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Key findings  

● A novel approach for integrating DNA-seq and single-cell RNA-seq data to reconstruct            

clonal substructure for single-cell transcriptomes. 

● Evidence for non-neutral evolution of clonal populations in human fibroblasts.  

● Proliferation and cell cycle pathways are commonly distorted in mutated clonal           

populations. 

 

 

Abstract 

Decoding the clonal substructures of somatic tissues sheds light on cell growth, development and              

differentiation in health, ageing and disease. DNA-sequencing, either using bulk or using single-cell             

assays, has enabled the reconstruction of clonal trees from frequency and co-occurrence patterns of              

somatic variants. However, approaches to systematically characterize phenotypic and functional          

variations between individual clones are not established. Here we present cardelino           

(https://github.com/PMBio/cardelino), a computational method for inferring the clonal tree configuration          

and the clone of origin of individual cells that have been assayed using single-cell RNA-seq               

(scRNA-seq). Cardelino allows effective integration of information from imperfect clonal tree inferences            

based on bulk exome-seq data, and sparse variant alleles expressed in scRNA-seq data. After              

validating our model using simulations, we apply cardelino to matched scRNA-seq and exome             

sequencing data from 32 human dermal fibroblast lines, identifying hundreds of differentially            

expressed genes between cells from different somatic clones. These genes are frequently enriched             

for cell cycle and proliferation pathways, indicating a key role for cell division genes in non-neutral                

somatic evolution.  

Keywords:​ single cell, somatic mutations, clonality 
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Introduction 

 

Ageing, environment and genetic factors can impact mutational processes, thereby shaping the            

acquisition of somatic mutations across the life span ​(Burnet 1974; Martincorena and Campbell 2015;              

Stransky et al. 2011; Hodis et al. 2012; Huang et al. 2018)​. The maintenance and evolution of somatic                  

mutations in different sub-populations of cells can result in clonal structure, both within healthy and               

disease tissues. Targeted, whole-genome and whole-exome DNA sequencing of bulk cell populations            

has been utilized to reconstruct the mutational processes that underlie somatic mutagenesis            

(Nik-Zainal et al. 2012; Alexandrov et al. 2013; Forbes et al. 2017; Bailey et al. 2018; Ding et al. 2018)                    

as well as clonal trees ​(Roth et al. 2014; Deshwar et al. 2015; Jiang et al. 2016)​.  
 

Availability of single-cell DNA sequencing methods (scDNA-seq; ​(N. Navin et al. 2011; Wang et al.               

2014; N. E. Navin 2015) combined with new computational approaches have helped to improve the               

reconstruction of clonal populations ​(K. I. Kim and Simon 2014; N. E. Navin and Chen 2016; Jahn,                 

Kuipers, and Beerenwinkel 2016; Kuipers et al. 2017; Roth et al. 2016; Salehi et al. 2017; Malikic et al.                   

2017)​. However, the functional differences between clones and their molecular phenotypes remain            

largely unknown. Systematic characterisation of the phenotypic properties of clones could reveal            

mechanisms underpinning healthy tissue growth and the transition from normal to malignant            

behaviour.  

 

An important step towards such functional insights would be access to genome-wide expression             

profiles of individual clones, yielding genotype-phenotype connections for clonal architectures in           

tissues. Recent studies have explored mapping scRNA-seq profiles to clones with distinct copy             

number states in cancer, thus providing a first glimpse at clone-to-clone gene expression differences              

in disease ​(Müller et al. 2016; Tirosh et al. 2016; Fan et al. 2018; Campbell et al. 2019)​. Targeted                   

genotyping strategies linking known mutations of interest to single-cell transcriptomes have proven            

useful in particular settings, but remain limited by technical challenges and the requirement for strong               

prior information ​(Giustacchini et al. 2017; Cheow et al. 2016; Saikia et al. 2019)​. Generally-applicable               

methods for inferring the clone of origin of single cells to study genotype-transcriptome relationships              

are not yet established. 

 

To address this, we have developed cardelino: a computational method that exploits variant             

information in scRNA-seq reads to map cells to their clone of origin. We validate our model using                 

simulations and compare its performance to two alternative versions of the cardelino model,             

Single-Cell Genotyper ​(Roth et al. 2016)​, designed for clonal inference from scDNA-seq data, and              

Demuxlet ​(Kang et al. 2018)​, designed to infer sample identity for cells using scRNA-seq and               

reference genotype data. We demonstrate that cardelino allows for accurate assignment of full-length             

single-cell transcriptomes to the clonal substructure in 32 normal dermal fibroblast lines. With linked              
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somatic variants, clone and gene expression information, we investigate gene expression differences            

between clones at the level of individual genes and in pathways, which provides new insights into the                 

dynamics of clones. These findings also extend recent studies using bulk DNA-seq data,             

predominantly in epithelial cells, that have revealed oncogenic mutations and evidence of selective             

clonal dynamics in normal tissue samples ​(Behjati et al. 2014; Martincorena et al. 2015; Simons               

2016b; Martincorena, Jones, and Campbell 2016; Simons 2016a)​. Our approach can be applied to a               

broad range of somatic substructure analyses in population or disease settings to reveal previously              

inaccessible differences in molecular phenotypes between cells from the same individual. 

 

 

Results 

Mapping single-cell transcriptomes to somatic clones with cardelino 

We present cardelino, a Bayesian method for integrating somatic clonal substructure and            

transcriptional heterogeneity within a population of cells. Briefly, cardelino models the expressed            

variant alleles in single cells as a clustering model, with clusters corresponding to somatic clones with                

(unknown) mutation states (​Fig. 1a ​). Critically, cardelino leverages imperfect but informative clonal            

tree configurations obtained from complementary technologies, such as bulk or single-cell DNA            

sequencing data, as prior information, thereby mitigating the sparsity of scRNA-seq variant coverage.             

Cardelino employs a variant specific beta-binomial error model that accounts for stochastic dropout             

events as well as systematic allelic imbalance due to mono-allelic expression or genetic factors.  

 

Initially, we assess the accuracy of cardelino using simulated data that mimic typical clonal structures               

and properties of scRNA-seq as observed in real data (4 clones, 10 variants per branch, 25% of                 

variants with read coverage, 200 cells, 50 repeat experiments; ​Methods ​). By default, we consider an               

input clone configuration with a 10% error rate compared to the true simulated tree (namely, 10% of                 

the values in the clone configuration matrix are incorrect). Alongside cardelino, we consider two              

alternative approaches: Single Cell Genotyper (SCG; ​Roth et al. 2016) and an implementation of              

Demuxlet, which was designed for sample demultiplexing rather than clone assignment ​(Kang et al.              

2018 ​; see ​Methods and ​Supp. Fig. S1)​. In the default setting, cardelino achieves high overall               

performance (Precision-Recall AUC=0.965; ​Fig. 1b​), outperforming both SCG and Demuxlet. For           

example, at a cell assignment confidence threshold (posterior probability of cell assignment) of P=0.5,              

cardelino assigns 88% of all cells with an overall accuracy of 88.6%. 

 

We explore the effect of key dataset characteristics on cell assignment, including the number of               

variants per clonal branch (​Fig. 1c ​) and the expected number of variants with non-zero scRNA-seq               

coverage per cell (​Fig. 1d​). As expected, the number of variants per clonal branch and their read                 

coverage in scRNA-seq are positively associated with the performance of all methods, with cardelino              

consistently outperforming alternatives, in particular in settings with low coverage. We further explore             
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the effects of allelic imbalance on cell assignment (​Fig. 1e ​), and find that cardelino is more robust than                  

SCG and Demuxlet when there is a larger fraction of variants with high allelic imbalance. We attribute                 

cardelino’s robustness to its approach of modelling the allelic imbalance per variant, whereas SCG              

and Demuxlet both use a global parameter and hence cannot account for variability of allelic               

imbalance across sites. We also vary the error rate in the guide clone configuration, either introducing                

uniform errors in the configuration matrix by swapping the mutation states of any variants in any clone                 

(​Fig. 1f​) or by swapping variants between branches (​Fig. 1g​). In both settings, cardelino is markedly                

more robust than Demuxlet, which assumes that the defined reference clonal structure is error free.               

Notably, cardelino retains excellent performance (AUPRC>0.96) at error rates up to 25% (​Fig. 1f-g)​,              

by modelling deviations between the observed and the true latent tree (​Supp. Fig. S2 ​).  
 

We also consider two simplified variants of cardelino, one of which does not consider the guide clone                 

tree and performs ​de novo tree reconstruction (cardelino-free), and a second model that treats the               

guide tree as fixed without modelling any errors (cardelino-fixed). These comparisons, further            

investigating the parameters assessed in ​Fig. 1 ​, confirm the benefits of the data-driven modelling of               

the guide clone configuration as a prior that is adapted jointly while assigning scRNA-seq profiles to                

clones (​Supp. Fig. S3 ​). We also explore the effects of the number of clones (​Supp. Fig. S3c ​), and the                   

tree topology (​Supp. Fig. S4 ​), again finding that cardelino is robust to these parameters.  

 

Taken together, these results demonstrate that cardelino is broadly applicable to robustly assign             

individual single-cell transcriptomes to clones, thereby reconstructing clone-specific transcriptome         

profiles. 

 

Cardelino assigns single cell transcriptomes to clones in human dermal fibroblasts 

Next, we apply cardelino to 32 human dermal fibroblast lines derived from healthy donors that are part                 

of the UK human induced pluripotent stem cell initiative (HipSci; Kilpinen ​et al.​, 2017; ​Supp. Table                

S1 ​). For each line, we generated deep whole exome sequencing data (WES; median read coverage:               

254), and matched Smart-seq2 scRNA-seq profiles using pools of three lines in each processing batch               

(​Methods ​). We assayed between 30 and 107 cells per line (median 61 cells after QC; median                

coverage: 484k reads; median genes observed: 11,108; ​Supp. Table S2 ​). 
 

