quality,

appear to have a less distinct distribution (rightmost panels), however this analysis

only contains cells which passed the quality control (greater than 500 detected genes

and less than 10% mitochondrial reads). Three variables were regressed out - cell cycle

phase, number of UMIs and mitochondrial percentage - to allow analysis of biological

di�erences of interest. This reduces the contribution of these factors (Figure 3.1b),

while retaining donor di�erences.

As the fibroblasts described within this thesis have been in culture and passaged

several times prior to use, a primary skin dataset produced by the lab of Muzlifah

Hani�a was used for comparison (Chapter 2.4). These data contain several cell types

in addition to fibroblast sub-populations (Figure 3.2a). Cluster-specific markers were
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Fig. 3.1 An overview of a pilot droplet scRNA-seq dataset. a) tSNE visualisations
coloured by cell cycle phase, donor, number of UMIs, and mitochondrial read proportion.
b) Repeat of the tSNE visualisations after regression of cell cycle, number of UMIs
and mitochondrial proportion.

identified using the Seurat v1 package [85], and are more uniquely expressed between

clusters (Figure 3.2b; list of marker genes in Table B.1; Appendix B). To compare

directly between these cells and the in vitro cultured fibroblasts mentioned above,

the datasets were combined and clustering performed again (Figure 3.2c). The two

datasets cluster separately in the combined analysis, however this is likely due to the

large experimental and technical di�erences driving distribution in the tSNE plot.

The expression of markers indicative of ex vivo fibroblasts (Figure 3.2a-b, clusters 0

and 2 - referred to as fibroblast type 1 and 2 respectively) were plotted on the combined

dataset (Figure 3.2d). From these plots, it appears that the in vitro cells are most

similar to a subset of primary fibroblasts (type 2), and that expression of these marker

genes is widespread and relatively homogenous across the in vitro cells. This not only

confirms the isolation of the in vitro fibroblasts to a particular subset, but also the

exclusion of other skin cell types from the population after extraction.
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Fig. 3.2 Comparison of in vitro and ex vivo fibroblasts. a) tSNE visualisation and
clustering of ex vivo skin cells; fibroblasts are shaded in grey. b) Top 10 di�erentially
expressed markers for each cluster; full list with gene names in Table B.1. c) tSNE of
merged ex vivo and in vitro datasets. d) Clustering of merged datasets, with ex vivo
fibroblast populations once again shaded in grey. d) Expression of selected ex vivo
fibroblast cluster markers in the merged dataset.
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3.3 Transcriptional heterogeneity in unstimulated

fibroblasts

While the fibroblasts studied appear to derive from one type, there may be other sources

of heterogeneity within the cell populations. To investigate this further, unstimulated

cells from the large stimulation experiment described in Chapter 2.2 were studied.

3.3.1 An overview of the scRNA-seq dataset

The quantified scRNA-seq data was first examined to gain an overview of the entire

dataset. Prior to applying any filtering steps, there were 32367 cells. Looking at

technical features of this dataset, it is clear that there is a large amount of variability

in the quality and coverage of cells, highlighted by considering the number of reads

mapped per cell, and the number of exogenous spike-in RNAs (ERCCs); Figure 3.3a.

Given the nature of scRNA-seq data, it is critical to perform stringent quality

control prior to downstream analysis. In the biological context presented, this is both

particularly relevant and challenging given the high levels of apoptosis induced alongside

the antiviral response, as seen in Chapter 2.3. While early timepoints were selected

to minimise apoptosis, there is a significant amount of cell death in samples treated

with poly(I:C) for six hours. This is apparent transcriptionally when considering the

number of mitochrondrial transcripts in each cell, which can be used as a transcriptional

indicator of cell death, and is highest in the final stimulation condition (Figure 3.3).