Initially, we consider high-confidence somatic single nucleotide variants (SNVs) identified based on            

WES data (​Methods ​) to explore the mutational landscape across lines. This reveals considerable             

variation in the total number of somatic SNVs, with 41–612 variants per line (​Fig. 2a; ​coverage of ≥20                  

reads, ≥3 observations of alternative allele, Fisher’s exact test FDR≤0.1; see ​Methods ​). The majority              

of SNVs can be attributed to the well-documented UV signature, COSMIC Signature 7 (primarily C to                

T mutations; ​(Forbes et al. 2017)​, agreeing with expected mutational patterns from UV exposure of               

skin tissues (​Fig. 2a; Supp. Fig. S5; Methods ​).  
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Figure 1 | Overview and validation of the cardelino model. (a) ​Overview and approach. A clonal tree is reconstructed using                    

DNA-sequencing (e.g. deep exome sequencing) data to derive a guide clone configuration. Cardelino then performs probabilistic                

clustering of single-cell transcriptomes based on variants detected in scRNA-seq reads, assigning cells to clones in the mutation                  

tree. ​(b-g) ​Benchmarking of the cell assignment using simulated data by changing one variable each time. The default values                   

are highlighted with a star. ​(b) Overall assignment performance for a dataset consisting of 200 cells, simulated assuming a                   

4-clone structure with 10 variants per branch and non-zero read coverage for 20% of the variants and simulating an error rate of                      

10% on the mutation states between the guide clone configuration and the true clonal tree (​Methods​). Shown is the fraction of                     

true positive cell assignments (precision) as a function of the fraction of assigned cells (recall), when varying the threshold of the                     

cell assignment probability. The black circle corresponds to the posterior cell assignment threshold of P=0.5. ​(c-g) ​Area Under                  

(AU) precision-recall curve (​i.e​. area under curves such as shown in ​b​), when varying the numbers of variants per clonal branch                     

(​c​), the fraction of informative variants covered (i.e., non-zero scRNA-seq read coverage) (​d​), the precision (i.e., inverse                 

variance) of allelic ratio across genes; lower precision means more genes with high allelic imbalance (e), the error rate of the                     

mutation states in clone configuration matrix (f), and the fraction of variants that are wrongly assigned to branches (g)​. ​For                    

details and default parameter settings see ​Methods​.  
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To understand whether the somatic SNVs confer any selective advantage in skin fibroblasts, we used               

SubConalSelection to identify neutral and selective dynamics at a per-line level ​(Williams et al. 2018)​.               

Other established methods such as dN/dS ​(Martincorena et al. 2018) and alternative methods using              

the SNV frequency distribution ​(Simons 2016a; Williams et al. 2016) are not conclusive in the context                

of this dataset, likely due to lack of statistical power resulting from the low number of mutations                 

detected in each sample. The SubClonalSelection analysis identifies at least 10 lines with a clear fit to                 

their selection model, suggesting positive selection of clonal sub-populations (​Fig. 2a ​; ​Supp. Fig. S6 ​;              

Methods ​). In other words, a third of the samples from this cohort of healthy donors contain clones                 

evolving adaptively, which we can investigate in more detail in terms of transcriptome phenotype.  

 

Next, we reconstruct the clonal trees in each line using WES-derived estimates of the variant allele                

frequency of somatic variants that are also covered by scRNA-seq reads (​Methods ​). Canopy ​(Jiang et               

al. 2016) identifies two to four clones per line (​Fig. 2a ​). Briefly, Canopy models the phylogeny of cell                  

growth in a tissue by depicting a bifurcating tree arising from a diploid germline cell whose daughter                 

cells are subject to progressive waves of somatic mutations. When a sample of a tissue is taken, the                  

tree is sliced horizontally, cutting the branches to form “leaves” or “clones”. Thus each clone               

represents a subpopulation of cells that share (and are identified by) the somatic mutations in their                

most recent common ancestral cell. To handle the presence of a subpopulation of cells without               

somatic mutations, “clone1” is defined to represent a non-bifurcating, somatic mutation-free branch of             

the clonal tree. Thus, with any somatic variants present at sub-clonal frequencies (the case for all cell                 

lines here), Canopy will infer the presence of at least two clones. Following Canopy’s inference of                

clones, we use cardelino to confidently map scRNA-seq profiles from 1,732 cells (out of a total of                 

2,044 cells) to clones from the corresponding lines (​Methods; ​for Canopy input trees and output from                

cardelino for all lines see ​Supp. Fig. ​S7-10 ​). Cardelino estimates an error rate in the guide clone                 

configuration of less than 25% in most lines (median 18.6%), and assigns a large fraction of cells                 

confidently (>90% for 23 lines; at posterior probability P>0.5; ​Supp. Fig. S11 ​). The model identifies               

four lines with an error rate between 35-46% and an outlier (​vils​, a line with few somatic variants),                  

which demonstrates the utility of the adaptive phylogeny error model employed by cardelino. We also               

run the other four alternative methods on these 32 lines (​Supp. Fig. S12 ​), and find that the ​de novo                   

methods appear to suffer from higher uncertainty in recontrustructing clonal trees from scRNA-seq             

data only (​Supp. Fig. S12C ​), while using the fixed-guide clonal tree from bulk exome-seq data may be                 

over-simplified and leads to reduced stability when considering alternative high-confidence trees           

(​Supp. Fig. S12D-E​). 
 

To further assess the confidence of these cell assignments, we consider, for each line, simulated cells                

drawn from a clonal structure that matches the corresponding line, finding that cardelino gives high               

accuracy (AUPRC>0.9) in 29 lines, again clearly outperforming competing methods (​Supp. Fig. S13 ​).             

Additionally, we observe high concordance (​R ​2 = 0.94) between the empirical cell-assignment rates             
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and the expected values based on the corresponding simulation for the same line (​Fig. 2b​). Lines with                 

clones that harbour fewer distinguishing variants are associated with lower assignment rates (​Supp.             

Fig. S14 ​), at consistently high cell assignment accuracy (median 0.965, mean 0.939; ​Supp. Fig. S15 ​),               

indicating that the posterior probability of assignment is calibrated across different settings. We also              

consider the impact of technical features of scRNA-seq data on cell assignment, finding no evidence               

of biased cell assignments (​Supp. Fig. S16-20 ​). Finally, clone prevalences estimated from Canopy             

and the fractions of cells assigned to the corresponding clones are reasonably concordant (adjusted              

R ​2 = 0.53), providing additional confidence in the cardelino cell assignments, while highlighting the              

value of cardelino’s ability to update input clone structures using single-cell variant information (​Fig.              

2c ​).  

 
Figure 2 | Parallel deep exome sequencing and scRNA-seq profiling of 32 human dermal fibroblast lines. (a) Overview                  

and somatic mutation profiles across lines, from left to right: donor age; number of somatic SNVs; estimated exposure of                   

COSMIC mutational signature 7; probability of selection estimated by SubClonalSelection ​(Williams et al. 2018)​, colour denotes                

the selection status based on probability cut-offs (grey lines), the grey background indicates results with high uncertainty due to                   

the low number of mutations detected; number of clones inferred using Canopy (Jiang et al., 2016), with colour indicating the                    

number of informative somatic SNVs for cell assignment to each clone (non-zero read coverage in scRNA-seq data). ​(b)                  

Assignment rate (fraction of cells assigned) using matched simulated single-cell transcriptomes (x-axis; ​Methods​) ​versus the               

empirical assignment rate (y-axis) for each line (at assignment threshold posterior P>0.5). Colour denotes the average number                 

of informative variants across clonal branches per line. The line-of-best fit from a linear model is shown in red, with 95%                     
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confidence interval shown in grey. ​(c) ​Estimated clone prevalence from WES data (x-axis; using Canopy) versus the fraction of                   

single-cell transcriptomes assigned to the corresponding clone (y-axis; using cardelino). Shown are the fractions of cells                

assigned to clones one to three as in ​a​, considering the most likely assignment for assignable cells (posterior probability P>0.5)                    

with each point representing a cell line; see ​Supp. Fig. S21 ​for results from four donors with >3 clones). Colour denotes the total                       

fraction of assignable cells per line (P>0.5). A line-of-best fit from a weighted regression model is shown in red with 95%                     

confidence interval shown in grey. 

 

 

Differences in gene expression between clones suggest phenotypic impact of somatic variants 

Initially, we focus on the fibroblast line with the largest number of somatic SNVs (​joxm; ​white female                 

aged 45-49; ​Fig. 2a ​), with 612 somatic SNVs (112 detected both in WES and scRNA-seq) and 79                 

QC-passing cells, 99% of which could be assigned to one of three clones (​Fig. 3a ​). Principal                

component analysis of the scRNA-seq profiles of these cells reveals global transcriptome substructure             

that is aligned with the somatic clonal structure in this population of cells (​Fig. 3b​). Additionally, we                 

observe differences in the fraction of cells in different cell cycle stages, where clone1 has the fewest                 

cells in G1, and the largest fraction in S and G2/M (​Fig. 3b, inset plot; ​PC1 ​in Supp. Fig. S22-23;                    

global structure and cell cycle plots for all lines in ​Supp. Figs. S24-33 ​). This suggests that clone1 is                  

proliferating most rapidly. Next, we consider differential expression analysis of individual genes            

between the two largest clones (clone1: 46 cells ​versus clone2: 25 cells), which identifies 901 DE                

genes (edgeR QL F-test; FDR<0.1; 549 at FDR<0.05; ​Fig. 3c ​). These genes are approximately evenly               

split into up- and down-regulated sets. However, the down-regulated genes are enriched for processes              

involved in the cell cycle and cell proliferation. Specifically, the three significantly enriched gene sets               

are all up-regulated in clone1 (camera; ​FDR<0.1; ​Fig. 3d​). All three gene sets (E2F targets, G2/M                

checkpoint and mitotic spindle) are associated with the cell cycle, so these results are consistent with                

the cell-cycle stage assignments suggesting increased proliferation of clone1.  

 

Taken together, the results suggest that somatic substructure in this cell population results in clones               

that exhibit measurably different expression phenotypes across the transcriptome, with significant           

differential expression in cell cycle and growth pathways. 
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Figure 3 | Clone-specific transcriptome profiles reveal gene expression differences for ​joxm, ​one example line. (a) ​Top:                 

Clonal tree inferred using Canopy (Jiang et al., 2016). The number of variants tagging each branch and the expected prevalence                    

(fraction) of each clone is shown. Bottom: cardelino cell assignment matrix, showing the assignment probability of individual                 

cells to three clones. Shown below each clone is the fraction of cells assigned to each clone. (b) ​Principal component analysis of                      

scRNA-seq profiles with colour indicating the most likely clone assignment. Inset plot: Cell-cycle phase fractions for cells                 

assigned to each clone (using cyclone; Scialdone et al., 2015). (c) ​Volcano plot showing negative log​10 P values versus log fold                     

changes (FC) for differential expression between cells assigned to clone2 and clone1. Significant differentially expressed genes                

(FDR<0.1) are highlighted in red. ​(d) ​Enrichment of MSigDB Hallmark gene sets using camera (Wu and Smyth, 2012) based on                    

log​2 FC values between clone2 and clone1 as in ​c​. Shown are negative log​10 P values of gene set enrichments, considering                     

whether gene sets are up-regulated in clone1 or clone2, with significant (FDR < 0.05) gene sets highlighted and labelled. All                    

results are based on 78 out of 79 cells that could be confidently assigned to one clone (posterior P>0.5; ​Methods​).  
 

Cell cycle and proliferation pathways frequently vary between clones  

To quantify the overall effect of somatic substructure on gene expression variation across the entire               

dataset, we fit a linear mixed model to individual genes (​Methods ​), partitioning gene expression              

variation into a line (likely donor) component, a clone component, technical batch (​i.e ​. processing              

plate), cellular detection rate (proportion of genes with non-zero expression per cell) and residual              

noise. As expected, the line component typically explains a substantially larger fraction of the              
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expression variance than clone (median 5.5% for line, 0.5% for clone), but there are 194 genes with a                  

substantial clone component (>5% variance explained by clone; ​Fig. 4a ​). Even larger clone effects are               

observed when estimating the clone component in each line separately, which identifies between 331              

and 2,162 genes with a substantial clone component (>5% variance explained by clone; median 825               

genes; ​Fig. 4b)​. This indicates that there are line-specific differences in the set of genes that vary with                  

clonal structure. 

 

Next, we carry out a systematic differential expression (DE) analysis to assess transcriptomic             

differences between any pair of clones for each line (considering 31 lines with at least 15 cells for DE                   

testing; ​Methods ​). This approach identifies up to 1,199 DE genes per line (FDR<0.1, edgeR ​QL F                

test). A majority, 61%, of the total set of 5,289 unique DE genes, are detected in two or more lines,                    

and 39% are detected in at least three of the 31 lines. Comparison to data with permuted gene labels                   

demonstrates an excess of recurrently differentially expressed genes compared to chance expectation            

(​Fig. 4c ​, P<0.001; 1,000 permutations; ​Methods ​). We also identify a small number of genes that               

contain somatic variants in a subset of clones, resulting in differential expression between wild-type              

and mutated clones (​Supp. Fig. S34 ​).  
 

To investigate the transcriptomic changes between cells in more detail, we use gene set enrichment               

analysis in each line. This approach reveals whether there is functional convergence at a pathway               

level (using MSigDB Hallmark gene sets; ​Methods ​; ​(Liberzon et al. 2011)​). Of 31 lines tested, 19 have                 

at least one significant MSigDB Hallmark gene set (FDR<0.05, camera; ​Methods ​), with key gene sets               

related to cell cycle and growth being significantly enriched in all of those 19 lines. Directional gene                 

expression changes of gene sets for the ​E2F targets, G2M checkpoint, mitotic spindle and MYC               

target pathways are highly coordinated (​Fig. 4d​), despite limited overlap of individual genes between              

the gene sets (​Supp. Fig. S35 ​).  
 

Similarly, directional expression changes for pathways of epithelial-mesenchymal transition (EMT)          

and apical junction are correlated with each other. Interestingly, these are anti-correlated with             

expression changes in cell cycle and proliferation pathways (​Fig. 4d​). Within individual lines, the              

enrichment of pathways often differs between pairs of clones, highlighting the variability in effects of               

somatic variants on the phenotypic behaviour of cells (​Fig. 4e; ​all lines shown in ​Supp. Fig. S36 ​). 
  

These consistent pathway enrichments across a larger set of donors point to somatic variants              

commonly affecting the cell cycle and cell growth in fibroblast cell populations. These results indicate               

both deleterious and adaptive effects of somatic variants on proliferation, suggesting that a significant              

fraction of these variants are non-neutral in the majority of donors in our study. 
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Figure 4 | Signatures of transcriptomic clone-to-clone variation across 31 lines. (a) Violin and box plots show the                  

percentage of variance explained by clone, line, experimental plate and cellular detection rate for 4,998 highly variable genes,                  

estimated using a linear mixed model (​Methods​). ​(b) ​Percentage of gene expression variance explained by clone when fitting a                   

linear mixed model for each individual line for the 400 genes with the most variance explained by clone per line (​Methods​).                     

Individual lines correspond to cell lines (donors), with ​joxm highlighted in black and the median across all lines in red. ​(c) The                      

number of recurrently differentially expressed (DE) genes between any pair of clones (FDR<0.1; edgeR QL F test), detected in                   

at least one to 12 lines, with box plots showing results expected by chance (using 1,000 permutations). ​(d) Left panel: Heatmap                     

showing pairwise correlation coefficients (Spearman R, only nominal significant correlations shown (P<0.05)) between signed              

P-values of gene set enrichment across lines, based on differentially expressed genes between clones. Shown are the 17 most                   

frequently enriched MSigDB Hallmark gene sets. Right panel: number of lines in which each gene set is found to be significantly                     

enriched (FDR<0.05). ​(e) Heatmap depicting signed P-values of gene set enrichments for eight Hallmark gene sets in 19 lines.                   

Dots denote significant enrichments (FDR<0.05). 
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Discussion 

 

Here, we develop and apply a computational approach for integrating somatic clonal structure with              

single-cell RNA-seq data. This allows us to identify molecular signatures that differ between clonal cell               

populations. Our approach is based on first inferring clonal structure in a population of cells using                

WES data, followed by the assignment of individual single-cell transcriptomes to clones using a              

computational approach called cardelino. Our method enables the efficient reconstruction of           

clone-specific transcriptome profiles from high-throughput assays. Our integrative analysis of bulk           

WES and scRNA-seq data from 32 human fibroblast cell lines reveals substantial phenotypic effects of               

somatic variation, including in healthy tissue.  

 

Central to our approach is cardelino, a robust model for clone inference and the probabilistic               

assignment of cells to clones based on variants contained in scRNA-seq reads. Our approach is               

conceptually related to de-multiplexing methods for single-cell transcriptomes from multiple genetically           

distinct individuals ​(Kang et al. 2018)​. However, cardelino addresses a substantially more challenging             

problem: to distinguish cells from the same individual based on the typically small number of somatic                

variants (​e.g. dozens) that segregate between clones in a population of cells. Cardelino             

simultaneously infers the clonal tree configuration and the clone of origin of individual cells based on                

sparse variant alleles observed in scRNA-seq data, while leveraging imperfect clonal trees derived             

from complementary assays such as bulk exome-seq data.  

 

Inferring clonal trees from any type of data remains a hard problem and all clonal inference methods                 

produce clonal trees with substantial uncertainty, so cardelino’s flexible approach to integrating variant             

information from scRNA-seq and other data sources is a key strength of the method. Our results show                 

that cardelino outperforms methods that use an input clonal tree as fixed and error-free (Demuxlet,               

cardelino-fixed) and methods that do not use any guide tree at all (SCG, cardelino-free), confirming               

the utility of flexible, data-driven incorporation of multiple sources of information on clonal structure.              

Surprisingly, cardelino-free also performs strongly, better than SCG and almost as well as cardelino in               

some settings, demonstrating that our underlying modeling of allele counts in scRNA-seq data works              

well enough to yield excellent clone inference and cell-clone assignment results even when no              

external information about clonal structure is available. 

  

Harnessing transcriptomic phenotypic information for cells assigned to clones in fibroblast lines, we             

identify substantial and convergent gene expression differences between clones across lines, which            

are enriched for pathways related to proliferation and the cell cycle. Analysis of clonal evolutionary               

dynamics using somatic variant allele frequency distributions from WES data reveals evidence for             

positive selection of clones in ten of 32 lines. These results support previous observations of clonal                

populations undergoing positive selection in normal human eyelid epidermis assayed by targeted DNA             

sequencing ​(Martincorena et al. 2015; Simons 2016b; Martincorena, Jones, and Campbell 2016;            
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Simons 2016a)​. We shed light on the phenotypic effects of this adaptive evolution, consistently              

identifying differential expression of gene sets implicated in proliferation and cancer such as the E2F               

and MYC pathways. This surprising result in healthy tissue suggests pervasive inter-clonal phenotypic             

variation with important functional consequences, although we do note that clonal dynamics ​in vivo in               

primary fibroblast tissue may differ somewhat from what we observe in the fibroblast cell lines. It is                 

intriguing to speculate about potential mechanisms driving these inter-clonal phenotypic differences,           

which might stem solely from observed somatic variants, could involve unobserved variants, or could              

arise through indirect mechanisms involving (post-)transcriptional regulation or epigenetic differences.          

Further work will be needed to identify drivers of molecular differences between clones across              

biological systems. 

  
The clones studied here each represent a subpopulation of cells that share and are identified by the                 

somatic variants in their most recent common ancestral cell. Individual cells in each clone would be                

undergoing further mutation that could lead to genetic and molecular differences between cells             

grouped into the same clone, and so cells assigned to a given clone will not be completely genetically                  

or transcriptomically homogenous. Thus, within-clone heterogeneity could limit the ability of           

downstream analyses to identify differences in expression or molecular phenotypes between clones.            

Clonal inference depends heavily on the set of somatic variants supplied, so careful calling of somatic                

SNVs is a vital step before clonal inference with Canopy, cardelino and other tools. We found clonal                 

inference methods to perform better with strictly filtered somatic SNVs, so here we preferred a               

conservative somatic variant calling approach that emphasised specificity over sensitivity. Future           

studies would therefore benefit from higher-depth sequencing of DNA, either with bulk or single-cell              

approaches, to better identify somatic variants and thus enable confident inference of more complex              

clonal structures. Increasing both the number of genetically distinct individuals and the numbers of              

cells assayed per individual would further improve power to find molecular differences between clones. 