Considering these technical factors, the following thresholds for retaining cells were

applied: greater than 100,000 reads mapped, greater than 40% reads mapped, greater

than 50,000 counts from endogenous genes, greater than 2,000 features (genes), fewer

than 20% of counts from ERCCs and fewer than 20% of counts from mitochondrial

reads. This resulted in 16929 cells being retained.
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Fig. 3.3 Quality control of scRNA-seq data. a) Distribution of technical factors across
cells: number of mapped reads, counts from endogenous reads, total features, ERCC
percentage. Thresholds used for filtering cells shown in red: greater than 100,000
reads mapped, greater than 50,000 counts from endogenous genes, greater than 2,000
features (genes), fewer than 20% of counts from ERCCs and fewer than 20% of counts
from mitochondrial reads.. b) Number of reads from mitochondrial (MT) genes across
stimulation conditions.
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3.3.2 Clustering analysis of unstimulated fibroblasts

Following the quality control step, there were 3979 unstimulated cells across 61 indi-

viduals. Using UMAP (Uniform Manifold Approximation and Projection), it is clear

to see that a major driver of variation is experimental batch e�ect, although cells also

cluster by cell cycle phase (Figure 3.4a). The batch divide arises from experimental

date - it seems that samples from the first 16 experiments form one batch, while the

remainder of samples form a discrete second batch. Although every e�ort was made

to ensure reagents and protocols remained constant across all experiments, it appears

that there was some variation arising from the processing of single-cell samples (this

batch e�ect is not present in bulk RNA samples obtained in parallel). In order to

characterise the dataset as a whole, it is important to correct the expression data to

ensure it is comparable across experiments. In order to do this, the ’integrate’ function

from the Seurat v3 package was applied. This resulted in good mixing of the two

batches in UMAP space, with cell cycle phase now being the major driver of variation

in the dataset (Figure 3.4b).

To further investigate heterogeneity within unstimulated fibroblasts, the cells were

clustered using the Seurat v3 package [167]. This uses a graph-based approach, first

constructing a K-nearest neighbours (KNN) graph, using ’FindNeighbours’ function.

This uses the first 10 principal components to build the graph, refining weights between

cells considering the shared overlap in their local neighbourhood. The ’FindClusters’

function, which determines ’communities’ of cells using a modularity optimisation

approach, was then applied with a resolution of 0.2. This resulted in identification of

five clusters (Figure 3.5a).

To characterise these clusters further, the top 10 marker genes per cluster were

identified using a Wilcoxon rank sum test implemented in the ’FindMarkers’ function.

The expression of these genes across clusters is shown in Figure 3.5b. Enrichment
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Fig. 3.4 Integration of scRNA-seq batches with Seurat. a) Dimensionality reduction
using UMAP on uncorrected data: left, coloured by experimental batch, right, coloured
by cell cycle phase. The first two UMAP dimensions are shown. b) UMAP plots after
using Seurat v3’s ’integrate’ method: left, by batch, right, by cell cycle phase.
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of gene ontology (GO) terms was examined to identify biological processes that may

define these clusters; the significant GO terms are shown in Table B.2.

From this analysis, it appears that there are two major cycling clusters, both

enriched for GO terms such as "cell cycle" and "cell division". The distinction may

lie in the modules of cell cycle genes most highly expressed. Cycling cluster 1, for

example, appears to have a predominance of spindle-related genes, such as ASPM and

the centromeric proteins CENPF and CENPE.

Conversely, there are two clusters which represent non-cycling cells. Both these

clusters have marker genes involved in cell-to-cell interaction and the extracellular

matrix, such as FN1, COL3A1 and POSTN in non-cycling cluster 1, and B4GALT1,

EMP3 in cluster 2. Cluster 1 also has enriched GO terms reflecting these processes.

Again, although there are shared biological functions, cells in the two clusters may

di�er in expression level of subsets of these genes.