 

While we use clonal trees from bulk WES data as input to cardelino ​in this study, our method is                   

general and can exploit prior information on clonal substructure inferred from either bulk or single-cell               

DNA-seq data. Our cardelino-free method also works when no external information on clonal structure              

is available. The methods presented here can be applied to any system in which somatic variants tag                 

clonal populations of cells and can be accessed with scRNA-seq assays. Though not explored here,               

we also expect the cardelino model to be effective for other single-cell ‘omics assays that capture                

somatic variant information, such as those profiling chromatin accessibility ​(Buenrostro et al. 2015) or              

methylation ​(Guo et al. 2013; Smallwood et al. 2014)​. Assignment of cells to clones relies on coverage                 

of somatic variants in scRNA-seq reads, so cell populations with relatively fewer somatic variants may               

require full-length transcriptome sequencing at higher coverage per cell to enable confident            

assignments. Our inference methods in cardelino are computationally efficient, so will comfortably            

scale to multi-site samples and many thousands of cells. Thus, cardelino will be applicable to               
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high-resolution studies of clonal gene expression in both healthy and malignant cell populations as              

well as ​in vitro ​models.  

 

Taken together, our results highlight the utility of cardelino to study gene expression variability in               

clonal cell populations and suggest that even in nominally healthy human fibroblast cell lines there are                

clonal populations with growth advantages, opening new avenues to study cell behaviour in clonal              

populations.  
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Methods 

 

The cardelino model 

The cardelino model jointly infers the clonal tree configuration and assigns single cells to one of the                 

clones by modelling the expressed alleles with a probabilistic clustering model (see graphical model in               

Supp. Fig. S37 ​). The unobserved clonal tree configuration ​C is an ​N​-​by-​K ​binary ​matrix for ​N variants                 

and ​K clones encoding the mutation profile for each clone. We let ​c​i,k​=​1 if somatic variant ​i is present in                    

clone ​k and ​c​i,k​=​0 otherwise. Cardelino allows for incorporating a guide clone configuration Ω (an               

analogous binary matrix) as prior, for which an appropriate relaxation (or error) rate ξ is inferred. The                 

probability of the entries in the latent clonal configuration matrix C are modelled as  

. (1) 

The prior clone configuration Ω is assumed to be informative but imperfect. In this study, we used the                  

clone configuration derived from bulk exome-seq data by Canopy to define the prior Ω and to estimate                 

the number of clones.  

 

Based on scRNA-seq data, we extract for each cell and variant that segregates between clones the                

number of sequencing reads that support the reference allele (reference read count) or the alternative               

allele (alternate read count) respectively. We denote the variant-by-cell matrix of alternate read counts              

by ​A ​with element ​a​i,j denoting the number of reads supporting the alternative allele for variant ​i in cell ​j                    

and similarly the variant-by-cell matrix of total read counts (sum of reference and alternate read               

counts) by ​D ​. Entries in ​A and ​D matrices are non-negative integer values, with missing entries in the                  

matrix ​D ​ ​indicating zero read coverage for a given cell and variant. 

 

Fundamentally, we model the alternate read count using a binomial model, using a variant-specific              

beta distribution on the binomial rate, thereby modelling overdispersion as well as systematic errors.              

For a given site in a given cell, there are two possibilities: the variant is “absent” in the clone the cell is                      

assigned to or the variant is “present”, as encoded in the configuration matrix ​C​. Thus, the “success                 

probability” 𝜽 for the binomial model for each variant, where success is defined as observing an                

alternate read in the scRNA-seq reads, is modelled using two (sets of) parameters: 𝜃​0 for homozygous                

reference alleles (variant absent), and 𝜽​1 for heterozygous variants (variant present). The likelihood for              

cell ​j​ given an assignment to clone ​k​ follows then as a product of binomial distributions, 

(3) 

 

where ​I​j ​is the identity of the specific clone cell ​j is assigned to, and ​a​j and ​d​j are the observed                     

alternate and total read count vectors, respectively, for variants 1 to ​N in cell ​j​. The parameter vector 𝜽                   

is a set of the unknown binomial success parameters of binomial distributions for modelling the allelic                
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read counts as described above. Specifically, 𝜃​0 ​denotes the binomial success rate for the alternative               

allele when ​c​i,k​=​0 ​(variant absent), thereby accounting for sequencing errors or errors in the clonal tree                

configuration, and 𝜽​1 ​={𝜃​1 ​,𝜃​2 ​...,𝜃​N ​} denotes a vector of binomial parameters, one for each variant, for              

c​i,k​=​1​. The latter binomial rates model the effect of allelic imbalance, which means the probability of                

observing alternate reads at frequencies that differ from 0.5 for true heterozygous sites (see ​Supp.               

Methods ​for details).  

 

To capture the uncertainty in the binomial success probabilities, we introduce beta prior distributions              

on 𝜃​0 and ​𝜃​1 ​. To ensure sensible prior distributions, we estimate the beta parameters from the                

scRNA-seq at known germline heterozygous variants for highly expressed genes (​Supp. Fig. S38 ​).             

For example, in the fibroblast dataset considered here, this approach yielded prior parameters of beta               

(0.2, 99.8) for ​𝜃​0 and beta (0.45, 0.55) for ​𝜃​i​, ​i​>0​. The prior probability that cell ​j belongs to clone ​k is                      

modelled using an  uniform prior such that ​P(I​j​= k|𝝅) = 𝜋​k​ =​1​/K​ for all ​k​.  
 

The joint posterior probability of clonal tree configuration ​C ​, cell assignment ​I and the parameters ​𝜃                

and ξ can be described as follows. 

(4) 

We use a Gibbs sampler to infer this posterior distribution, and the details of the algorithm can be                  

found in ​Supp. Methods ​, where we also present two alternative versions of cardelino: cardelino-free              

without any informative clone configuration prior and cardelino-fixed assuming that the clone            

configuration prior is fixed and error-free (see ​Supp. Methods and ​Supp. Fig. S3 ​). Despite the full                

Bayesian approach, cardelino is computationally efficient, enabling the assignment of hundreds of            

cells within minutes using a single compute node. These methods will comfortably scale to datasets               

with many thousands of cells. 

 

Alternative methods 

Different from cardelino, two alternative methods with distinct strategies are compared: Demuxlet            

which assumes the guide clonal tree is perfect ​(Kang et al. 2018)​, and SingleCellGenotyper (SCG)               

which does not take any guide clonal tree ​(Roth et al. 2016)​. 
 

Demuxlet requires a BAM file as input to obtain an empirical sequencing error rate from the                

sequencing quality score, which is not compatible with our simulated allelic read count matrices.              

Therefore, we re-implemented the core model of Demuxlet by following the third equation in the online                

method and the Supplementary Table S3 in its original paper ​(Kang et al. 2018)​. We set the                 

sequencing error rate to 0.003 for all reads, by matching our simulation settings. We also compared                

our implementation and the original implementation on demultiplexing pooled scRNA-seq data, and            

found they are perfectly concordant (​Supp. Fig. S1 ​). 
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For SCG, the input is a matrix of categorical values denoting the measured genotype states for each                 

variant in each cell. Here, our raw observation is the alternative and reference allelic read counts,                

hence we need to transform the observed raw counts into genotype states. As the false positive rate is                  

mostly very low (i.e., observing an alternative allelic read from homozygous reference genotype), we              

simply take the genotype ​g ​ij for variant ​i in cell ​j as 1 (i..e, heterozygous) if there is any alternative                    

allelic read (i.e., ​a ​ij ​>0), otherwise we take ​g ​ij ​=0 (i.e., homozygous reference). In case there is no                

expression, we give a missing value ​g ​ij ​=3. For running SCG, we used the run_singlet_model mode               

and configured the hyper-parameters as follows: kappa_prior=1, gamma_prior=[[30, 0.3], [4, 4]], and            

state_prior=[1, 1], which match our simulation settings. Note, we ran SCG from a Python wrap function                

in order to fix the first clone as a base clone, i.e., with no mutations. 

 

Additionally, we included two variants of cardelino with similar strategies to SCG and Demuxlet:              

cardelino-fixed, similar to Demuxlet, assumes the guide clonal tree is perfect and cardelino-free,             

similar to SCG, does not use any guide clonal tree. The implementation of these two cardelino variants                 

are described in the Supp. Methods. These five methods are compared with simulations in different               

settings (​Supp. Fig. S3 ​ and ​S13 ​). 
 

The inferred clone labels may not be best aligned to the simulated clones, especially for SCG and                 

cardelino-free that do not use any guide clone configuration, hence before evaluation we aligned the               

inferred clones to the simulated truth (or the input guide clones) by re-ordering the inferred clones to                 

reach the lowest number of conflicting mutation states between two configuration matrices. 

 

Cell culture 

Dermal fibroblasts, derived from skin-punch samples from the shoulder of 32 donors (White British,              

age range 30-75), were obtained from the HipSci project (​http://hipsci.org)​. Following thawing,            

fibroblasts were cultured in supplemented DMEM (high glucose, pyruvate, GlutaMAX (Life           

Technologies / 10569-010), with 10% FBS (Lab Tech / FB-1001) and 1% penicillin-streptomycin (Life              

Technologies / 15140122) added. 18 hours prior to collection, cells were trypsinised (Life             

Technologies / 25300054), counted, and seeded at a density of 100,000 cells per well (6 well plate). 

 

Cell pooling, capture and full-length transcript single-cell RNA sequencing 

Cells were washed with PBS, trypsinised, and resuspended in PBS (Gibco / 14190-144) + 0.1% DAPI                

(AppliChem / A1001). Cells from three lines were pooled and consequently sorted on a Becton               

Dickinson INFLUX machine into plates containing 2uL/well lysis buffer. Single cells were sorted             

individually (using FSC-W vs FSC-H), and apoptotic cells were excluded using DAPI. Cells from each               

three-plex cell pool were sorted across four 96-well plates. Reverse transcription and cDNA             

amplification was performed according to the Smart-seq2 protocol ​(Picelli et al. 2014)​, and library              
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preparation was performed using an Illumina Nextera kit. Samples were sequenced using paired-end             

75bp reads on an Illumina HiSeq 2500 machine. 

 

Bulk whole-exome sequencing data and somatic variant calling 

We obtained bulk whole-exome sequencing data from HipSci fibroblast (median read coverage: 254)             

and derived iPS cell lines (median read coverage: 79) released by the HipSci project ​(Streeter et al.                 