The final cluster, composed of a small number of cells, has GO terms related

to diverse processes. However, many of the genes appear to relate to ’regulation

of proliferation’ (UBC, S100A4, S100A6,LGALS1, TMSB4X) or myofibril assembly

(ACTC1, ACTG1, TMSB4X). This cluster comprises a mixed distribution of cell cycle

phases, and could represent proliferative cells which are at a transition between cell

cycle phases.
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Fig. 3.5 Clustering analysis of unstimulated fibroblasts a) Clusters identified using
Seurat v3’s graph-based clustering approach, applying the ’FindNeighbours’ and
’FindClusters’ functions, with a resolution of 0.2. Five clusters are identified. b) The
top 10 marker genes for each cluster are shown, with genes and cells ordered by cluster.
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3.4 Identifying common variants and somatic

mutations in scRNA-seq data

In collaboration with Davis McCarthy and Yuanhua Huang, we undertook a study to

define clones within fibroblast populations. The project aimed to harness the ability to

identify somatic mutations in transcriptomes of individual cells, mapping the cells to a

clonal tree defined on the basis of shared clonal mutations, followed by investigation

of the phenotypic di�erences between these clones. We used the scRNA-seq data of

HipSci fibroblast lines, described in Chapter 2, focusing on 32 lines for which matching

deep whole exome-sequencing data was available through the HipSci consortium. The

full manuscript, including Supplementary Material, is included in Appendix C.

3.4.1 Cardelino: a method for assigning cells to clones using

scRNA-seq data

Cardelino is a Bayesian method for integrating somatic clonal substructure and tran-

scriptional heterogeneity within a population of cells. Briefly, cardelino models the

expressed variant alleles in single cells as a clustering model, with clusters corresponding

to somatic clones with (unknown) mutation states (Figure. 3.6a). Critically, cardelino

leverages imperfect but informative clonal tree configurations obtained from complemen-

tary technologies, such as bulk or single-cell DNA sequencing data, as prior information,

thereby mitigating the sparsity of scRNA-seq variant coverage. Cardelino employs a

variant specific beta-binomial error model that accounts for stochastic dropout events

as well as systematic allelic imbalance due to mono-allelic expression or genetic factors.

Initially, we assessed the accuracy of cardelino using simulated data that mimic

typical clonal structures and properties of scRNA-seq as observed in real data (4

clones, 10 variants per branch, 25% of variants with read coverage, 200 cells, 50 repeat
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experiments). By default, we consider an input clone configuration with a 10% error

rate compared to the true simulated tree (namely, 10% of the values in the clone

configuration matrix are incorrect). Alongside cardelino, we considered two alternative

approaches: Single Cell Genotyper (SCG; [157]) and an implementation of Demuxlet,

which was designed for sample demultiplexing rather than clone assignment ([168];

see Methods and Supp. Fig. S1). In the default setting, cardelino achieves high

overall performance (Precision-Recall AUC=0.965; Figure. 3.6b), outperforming both

SCG and Demuxlet. For example, at a cell assignment confidence threshold (posterior

probability of cell assignment) of P=0.5, cardelino assigns 88% of all cells with an

overall accuracy of 88.6%.

We explored the e�ect of key dataset characteristics on cell assignment, including

the number of variants per clonal branch (Figure. 3.6c) and the expected number

of variants with non-zero scRNA-seq coverage per cell (Figure. 3.6d). As expected,

the number of variants per clonal branch and their read coverage in scRNA-seq are

positively associated with the performance of all methods, with cardelino consistently

outperforming alternatives, in particular in settings with low coverage. We further

explored the e�ects of allelic imbalance on cell assignment (Figure. 3.6e), and found

that cardelino is more robust than SCG and Demuxlet when there is a larger fraction

of variants with high allelic imbalance. We attribute cardelino’s robustness to its

approach of modelling the allelic imbalance per variant, whereas SCG and Demuxlet

both use a global parameter and hence cannot account for variability of allelic imbalance

across sites. We also varied the error rate in the guide clone configuration, either

introducing uniform errors in the configuration matrix by swapping the mutation

states of any variants in any clone (Figure. 3.6f) or by swapping variants between

branches (Figure. 3.6g). In both settings, cardelino is markedly more robust than

Demuxlet, which assumes that the defined reference clonal structure is error free.
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Notably, cardelino retains excellent performance (AUPRC>0.96) at error rates up to

25% (Figure. 3.6f-g), by modelling deviations between the observed and the true latent

tree (Appendix C; Supplementary Figure S2).

We also considered two simplified variants of cardelino, one of which does not

consider the guide clone tree and performs de novo tree reconstruction (cardelino-free),

and a second model that treats the guide tree as fixed without modelling any errors

(cardelino-fixed). These comparisons, further investigating the parameters assessed

in Figure. 3.6, confirm the benefits of the data-driven modelling of the guide clone

configuration as a prior that is adapted jointly while assigning scRNA-seq profiles to

clones (Appendix C; Supplementary Figure S3). We also explored the e�ects of the

number of clones (Appendix C; Supplementary Figure S3c), and the tree topology

(Appendix C; Supplementary Figure S4), again finding that cardelino is robust to these

parameters.

Taken together, these results demonstrate that cardelino is broadly applicable to

robustly assign individual single-cell transcriptomes to clones, thereby reconstructing

clone-specific transcriptome profiles.

3.4.2 Mutational analysis of in vitro fibroblasts

Between 30 and 107 unstimulated cells were assayed per line (median 61 cells after

QC; median coverage: 484k reads; median genes observed: 11,108; Appendix C

Supplementary Table S2). Initially, we considered high-confidence somatic single

nucleotide variants (SNVs) identified based on whole exome sequencing (WES) data

(Appendix C; Methods) to explore the mutational landscape across lines. This reveals

considerable variation in the total number of somatic SNVs, with 41–612 variants per

line (Figure. 3.7a; coverage of 20 reads, 3 observations of alternative allele, Fisher’s

exact test FDR0.1).
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Fig. 3.6 Overview and validation of the cardelino model. (a) Overview and approach.
A clonal tree is reconstructed using DNA-sequencing data to derive a guide clone
configuration. Cardelino then performs probabilistic clustering of single-cell transcrip-
tomes based on variants detected in scRNA-seq reads, assigning cells to clones in
the mutation tree. (b-g) Benchmarking of the cell assignment using simulated data
by changing one variable each time. The default values are highlighted with a star.
(b) Overall assignment performance for a dataset consisting of 200 cells, simulated
assuming a 4-clone structure with 10 variants per branch and non-zero read coverage
for 20% of the variants. An error rate of 10% on the mutation states between the
guide clone configuration and the true clonal tree was used. Shown is the fraction of
true positive cell assignments (precision) as a function of the fraction of assigned cells
(recall), when varying the threshold of the cell assignment probability. The black circle
corresponds to the posterior cell assignment threshold of P=0.5. (c-g) Area Under (AU)
precision-recall curve (i.e. area under curves such as shown in b), when varying the
numbers of variants per clonal branch (c), the fraction of informative variants covered
(i.e., non-zero scRNA-seq read coverage) (d), the precision (i.e., inverse variance) of
allelic ratio across genes; lower precision means more genes with high allelic imbalance
(e), the error rate of the mutation states in clone configuration matrix (f), and the
fraction of variants that are wrongly assigned to branches (g).
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Mutational signature exposures were estimated using the sigfit package [169],

providing the COSMIC 30 signatures as reference [144], and with a highest posterior

density (HPD) threshold of 0.9. Signatures were determined to be significant when

the HPD did not overlap zero. Two signatures (7 and 11) were significant in two or

more donors (Appendix C; Supplementary Figure S5). The majority of SNVs can be

attributed to the well-documented UV signature, COSMIC Signature 7 (primarily C

to T mutations; [144], agreeing with expected mutational patterns from UV exposure

of skin tissues (Figure. 3.7a).