2016; Kilpinen et al. 2017)​. Sequenced reads were aligned to the GRCh37 build of the human                

reference genome ​(Church et al. 2011) using ​bwa ​(Li 2013)​. To identify single-nucleotide somatic              

variant sites in the fibroblast lines, we compared variant allele frequencies for putative somatic variants               

in the fibroblast and matching iPS samples, using the iPS line as the reference “normal” sample in the                  

absence of true germline samples for these lines. As the iPS lines were derived from their matching                 

fibroblast lines, this comparison flips the usual tumour-normal comparison exploited in standard            

somatic mutation calling pipelines. As such, somatic variants present in a fibroblast sample are also               

expected to be present in the matching iPS sample, violating key assumptions of established somatic               

variant callers such as MuTect2 ​(Cibulskis et al. 2013) and Strelka2 ​(S. Kim et al. 2018)​. Thus, we                  

apply a variant calling approach specific to our experimental setting here.  

 

For each exome sample, we searched for sites with a non-reference base in the read pileup using                 

bcftools/mpileup ​(Li et al. 2009)​. In the initial pre-filtering we retained sites with a per-sample coverage                

of at least 20 reads, at least three alternate reads in either fibroblast or iPS samples and an allele                   

frequency less than 5% in the ExAC browser ​(Karczewski et al. 2017) and 1000 Genomes data ​(The                 

1000 Genomes Project Consortium 2015)​. A Fisher exact test ​(Fisher 1922) implemented in             

bcftools/ad-bias was then used to identify sites with significantly different variant allele frequency             

(VAF) in the exome data between fibroblast and iPS samples for a given line (Benjamini-Hochberg               

FDR < 10%). Sites were removed if any of the following conditions held: VAF < 1% or VAF > 45% in                     

high-coverage fibroblast exome data; fewer than two reads supporting the alternative allele in the              

fibroblast sample; VAF > 80% in iPS data (to filter out potential homozygous alternative mutations);               

neither the iPS VAF or fibroblast VAF was below 45% (to filter out variants with a “significant”                 

difference in VAF but are more likely to be germline than somatic variants). We further filtered sites to                  

require uniqueness of sites across donors as it is highly unlikely to observe the same point mutation in                  

more than one individual, so such sites almost certainly represent technical artefacts. Overall, this              

somatic variant calling approach aims to achieve higher specificity at the cost of lower sensitivity, so is                 

conservative and should limit the inclusion of false-positive somatic variants in our callset. 

 

We used bcftools/cnv (Danecek et al., 2016) to call copy number aberrations in fibroblasts. Calls were                

filtered to exclude CNAs with quality score <2, deletions with <10 markers and duplications with <10                

heterozygous markers. We also excluded any calls that were smaller than 200Kb. 
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Identification of mutational signatures 

Signature exposures were estimated using the ​sigfit package ​(Gori and Baez-Ortega 2018)​, providing             

the COSMIC 30 signatures as reference ​(Forbes et al. 2017)​, and with a highest posterior density                

(HPD) threshold of 0.9. Signatures were determined to be significant when the HPD did not overlap                

zero. Two signatures (7 and 11) were significant in two or more donors.  

 

Identification of selection dynamics 

Several methods have been developed to detect deviations from neutral growth in cell populations              

(Simons 2016a; Williams et al. 2016, 2018; Martincorena et al. 2018)​. Methods such as dN/dS or                

models assessing the fit of neutral models to the data need a high number of mutations to determine                  

selection/neutrality. Given the relatively low number of mutations found in the donors in this study,               

these models are not applicable. We used the package ​SubClonalSelection          

(https://github.com/marcjwilliams1/SubClonalSelection.jl) in ​Julia 0.6.2 which works with a low number          

of mutations (> 100 mutations; ​Williams et al. 2018)​. The package simulates the fit of a neutral and a                   

selection model to the allele frequency distribution, and returns a probability for the selection model to                

fit the data best. 

 

At small allele frequencies the resolution of the allele frequency distribution is limited by the               

sequencing depth. We chose a conservative lower resolution limit of (Shin et al. 2017)​. At          .05f min = 0      

the upper end of the allele frequency distribution we chose a cut-off at to account for ploidy             .45f max = 0      

( ). For the classification of the donors, we introduced cut-offs on the resulting selection probability= 2                

of the algorithm. Donors with a selection probability below 0.3 are classified as ‘neutral’, above 0.7 as                 

‘selected’. Donors which are neither ‘selected’ nor ‘neutral’ remain ‘undetermined’. See Fig. 2a and              

Supp. Fig. S6 ​for the results of the classification and fit of the models to the data. ​subClonalSelection                  

assumes that the total population of cells is expanding exponentially and unfortunately does not allow               

to check for alternative growth hypotheses. However, we expect the growth dynamics not to have a                

big impact on the VAF distributions (in the extreme case of a constant population the VAF decay                 

dynamics change to 1/f from 1/f^2 but still show peaks for selected clones; compare Figure 1 in                 

Williams et al. 2018 ​). Hence, the comparison of the selection model versus the neutral model should                

lead to meaningful results. 

 

Single-cell gene expression quantification and quality control 

Raw scRNA-seq data in CRAM format was converted to FASTQ format with ​samtools ​(v1.5), before               

reads were adapter- and quality-trimmed with ​TrimGalore! ​(github.com/FelixKrueger/TrimGalore)        

(Martin 2011)​. We quantified transcript-level expression using Ensembl v75 transcripts ​(Flicek et al.             

2014) by supplying trimmed reads to ​Salmon v0.8.2 and using the “--seqBias”, “--gcBias” and “VBOpt”               

options ​(Patro et al. 2017)​. Transcript-level expression values were summarised at gene level             

(estimated counts) and quality control of scRNA-seq data was done with the ​scater package              
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(McCarthy et al. 2017) and normalisation with the ​scran package ​(Lun, Bach, and Marioni 2016; Lun,                

McCarthy, and Marioni 2016)​. Cells were retained for downstream analyses if they had at least 50,000                

counts from endogenous genes, at least 5,000 genes with non-zero expression, less than 90% of               

counts from the 100 most-expressed genes in the cell, less than 20% of counts from ERCC spike-in                 

sequences and a ​Salmon mapping rate of at least 40% (​Supp. Table S2 ​). This filtering approach                

retains 63.7% of assayed cells.  

 

Deconvolution of donors from pools 

To increase experimental throughput in processing cells from multiple distinct donor individuals (​i.e.             

lines), and to ensure an experimental design robust to batch effects, we pooled cells from three lines                 

in each processing batch, as described above. As such, we do not know the donor identity of each cell                   

at the time of sequencing and cell-donor identity must be inferred computationally. Thus, for both               

donor and, later, clone identity inference it is necessary to obtain the count of reads supporting the                 

reference and alternative allele at informative germline and somatic variant sites. Trimmed FASTQ             

reads (described above) were aligned to the GRCh37 p13 genome with ERCC spike-in sequences              

with STAR in basic two-pass mode ​(Dobin et al. 2012) using the GENCODE v19 annotation with                

ERCC spike-in sequences ​(Searle et al. 2010)​. We further use ​picard ​(Broad Institute 2015) and               

GATK version 3.8 ​(McKenna et al. 2010) ​to mark duplicate reads (​MarkDuplicates​), split cigar reads               

(​SplitNCigarReads​), realign indels (​IndelRealigner​), and recalibrate base scores (​BaseRecalibrator​).  
 

For cell-donor assignment we used the ​GATK HaplotypeCaller to call variants from the processed              

single-cell BAM files at 304,405 biallelic SNP sites from dbSNP ​(Sherry et al. 2001) build 138 that are                  

genotyped on the Illumina HumanCoreExome-12 chip, have MAF > 0.01, Hardy-Weinberg equilibrium            

P < 1e-03 and overlap protein-coding regions of the 1,000 most highly expressed genes in HipSci iPS                 

cells (as determined from HipSci bulk RNA-seq data). We merged the per-cell VCF output from ​GATK                

HaplotypeCaller across all cells using ​bcftools ​version 1.7 ​(Danecek et al. 2011, 2016) and filtered               

variants to retain those with MAF > 0.01, quality score > 20 and read coverage in at least 3% of cells.                     

We further filtered the variants to retain only those that featured in the set of variants in the                  

high-quality, imputed, phased HipSci genotypes and filtered the HipSci donor genotype file to include              

the same set of variants.  

 

We used the ​donor_id function in the cardelino package to assign cells to donors. This function                

assigns cells to donors by modelling alternative allele read counts with given genotypes of input               

donors. For a single germline variant, the three base genotypes (as minor allele counts) can be 0, 1                  

and 2. For doublet genotype profiles generated by combining pairs of donor genotypes, two additional               

combinatory genotypes, 0.5 and 1.5 are allowed. We assume that each genotype has a unique               

binomial distribution whose parameters are estimated by an EM algorithm in a framework similar to               

clone assignment (described above; see ​Supp. Methods ​). When we enable doublet detection, the             
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posterior probabilities that a cell comes from any of the donors provided, including doublet donors, are                

calculated for donor assignment. There are 490 available HipSci donors, so we run cardelino in two                

passes on each plate of scRNA-seq data separately. In the first pass, the model outputs the posterior                 

probability that each cell belongs to one of the 490 HipSci donors, ignoring the possibility of doublets.                 

In the second pass, only those donors with a posterior probability greater than 0.95 in at least one cell                   

are considered by the model as possible donors and doublet detection is enabled. After the second                

pass, if the highest posterior probability is greater than 0.95, more than 25 variants have read                

coverage, and the doublet probability is less than 5% then we provisionally assign the cell to the donor                  

with the highest posterior probability. If the provisionally assigned donor is one of the three donors                

known to have been pooled together for the specific plate, then we deem the cell to be confidently                  

assigned to that donor, otherwise we deem the cell to have “unassigned” donor. With this approach,                

97.4% of cells passing QC (see above) are confidently assigned to a donor (​Supp. Fig. S39 ​). Of the                  

cells that are not confidently assigned to a donor, 2.1% are identified as doublets by cardelino and                 

0.5% remain “unassigned” due to low variant coverage or low posterior probability​. Thus, we have               

2,338 QC-passing, donor-assigned cells for clonal analysis.  

 

Clonal inference 

We inferred the clonal structure of the fibroblast cell population for each of the 32 lines (donors) using                  

Canopy ​(Jiang et al. 2016)​. We used read counts for the variant allele and total read counts at filtered                   

somatic variant sites from high-coverage whole-exome sequencing data from the fibroblast samples            

as input to Canopy. In addition to the variant filtering described above, input sites were further filtered                 

for tree inference to those that had non-zero read coverage in at least one cell assigned to the                  

corresponding line. We used the BIC model selection method in Canopy to choose the optimal number                

of clones per line. Here, for each of the 32 lines, we considered the highest-likelihood clonal tree                 

produced by Canopy, along with the estimated prevalence of each clone and the set of somatic                

variants tagging each clone as the given clonal tree for cell-clone assignment. 

 

Cell-clone assignment 

For cell-clone assignment we required the read counts supporting reference and alternative alleles at              

somatic variant sites. We used the ​bcftools version 1.7 ​mpileup and ​call methods to call variants at                 

somatic variant sites derived from bulk whole-exome data, as described above, for all confidently              

assigned cells for each given line. Variant sites were filtered to retain variants with more than three                 

reads observed across all cells for the line and quality greater than 20. We retained cells with at least                   

two somatic variants with non-zero read coverage (2,044 cells across 32 lines). From the filtered VCF                

output of ​bcftools we obtained the number of reads supporting the alternative allele and the total read                 

coverage for each somatic variant site with more than three reads covering the site, in total, across all                  

the line’s cells. In general, read coverage of somatic variant sites in scRNA-seq data is sparse, with                 

over 80% of sites for a given cell having no overlapping reads. We used the scRNA-seq read counts at                   
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the line’s somatic variant sites to assign QC-passing cells from the line to clones using the ​clone_id                 

function in the cardelino R package.  

 

Simulations to benchmark cell to clone assignment 

We simulated data to test the performance of cardelino as follows. First, given a clonal tree                

configuration ​C ​(​N​-​by-​K ​binary matrix), a given number of cells are generated (e.g. 200, see below),                

whose genotypes are sampled from ​K clones following a multinomial distribution parameterised by             

clonal fractions ​F​. Second, given a matrix ​D (​N​-by-​M ​matrix) of sequencing coverage for ​N sites in ​M                  

cells, we uniformly sample the coverage profiles from these ​M cells into a given number of cells for                  

simulation. Third, after having the genotype ​h​ij​=c​i,Ij ​and the sequencing depth ​d​ij for variant ​i in cell ​j                  

from the previous two steps, we can generate the read count ​a​ij for the alternative allele by sampling                  

from a binomial distribution with success parameter 𝜃​0 if ​h​ij​=​0 or with an allele-specific expression               

parameter ​𝜃​i if ​h​ij​=​1. Note, both 𝜃​0 and ​𝜃​i are randomly generated from beta prior distributions, whose                 

parameters are estimated from experimental data. 

 

Based on the above simulation workflow, two simulation experiments are performed to evaluate the              

accuracy and robustness of cardelino. One simulation was performed with synthesizing the same             

number of cells as seen for each of the 32 lines, where input parameters are from the observed                  

matrices ​C and ​D ​, clonal fraction ​F​, and cardelino-learned 𝜽 from each line. To match the error rate in                   

the guide clone configuration as observed in experimental data, we swapped the same fraction of               

mutation states for non-base clones in the guide configuration matrix ​C when running cardelino. We               

repeat the simulation 50 times on each line, permuting the position of the errors in the tree                 

configuration. This simulation tries to mimic all settings in each line, which not only evaluates the                

accuracy of the model, but also reflects the quality of the data in each line for clonal assignment.  

 

Additionally, in a second set of simulations, we change one of these parameters each time to                

systematically assess cardelino. The clonal configuration is defined by the number of clones, ​K​, a               

perfect phylogenetic matrix ​((K-​1​)​-​by​-​K) including a base clone, and the number of unique variants per               

clonal branch ​n​, which returns a configuration matrix ​C with a shape of ​n(K-​1​)​-by-​K​. With setting ​K                 

clones, one out of all possible clonal tree structures is randomly selected to generate the clonal                

configuration matrix. Then the sequencing depth matrix ​D for these ​n(K-​1​) ​variants are sampled from a                

line with 439 variants across 151 cells (see distribution in ​Supp. Fig. S40 ​). In order to increase or                  

decrease the missingness rate of ​D ​, zero coverages are respectively added or removed linearly              

according to the expression level of the gene corresponding to the variant. The allelic expression               

balance can be adjusted by changing the parameters of its beta prior distribution. We set uniform                

clonal prevalence in the second simulation. With each parameter setting, 200 cells are randomly              

synthesized and this procedure is repeated 50 times to vary the random selection of errors in the tree                  

configuration, the branch position of each variant, and the tree structure. When one setting parameter               
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varies, others are used at the default values: number of variants per clonal branch = 10, variant                 

coverage = 0.25, clone number = 4, precision of allelic ratio = 1 (i.e. shape1+shape2 of beta prior,                  

lower precision means more variants with high allelic imbalance), error rate of the mutation states in                

the input clone configuration = 0.1, and fraction of wrongly clustered variants = 0 (though this is                 

coupled with the error rate). These default values are representative of the 32 experimental lines               

(​Supp. Fig. S11, S38, S41 ​).  
 

Variance component, differential expression and pathway analysis 

Expression analyses between clones required further filtering of cells for each line. Analyses were              

conducted using cells that passed the following filtering procedure for each line: (1) clones identified in                

the line were retained if at least three cells were confidently assigned to the clone; (2) cells were                  

retained if they were confidently assigned to a retained clone. Lines were retained for DE testing if                 

they had at least 15 cells assigned to retained clones, allowing us to conduct expression analyses for                 

31 out of the 32 lines (all except ​vils​).  
 

Expression variance across cells is decomposed into multiple components in a linear mixed model,              

including cellular detection rate (proportion of genes with non-zero expression per cell) as a fixed               

effect and plate (i.e. experimental batch), donor (i.e. line; only when combining cells across all donors)                

and clone (nested within donor for combined-donor analysis) as random effects. We fit the linear               

mixed model on a per-gene basis using the ​variancePartition ​ R package ​(Hoffman and Schadt 2016)​. 
 

Differential gene expression (DE) testing was conducted using the quasi-likelihood F-test method            

(Lund et al. 2012) in the ​edgeR package ​(Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and                

Smyth 2012) as recommended by Soneson and Robinson ​(Soneson and Robinson 2018)​. To test for               

differences in expression between cells assigned to different clones in a line, we fit a linear model for                  

single-cell gene expression with cellular detection rate (proportion of QC-filtered genes expressed in a              

cell; numeric value), plate on which the cell was processed (a factor) and assigned clone (a factor) as                  

predictor variables. The quasi-likelihood F test was used to identify genes with: (1) any difference in                

average expression level between clones (analogous to analysis of variance), and (2) differences in              

average expression between all pairs of clones (“pairwise contrasts”). We considered 10,876 genes             

that were sufficiently expressed (an average count >1 across cells in all lines) to test for differential                 

expression.  

 

To test for significance of overlap of DE genes across donors, we sampled sets of genes without                 

replacement the same size as the number of DE genes (FDR < 10%) for each line. For each                  

permutation set, we then computed the number of sampled genes shared between between donors.              

We repeated this procedure 1,000 times to obtain distributions for the number of DE genes shared by                 

multiple donors if shared genes were obtained purely by chance.  
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Gene set enrichment (pathway) analyses were conducted using the ​camera ​(Wu and Smyth 2012)              

method in the ​limma package ​(Smyth 2004; Ritchie et al. 2015)​. Using log ​2 ​-fold-change test statistics               

for 10,876 genes for pairwise contrasts between clones from the ​edgeR models above as input, we                

applied ​camera to test for enrichment for the 50 Hallmark gene sets from MSigDB, the Molecular                

Signatures Database ​(Liberzon et al. 2011)​. For all differential expression and pathway analyses we              

adjusted for multiple testing by estimating the false discovery rate (FDR) using independent             

hypothesis weighting ​(Ignatiadis et al. 2016)​, as implemented in the ​IHW package, with average gene               

expression supplied as the independent covariate. 

 

Code availability 

The cardelino methods are implemented in an open-source, publicly available R package            

(​github.com/PMBio/cardelino ​). The code used to process and analyse the data is available            

(github.com/davismcc/fibroblast-clonality), with a reproducible workflow implemented in Snakemake        

(Köster and Rahmann 2012)​. Descriptions of how to reproduce the data processing and analysis              

workflows, with html output showing code and figures presented in this paper, are available at               

davismcc.github.io/fibroblast-clonality. Docker images providing the computing environment and        

software used for data processing (​hub.docker.com/r/davismcc/fibroblast-clonality/​) and data analyses         

in R (hub.docker.com/r/davismcc/r-singlecell-img/) are publicly available. 

 

Data availability 

Single-cell RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI            

(​www.ebi.ac.uk/arrayexpress​) under accession number E-MTAB-7167. Whole-exome sequencing data        

is available through the HipSci portal (​www.hipsci.org ​). Metadata, processed data and large results             

files are available under the DOI 10.5281/zenodo.1403510 (doi.org/10.5281/zenodo.1403510). 
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Line name Gender Age 

Number of 

Variants 

Signature 7 

Mean 

Exposure 

Number 

Clones 

With Cells 

Minimum 

Hamming 

Distance Total cells 

Assigned 

Cells 

Proportion 

Assigned 

Cells 

euts male 60-64 292 0.585 3 29 79 78 0.987 

fawm female 70-74 101 0.337 3 5 53 47 0.887 

feec male 60-64 170 0.281 4 5 75 64 0.853 

fikt male 50-54 142 0.378 3 13 39 36 0.923 

garx female 50-54 592 0.670 3 57 70 69 0.986 

gesg male 60-64 157 0.372 3 23 105 101 0.962 

heja male 70-74 192 0.266 3 16 50 50 1.000 

hipn male 55-59 59 0.019 3 8 62 49 0.790 

ieki female 55-59 82 0.381 3 7 58 26 0.448 

joxm female 45-49 612 0.609 3 41 79 77 0.975 

kuco female 65-69 41 0.112 2 9 48 48 1.000 

laey female 70-74 278 0.532 3 36 55 55 1.000 

lexy female 60-64 55 0.069 3 6 63 63 1.000 

naju male 60-64 85 0.296 2 13 44 44 1.000 

nusw male 65-69 62 0.091 3 3 60 20 0.333 

oaaz male 70-74 90 0.172 3 17 38 37 0.974 

oilg male 65-69 211 0.505 3 2 90 57 0.633 

pipw male 50-54 233 0.551 3 34 107 107 1.000 

puie male 60-64 117 0.448 3 10 41 41 1.000 

qayj female 60-64 46 0.035 3 7 97 59 0.608 

qolg male 35-39 120 0.381 2 23 36 36 1.000 

qonc female 65-69 131 0.406 3 7 58 43 0.741 

rozh female 65-69 79 0.173 4 2 91 42 0.462 

sehl female 55-59 178 0.527 4 2 30 24 0.800 

ualf female 55-59 325 0.540 3 29 89 88 0.989 

vass female 30-34 412 0.647 3 35 37 37 1.000 

vils female 35-39 51 0.206 4 1 37 4 0.108 

vuna female 65-69 135 0.456 2 33 71 71 1.000 

wahn female 65-69 496 0.605 3 52 82 77 0.939 

wetu female 55-59 73 0.212 3 8 77 66 0.857 

xugn male 65-69 124 0.398 3 8 35 34 0.971 

zoxy female 60-64 61 0.117 3 8 88 82 0.932 

 
Table S1: ​Biological and technical metadata for each of the 32 HipSci human fibroblast lines used. 
Number of variants refers to somatic variants identified from whole-exome sequencing data 
(​Methods ​); Signature 7 exposure refers to Signature 7 (UV) from the COSMIC set of mutational 
signatures; Minimum Hamming distance denotes the minimum number of variants distinguishing 
between two clones in the inferred clonal tree for the line (​Methods ​). 
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 Metric Min.  1st Qu.  Median Mean 3rd Qu. Max. % passing 