To understand whether the somatic SNVs confer any selective advantage in skin

fibroblasts, we used the SubClonalSelection package to identify neutral and selective

dynamics at a per-line level [170]. Other established methods such as dN/dS [171] and

alternative methods using the SNV frequency distribution [172, 173] are not conclusive

in the context of this dataset, likely due to lack of statistical power resulting from the

low number of mutations detected in each sample. The SubClonalSelection analysis

identifies at least 10 lines with a clear fit to their selection model, suggesting positive

selection of clonal sub-populations (Figure. 3.7a). In other words, a third of the samples

from this cohort of healthy donors contain clones evolving adaptively, which we can

investigate in more detail in terms of transcriptome phenotype.

Next, we reconstructed the clonal trees in each line using WES-derived estimates

of the variant allele frequency of somatic variants that are also covered by scRNA-

seq reads (Appendix C; Methods). Canopy [149] identifies two to four clones per

line (Figure. 3.7a). Briefly, Canopy models the phylogeny of cell growth in a tissue

by depicting a bifurcating tree arising from a diploid germline cell whose daughter

cells are subject to progressive waves of somatic mutations. When a sample of a

tissue is taken, the tree is sliced horizontally, cutting the branches to form “leaves”

or “clones”. Thus each clone represents a subpopulation of cells that share (and are
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identified by) the somatic mutations in their most recent common ancestral cell. To

handle the presence of a subpopulation of cells without somatic mutations, “clone1”

is defined to represent a non-bifurcating, somatic mutation-free branch of the clonal

tree. Thus, with any somatic variants present at sub-clonal frequencies (the case for

all cell lines here), Canopy will infer the presence of at least two clones. Following

Canopy’s inference of clones, we used cardelino to confidently map scRNA-seq profiles

from 1,732 cells (out of a total of 2,044 cells) to clones from the corresponding lines.

Cardelino estimates an error rate in the guide clone configuration of less than 25%

in most lines (median 18.6%), and assigns a large fraction of cells confidently (>90%

for 23 lines; at posterior probability P>0.5). The model identifies four lines with

an error rate between 35-46% and an outlier (vils, a line with few somatic variants),

which demonstrates the utility of the adaptive phylogeny error model employed by

cardelino. We also ran the other four alternative methods on these 32 lines (Appendix

C; Supplementary Figure S12), and found that the de novo methods appear to su�er

from higher uncertainty in recontrustructing clonal trees from scRNA-seq data only

(Appendix C; Supplementary Figure S12C), while using the fixed-guide clonal tree

from bulk exome-seq data may be over-simplified and leads to reduced stability when

considering alternative high-confidence trees (Appendix C; Supplementary Figure

S12D-E).

To further assess the confidence of these cell assignments, we considered, for each

line, simulated cells drawn from a clonal structure that matches the corresponding

line, finding that cardelino gives high accuracy (AUPRC>0.9) in 29 lines, again

clearly outperforming competing methods (Appendix C; Supplementary Figure S13).

Additionally, we observed high concordance (R2 = 0.94) between the empirical cell-

assignment rates and the expected values based on the corresponding simulation for the

same line (Figure. 3.7b). Lines with clones that harbour fewer distinguishing variants
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are associated with lower assignment rates (Appendix C; Supplementary Figure S14),

at consistently high cell assignment accuracy (median 0.965, mean 0.939 - Appendix C;

Supplementary Figure SS15), indicating that the posterior probability of assignment is

calibrated across di�erent settings. We also considered the impact of technical features

of scRNA-seq data on cell assignment, finding no evidence of biased cell assignments

(Appendix C; Supplementary Figure S16-20). Finally, clone prevalences estimated from

Canopy and the fractions of cells assigned to the corresponding clones are reasonably

concordant (adjusted R2 = 0.53), providing additional confidence in the cardelino cell

assignments, while highlighting the value of cardelino’s ability to update input clone

structures using single-cell variant information (Figure. 3.7c).