filter 

Before 

QC 

filtering 

Total counts 
from endog. 
genes 

178 123,489 383,929 442,353 621,738 5,833,292 - 

Total genes 
expressed 

174 6,772 10,446 8,801 11,790 16,243 - 

% counts from 
ERCCs 

0 0.97 1.81 14.47 3.34 99.90 -  

% counts top 
100 expressed 
genes 

29.4 40.8 55.6 57.8 62.8 100.0 -  

% reads 
mapped 

7.69 68.71 75.59 74.80 81.67 100.0 -  

After QC  

filtering 

Total counts 
from endog. 
genes 

50,464 316,033 484,887 559,742 710,028 2,659,889 80.6 

Total genes 
expressed 

5,083 9,960 11,108 10,846 12,100 14,804 79.3 

% counts from 
ERCCs 

0.001 0.96 1.63 1.86 2.39 18.1 85.3 

% counts top 
100 expressed 
genes 

29.4 38.6 52.4 49.2 58.2 89.0 86.1 

% reads 
mapped 

44.1 70.3 76.0 74.8 79.1 92.7 99.3 

 
Table S2: ​Summaries of QC metrics for single-cell RNA-seq data before and after QC filtering. Cells 
were required to have more than 50,000 counts from endogenous genes, more than 5,000 genes 
expressed (​i.e ​. with non-zero expression), less than 20% of counts from ERCC transcripts, less than 
90% of counts from the 100 most-expressed genes in the cell and at least 40% of reads mapped 
using ​Salmon ​. Metrics were computed using the ​scater​ package (​Methods ​). 
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Figure S1: ​Comparison of donor assignment results from the original Demuxlet software and our              
implementation. The confusion matrix of cells assigned to three donors by two methods, which are               
highly concordant. Note, those unmatched cells are all identified as doublets by Demuxlet. The data is                
generated by 10x genomics platform by pooling three HipSci lines. 
 

 
Figure S2: ​Evaluation of the inferred relax (error) rate using simulations. (A) The estimated relax rate                
as a function of the simulated error rates. Errors are simulated by uniformly swapping the mutation                
states in the guide clonal configuration matrix, except the base clone which has no mutations. (B)                
The estimated relax rate across different fractions of variants that have wrong branch configuration.              
Errors are added by swapping branches for variants. 
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Figure S3. Assessment of cell assignment to clones across a variety of simulation settings,              
considering SingleCellGenotyper (SCG), Demuxlet (our implementation to avoid the requirement of           
.bam format), cardelino and its two versions: cardelino-free without any informative clone            
configuration prior and cardelino-fixed assuming that the clone configuration prior is correct (​Methods             
and ​Supp Methods ​). All methods were applied to simulated data with known ground truth, varying (​A ​)                
the number of informative variants per clonal branch, (​B ​) the fraction of informative variants covered               
(i.e., non-zero scRNA-seq read coverage), (​C ​) the total number of clones, (​D ​) the precision (i.e.,               
inverse variance) of allelic ratio across genes; lower precision means more genes with high allelic               
imbalance, (​E​) the rate of general errors of mutation states in the clone configuration matrix, (​F​) the                 
fraction of wrongly clustered variants in the input clonal tree branch. Default parameter values are               
marked with an asterisk and are retained when varything other parameters. 
 
 

 
Figure S4. The effects of the tree topology on the cell assignment accuracy. In the simulations in Fig.                  
1 and Supp Fig. S2, there are 20 repeats for each parameter, where one of the tree topology                  
candidates are randomly selected in each repeat. For the four-clone configuration, there are four              
different tree topologies (upper panel), and their performance (area under the precision-recall curve)             
for the five different methods are splitted (bottom panel). 
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Figure S5. ​Estimated mutational signature exposures based upon the tri-nucleotide context of            
somatic SNVs called from whole-exome sequencing (WES) data for 32 HipSci human fibroblast lines.              
The x-axis shows 30 COSMIC mutational signatures, in order, and the y-axis shows estimated              
exposures (mutation fraction) using the ​sigfit ​package (​Methods ​), with significant signatures           
highlighted in blue. Across lines, the only significant signatures are Signature 7 (UV mutagenic              
process) and Signature 11. 
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Figure S6 ​. Variant allele frequency (VAF) distributions for somatic variants called from whole exome              
sequencing data for the 32 fibroblast lines. The grey lines indicate the cut-offs on the allele frequency                 
distribution (​Methods ​). The blue lines indicate the model (neutral/selected) inferred by           
SubClonalSelection (shading 95% confidence interval). 
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Figure S7. Clonal tree inferred by Canopy and then updated by cardelino (shown is output from                
cardelino) and posterior probability of assignment of each cell to each clone from cardelino for the 32                 
lines analysed in detail in the manuscript. 
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Figure S8. ​Clonal tree inferred by Canopy (unaltered tree output from Canopy is shown) and posterior                
probability of assignment of each cell to each clone from cardelino for the 32 lines analysed in detail in                   
the manuscript. 

10 



 

 

Figure S9. ​Comparison of the clonal tree inferred by Canopy and the updated tree after running                
cardeilno for the 32 lines analysed in detail in the manuscript. 
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Figure S10. ​Differences in configuration matrices (rows represent single-nucleotide variants and 
columns represent clones) between Canopy trees and updated trees from cardelino (average 
configuration matrix over 4,750 posterior samples from the cardelino model minus the configuration 
matrix for the tree inferred by Canopy). 

 

 
Figure S11.​ Estimated error rate in the clonal tree configuration derived from bulk exome-seq data 
(based on cardelino) for each of 32 lines versus fraction of confidently assigned cells. Even though 
some lines have high error rate in the input clonal tree configuration, cardelino can still assign a high 
fraction of cells to clones confidently. 
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Figure S12. Comparison of cell assignment between five methods across 32 lines. (​A ​) The fraction of                
assignable cells (i.e., highest P > thresholds) when varying the thresholds from 0.5 to 0.95. Shown are                 
box plots depicting median and the first and third quantiles of the 32 lines. (​B ​) The adjusted Rand                  
index of cell assignment to clones between the five considered methods. The values is averaged               
across 32 lines. (​C ​) Scatter plot between the uncertainty of the inferred tree from cardelino-free               
(x-axis) and the mean absolute difference of the assignment probability between cardelino-free and             
cardelino (y-axis). The output posterior clonal configuration matrix from cardelino-free consists of the             
probability of each variant being present in each clone. A completely uninformative clonal tree would               
have all entries equal to 0.5. Thus, we measure the uncertainty of the output tree from cardelino-free                 
by taking 0.5 minus the mean absolute difference of the posterior probability configuration matrix and               
the uninformative configuration probability matrix of all of entries equal to 0.5. WIth this measure, a                
value of 0.5 indicates a posterior configuration indistinguishable from the uninformative configuration            
and a value of 0 indicates very high confidence from the model in the posterior configuration. (​D ​)                 
Pairwise comparison of clone assignments by adjusted Rand Index for high-probability Canopy tree             
solutions on one representative line: feec. Shown are pairwise comparisons for the thirty most              
probable trees derived from bulk exome-seq data with Canopy, leading to 435 tree pairs for each line.                 
(​E​) The adjusted Rand index of cell assignment between two different guide clonal trees across all 32                 
lines. Each dot in the boxplot denotes a line, which is the average of these 435 pairwise comparisons. 
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Figure S13. Assessment of cell assignment to clones across a variety of simulation settings,              
considering SingleCellGenotyper (SCG), Demuxlet (our implementation to avoid the requirement of           
.bam format), cardelino and its two versions: cardelino-free without any informative clone            
configuration prior and cardelino-fixed assuming that the clone configuration prior is all correct             
(Methods and Supp Methods). Considered were simulated data based on empirical characteristics            
observed in 32 fibroblast lines. For each line, the sequence coverage, clone configuration (i.e.,              
number of clones, variants on each branch), and allelic imbalance parameters were obtained to derive               
simulation parameters. 200 cells are synthesised per line and a clone configuration with 10% errors               
are used as a guide. The main Fig. 2b and Supp. Fig. S13 are both based on this simulation. 
 