3.4.3 Transcriptional analysis of in vitro fibroblasts

Initially, we focused on the fibroblast line with the largest number of somatic SNVs

(joxm; white female aged 45-49; Figure. 3.8a), with 612 somatic SNVs (112 detected

both in WES and scRNA-seq) and 79 QC-passing cells, 99% of which could be assigned

to one of three clones (Figure. 3.8a). Principal component analysis of the scRNA-seq

profiles of these cells reveals global transcriptome substructure that reflects to a degree

the somatic clonal structure in this population of cells (Figure. 3.8b). Additionally, we

observed di�erences in the fraction of cells in di�erent cell cycle stages, where clone1

has the fewest cells in G1, and the largest fraction in S and G2/M (Figure. 3.8b, inset

plot; global structure and cell cycle plots for all lines in Appendix C; Supplementary

Figures S24-33). This suggests that clone 1 is proliferating most rapidly. Next, we

considered di�erential expression analysis of individual genes between the two largest

clones (clone 1: 46 cells versus clone 2: 25 cells), which identifies 901 DE genes (edgeR

QL F-test; FDR<0.1; 549 at FDR<0.05; Figure. 3.8c). These genes are approximately

evenly split into up- and down-regulated sets. However, the down-regulated genes are
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Fig. 3.7 Characterisation of mutational and clonal structure in 32 fibroblast lines. a)
Overview and somatic mutation profiles across lines (donors), from left to right: donor
age; number of somatic SNVs; estimated exposure of COSMIC mutational signature
7; probability of selection estimated by SubClonalSelection [170], colour denotes the
selection status based on probability cut-o�s (grey lines), the grey background indicates
results with high uncertainty due to the low number of mutations detected; number of
clones inferred using Canopy [149], with colour indicating the number of informative
somatic SNVs for cell assignment to each clone (non-zero read coverage in scRNA-seq
data). (b) Assignment rate (fraction of cells assigned) using simulated single-cell
transcriptomes (x-axis) versus the empirical assignment rate (y-axis) for each line
(at assignment threshold posterior P>0.5). Colour denotes the average number of
informative variants across clonal branches per line. The line-of-best fit from a linear
model is shown in red, with 95% confidence interval shown in grey. (c) Estimated clone
prevalence from WES data (x-axis; using Canopy) versus the fraction of single-cell
transcriptomes assigned to the corresponding clone (y-axis; using cardelino). Shown
are the fractions of cells assigned to clones one to three as in a, considering the most
likely assignment for assignable cells (posterior probability P>0.5) with each point
representing a cell line. Colour denotes the total fraction of assignable cells per line
(P>0.5). A line-of-best fit from a weighted regression model is shown in red with 95%
confidence interval shown in grey.
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enriched for processes involved in the cell cycle and cell proliferation. Specifically, the

three significantly enriched gene sets are all up-regulated in clone 1 (camera; FDR<0.1;

Figure. 3.8d). All three gene sets (E2F targets, G2/M checkpoint and mitotic spindle)

are associated with the cell cycle, so these results are consistent with the cell-cycle

stage assignments suggesting increased proliferation of clone 1. Taken together, the

results suggest that somatic substructure in this cell population results in clones that

exhibit measurably di�erent expression phenotypes across the transcriptome, with

significant di�erential expression in cell cycle and growth pathways.

To quantify the overall e�ect of somatic substructure on gene expression variation

across the entire dataset, we fitted a linear mixed model to individual genes (Appendix C;

Methods), partitioning gene expression variation into a line (likely donor) component,

a clone component, technical batch (i.e. processing plate), cellular detection rate

(proportion of genes with non-zero expression per cell) and residual noise. As expected,

the line component typically explains a substantially larger fraction of the expression

variance than clone (median 5.5% for line, 0.5% for clone), but there are 194 genes

with a substantial clone component (>5% variance explained by clone; Figure. 3.9a).

Even larger clone e�ects are observed when estimating the clone component in each

line separately, which identifies between 331 and 2,162 genes with a substantial clone

component (>5% variance explained by clone; median 825 genes; Figure. 3.9b). This

indicates that there are line-specific di�erences in the set of genes that vary with clonal

structure.

Next, we carried out a systematic di�erential expression (DE) analysis to assess

transcriptomic di�erences between any pair of clones for each line (considering 31 lines

with at least 15 cells for DE testing - Appendix C; Methods). This approach identifies

up to 1,199 DE genes per line (FDR<0.1, edgeR QL F test). A majority, 61%, of the

total set of 5,289 unique DE genes, are detected in two or more lines, and 39% are
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Fig. 3.8 Clone-specific transcriptome profiles reveal gene expression di�erences for joxm,
one example line. (a) Top: Clonal tree inferred using Canopy [149]. The number of
variants tagging each branch and the expected prevalence (fraction) of each clone is
shown. Bottom: cardelino cell assignment matrix, showing the assignment probability
of individual cells to three clones. Shown below each clone is the fraction of cells
assigned to each clone. (b) Principal component analysis of scRNA-seq profiles with
colour indicating the most likely clone assignment. Inset plot: Cell-cycle phase fractions
for cells assigned to each clone (using cyclone [174]). (c) Volcano plot showing negative
log10 P values versus log fold changes (FC) for di�erential expression between cells
assigned to clone 2 and clone 1. Significant di�erentially expressed genes (FDR<0.1)
are highlighted in red. (d) Enrichment of MSigDB Hallmark gene sets using camera
[175] based on log2 FC values between clone 2 and clone 1 as in c. Shown are negative
log10 P values of gene set enrichments, considering whether gene sets are up-regulated
in clone 1 or clone 2, with significant (FDR < 0.05) gene sets highlighted and labelled.
All results are based on 78 out of 79 cells that could be confidently assigned to one
clone (posterior P>0.5).
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detected in at least three of the 31 lines. Comparison to data with permuted gene labels

demonstrates an excess of recurrently di�erentially expressed genes compared to chance

expectation (Figure. 3.9c, P<0.001; 1,000 permutations - Appendix C; Methods). We

also identify a small number of genes that contain somatic variants in a subset of clones,

resulting in di�erential expression between wild-type and mutated clones (Appendix C;

Supplementary Figure S34).

To investigate the transcriptomic changes between cells in more detail, we used

gene set enrichment analysis in each line. This approach reveals whether there is

functional convergence at a pathway level (using MSigDB Hallmark gene sets; Methods;

[176] ). Of 31 lines tested, 19 have at least one significant MSigDB Hallmark gene set

(FDR<0.05, camera; Methods), with key gene sets related to cell cycle and growth

being significantly enriched in all of those 19 lines. Directional gene expression changes

of gene sets for the E2F targets, G2M checkpoint, mitotic spindle and MYC target

pathways are highly coordinated (Figure. 3.9d), despite limited overlap of individual

genes between the gene sets (Appendix C; Supplementary Figure S35).

Similarly, directional expression changes for pathways of epithelial-mesenchymal

transition (EMT) and apical junction are correlated with each other. Interestingly, these

are anti-correlated with expression changes in cell cycle and proliferation pathways

(Figure. 3.9d). Within individual lines, the enrichment of pathways often di�ers

between pairs of clones, highlighting the variability in e�ects of somatic variants on

the phenotypic behaviour of cells (Figure. 3.9e).

These consistent pathway enrichments across a larger set of donors point to somatic

variants commonly a�ecting the cell cycle and cell growth in fibroblast cell populations.

These results indicate both deleterious and adaptive e�ects of somatic variants on

proliferation, suggesting that a significant fraction of these variants are non-neutral in

the majority of donors in our study.
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Fig. 3.9 Signatures of transcriptomic clone-to-clone variation across 31 lines. (a) Violin
and box plots show the percentage of variance explained by clone, line, experimental
plate and cellular detection rate for 4,998 highly variable genes, estimated using a
linear mixed model (Methods; Appendix C). (b) Percentage of gene expression variance
explained by clone when fitting a linear mixed model for each individual line for the
400 genes with the most variance explained by clone per line (Methods; Appendix C).
Individual lines correspond to cell lines (donors), with joxm highlighted in black and
the median across all lines in red. (c) The number of recurrently di�erentially expressed
(DE) genes between any pair of clones (FDR<0.1; edgeR QL F test), detected in
at least one to 12 lines, with box plots showing results expected by chance (using
1,000 permutations). (d) Left panel: Heatmap showing pairwise correlation coe�cients
(Spearman R, only nominal significant correlations shown (P<0.05)) between signed
P-values of gene set enrichment across lines, based on di�erentially expressed genes
between clones. Shown are the 17 most frequently enriched MSigDB Hallmark gene sets.
Right panel: number of lines in which each gene set is found to be significantly enriched
(FDR<0.05). (e) Heatmap depicting signed P-values of gene set enrichments for eight
Hallmark gene sets in 19 lines. Dots denote significant enrichments (FDR<0.05).
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3.5 Discussion

Within the fibroblast categorisation, several types of fibroblast have been defined

within the skin [136]. Studies into expression of collagen and proteoglycans with

immunohistochemistry have revealed di�erences between papillary and reticular layers

[177, 178] although di�erences in fibroblast type are confounded by other di�erences

in these layers. However, taking an explant culture allows isolation of papillary and

reticular fibroblasts. Applying this approach to human dermis has identified several

di�erences between these fibroblast types, such as rate of cell division [179, 180] and

expression of collagens and proteoglycans [181].

In this chapter, I have shown isolation of the fibroblasts used in my work to one

subtype of fibroblast. However, given the additional complexity within the skin, it is

important to consider that studying one fibroblast type alone will not illuminate the

full in vivo role of fibroblast innate immune response in the skin. Homogeneity in the

resting state provides the benefit of a standardised experimental system, particularly

key when conducting experiments across many donors. However, it is important to

place any findings within the full dermal context, taking into account both fibroblast

heterogeneity and the interaction between fibroblasts and the remaining cell types

within the local environment.

Within the in vitro fibroblasts assayed, the largest source of variation in the scRNA-

seq data derived from experimental batch. However, after integrating experimental

batches, I showed that the largest source of biological heterogeneity in the dataset

arises from cell cycle e�ect. Partitioning of cells highlighted clusters of cycling and

non-cycling cells. In the latter, clusters showed enrichment for GO terms relating to

cell-to-cell communication and involvement in the extracellular matrix, reflecting the

role of fibroblasts within the wider tissue environment.
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Considering intra-individual genetic variability within the fibroblast populations

profiled, we identified clonal structure in 32 of the fibroblast lines for which WES data

was available. Harnessing transcriptomic information for cells assigned to clones, we

identified substantial and convergent gene expression di�erences between clones across

lines. Analysis of clonal evolutionary dynamics using somatic variant allele frequency

distributions revealed evidence for positive selection of clones in ten of 32 lines. These

results support previous observations of clonal populations undergoing positive selection

in normal human eyelid epidermis assayed by targeted DNA sequencing [138, 172, 182].

We shed light on the phenotypic e�ects of this adaptive evolution, identifying

di�erential expression of gene sets implicated in proliferation and cancer such as the

E2F and MYC pathways. This surprising result in healthy tissue suggests pervasive

inter-clonal phenotypic variation with important functional consequences, although

clonal dynamics in vivo in primary tissue may di�er from what we observe in the

fibroblast cell lines. It is intriguing to speculate about potential mechanisms driving

these inter-clonal phenotypic di�erences, which might stem solely from observed somatic

variants, could involve unobserved variants, or could arise through indirect mechanisms

involving (post-)transcriptional regulation or epigenetic di�erences. Further work is

needed to identify drivers of molecular di�erences between clones.