 
Figure S14. ​Scatter plot of the fraction of cells assigned in each cell line using cardelino (at posterior                  
probability > 0.5) as a function of the minimum number of clone-specific variants for the corresponding                
line (minimum Hamming distance between clones for a given donor), for 32 fibroblast lines. Total               
number of cells that were considered for this analysis (QC passed) per line indicated by colour.  
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Figure S15 ​. Scatter plot of recall (assignment rate) versus precision (assignment accuracy) when             
assigning cells using cardelino (at posterior probability > 0.5). Shown are data from for 32 simulated                
lines, using parameters that match the observed data characteristics in the set of 32 real fibroblast                
lines (​Methods ​). The average number of variants per clonal branch (​i.e.​, #variant / (#clone - 1)) is                 
shown by point colour (slightly different from Supp. Fig. S4 which uses the minimum number of                
variants distinguishing between pairs of clones, as shown in Fig. 3a). Lines with fewer informative               
variants per branch tend to have lower assignment rates, but the precision remains high. 
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Figure S16. Boxplots of the total number of expressed genes in each cell, grouped by the clone                 
assigned by cardelino. Twelve lines with more than 60 assignable cells are presented. Globally, clone               
assignment is not linked to the total number of expressed genes in a given cell.  
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Figure S17. Boxplots of the total number of sequenced read counts from endogenous genes in each                
cell, grouped by the clone assigned by cardelino. Twelve lines with more than 60 assignable cells are                 
presented. Globally, clone assignment is not linked to the total number of read counts in a given cell.  
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Figure S18. Boxplots of the number of variants for clone identification with read coverage in each cell,                 
grouped by the clone assigned by cardelino. Twelve lines with more than 60 assignable cells are                
presented. Globally, clone assignment is not linked to the number expressed variant loci in a given                
cell, with the exception of the “unassigned” category which is enriched for cells with low coverage.  
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Figure S19. Scatter plot of the first two principal components calculated on the read coverage of the                 
set of somatic variant sites used for clone assignment. Shown are data from twelve lines with at least                  
60 assignable cells. The first two PCs do not segregate cells from different clones, suggesting that                
read coverage of somatic variants does not associate with or bias clone assignment. 
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Figure S20. Scatter plot of the first two principal components calculated on the read coverage of the                 
set of somatic variant sites used for clone assignment. Cells are colored by the assignment probability                
of clone 1 (​i.e. the “base clone” which by definition contains no unique somatic variants). Shown are                 
data from twelve lines with at least 60 assignable cells. 
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Figure S21. ​Clone prevalence estimates from WES data (x-axis; using Canopy) ​versus the fraction of               
single-cell transcriptomes assigned to the clone (y-axis; using ​cardelino ​), for each clone across lines.              
Points are coloured by the overall fraction of single-cell transcriptomes assigned for a given line (​i.e.                
cells with posterior P>0.5 for assignment). 
 
 

 
Figure S22. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) for clone-assigned cells for the example line ​joxm​. Cells are coloured by the cell                
cycle phase inferred by the ​cyclone method implemented in the scran package, and shape denotes               
the assigned clone from cardelino ​. 
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Figure S23. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) for clone-assigned cells for the donor ​joxm​, plotting principal component 3             
against principal component 2. Cells are coloured by the posterior probability from cardelino that the               
cell belongs to clone1 ​(a)​, clone2 ​(b)​ or clone3 ​(c)​. 
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Figure S24. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino ​. 
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Figure S25. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the G2M cell cycle phase score calculated                 
with the cyclone method implemented in the scran package, and shape denotes the assigned clone               
from cardelino ​.  
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Figure S26. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC3 plotted against PC2 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino ​. 
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Figure S27. Principal component analysis from single-cell gene expression data (top 500            
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the clusters identified by SC3 (Kiselev et al,                  
Nature Methods​, 2017)​. 
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Figure S28. Principal component analysis from single-cell gene expression data after regressing out             
cyclone G1, G2M and S cell cycle scores from the normalised expression values (top 500               
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the assigned clone from cardelino ​. 
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Figure S29. Principal component analysis from single-cell gene expression data after regressing out             
cyclone G1, G2M and S cell cycle scores from the normalised expression values (top 500               
most-variable genes) showing PC2 plotted against PC1 for clone-assigned cells for the 31 lines              
analysed in detail in the manuscript. Cells are coloured by the clusters identified by SC3 ​. 
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Figure S30. Distributions of ​cyclone G2M scores for each cell line (donor) stratified (coloured) by the                
clusters identified by SC3 when ​(a) applying SC3 to normalised gene expression values, without              
regressing out ​cyclone G1, G2M and S cell-cycle phase scores, and ​(b) applying SC3 to gene                
expression values after regressing out ​cyclone ​cell cycle scores. 
 
 

 

Figure S31. Distributions of ​cyclone S scores for each cell line (donor) stratified (coloured) by the                
clusters identified by SC3 when ​(a) applying SC3 to normalised gene expression values, without              
regressing out ​cyclone G1, G2M and S cell-cycle phase scores, and ​(b) applying SC3 to gene                
expression values after regressing out ​cyclone ​cell cycle scores. 
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Figure S32. Adjusted Rand Index values comparing the clusters identified by SC3 when applying              
SC3 to normalised gene expression values, without regressing out ​cyclone G1, G2M and S cell-cycle               
phase scores, and when applying SC3 to gene expression values after regressing out ​cyclone ​cell               
cycle scores. 
 

 
Figure S33. Adjusted Rand Index values comparing the clusters identified by SC3 and the clone               
assignments from cardelino when applying SC3 to normalised gene expression values, without            
regressing out ​cyclone G1, G2M and S cell-cycle phase scores, and when applying SC3 to gene                
expression values after regressing out ​cyclone ​cell cycle scores.  
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Figure S34. ​Direct effects of somatic variants on genes overlapping the variant. Volcano plot showing 
negative log P values versus log ​2 ​-fold change from testing differential expression for genes with a 
somatic mutation between cells with the mutation and cells without the mutation, faceted by VEP 
annotation category (​Methods ​). Each point represents a gene, and boxplots show the overall log ​2 ​-fold 
change distribution for each annotation category. DE tests are conducted within each line (donor) 
separately, and results shown here are aggregated across 32 lines. Genes are categorised by 
simplified functional annotations from VEP of the somatic mutation, and genes significantly DE at an 
FDR threshold of 20% are shown in red.  
 

 

Figure S35.​ ​(left) ​Heatmap showing Spearman correlation between gene set enrichment results for 
the 16 most frequently enriched MSigDB Hallmark gene sets across 31 lines. Colour indicates the 
correlation between pairs of gene sets and is only shown if the correlation is significant (P < 0.05). 
(​right​) Heatmap showing proportion of overlap in genes between pairs of gene sets (matching those 
in left panel). 
 
 
 
  

31 



 

 
Figure S36. ​Heatmap showing the direction (first listed clone relative to second listed clone; in colour) 
and strength of enrichment (-log10(P) as degree of shading) for Hallmark gene sets tested with 
camera (Methods) for all pairwise comparisons between clones across 31 lines. Gene sets that are 
significantly enriched at an FDR threshold of 5% are indicated with dots. Gene sets are shown if 
significant in at least one line, and are ordered by number of lines in which they are significant. 
 
 

 
Figure S37. Graphical representation of the cardelino model. The clonal tree configuration matrix ​C is               
a random variable and follows a Bernoulli distribution encoded by an input tree configuration Ω that is                 
provided to the model (e.g. estimated from bulk or single-cell DNA-seq data using existing methods               
such as Canopy) as well as an error rate ξ, which follows a beta prior distribution with hyper                  
parameters 𝜅. The indicator matrix ​I ​defines the assignment of cells to clones, which is another                
unknown variable, and assumed to follow a multinomial prior with fixed parameter 𝜋 for each cell. The                 
clone configuration ​C and cell identity ​I together encode the genotype ​c​i,Ij of each variant ​i in each cell                   
j​. If ​c​i,Ij is 1, the alternative allelic read count will follow a binomial distribution with gene specific                  
parameter ​𝜃​i​, otherwise with error related parameter 𝜃​0 ​. Both ​𝜃​i and 𝜃​0 have a beta prior distribution,                 
but with different parameters. Shaded nodes represent observed variables; unshaded nodes           
represent unknown variables; yellow circled nodes represent fixed hyper parameters. 
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Figure S38. Estimated beta-binomial distribution of the “sequencing error rate” (theta0; ​A-C ​) and the              
alternative allele count rate given a variant is present (theta1; ​D-F​) in single cells from germline                
heterozygous variants across three expression levels in donor vass. For each germline heterozygous             
variant, we select the cell with the highest expression to represent its minor allele frequency and the                 
sequencing error rate, namely the fraction of reads from other alleles instead of either reference or                
alternative alleles. The parameters of beta-binomial distribution is obtained by a maximum likelihood             
estimate with VGAM R package. The Format of beta distribution parameters: (mean, shape1 +              
shape2).  
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Figure S39. ​Donor identification results from cardelino for QC-passing cells for 32 fibroblast lines (​i.e.               
donors) used to demultiplex cells from plates on which cells from three lines were pooled. The y-axis                 
shows the highest posterior probability for donor assignment from cardelino (​Methods ​) for a little over               
2,000 cells passing QC using expression-based metrics (real Smart-seq2 data from our study; not              
simulated data). The donor ID results are emphatic, with posterior probabilities either very close to 1                
or very close to zero, meaning that the model is very confident about assigning each cell either to a                   
specific donor (​i.e. line) or that the “cell” is actually doublet, or that it matches none of the plausible                   
donors. The x-axis shows the number of germline variants with read coverage in the cells that were                 
informative for donor assignment of the cell. Cells are coloured by donor assignment category: either               
“plausible donor” ​(i.e. a donor/line that was known to have been used on the processing plate),                
“doublet” (nominal single cells that have been inferred to be doublets) or “unassigned” (too few               
variants for assignment or posterior probability of assignment less than 0.95). NB: 21 unassigned cells               
are not visible due to overplotting by doublet cells. 
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Figure S40. ​Summary of sequencing depths of 340 variants across a pool of 151 cells. ​(A) Histogram                 
of total read counts on each variant across 151 cells, median number is shown in yellow; ​(B)                 
Histogram of the number of cells with non-zero read coverage for each variant; median number is                
shown in yellow. This matrix is used as a seed to generate sequencing depths for simulations in Fig.                  
1(b-g) and Supp. Fig. S2.  
 
 

 
Figure S41. Distribution of key parameters in single cells assignment to clones across 32 donors: (​A ​)                
number of clones inferred from bulk exome-seq data. (​B ​) the median number of variants per clonal                
branch; (​C ​) the overall coverage of variants, namely the fraction of variants with at least one read; (​D ​)                  
the scatter plot between the mean number of reads per variant per cell and the overall coverage of                  
variants in the same donor. The default simulation parameters are highlighted with the red line.  
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1 The Cardelino model

As input for Cardelino, we assume that an informative clonal structure configuration is first
inferred from another data source such as deep, bulk exome-sequencing using a tool such as
Canopy [1]. This inference yields an estimate of the number of clones present, K, clonal fractions
F = (f1, .., fK), where fk denotes the relative prevalence of a given clone k (

PK
k=1 fk = 1), and

a clonal tree configuration matrix C (an N -by-K binary matrix) for N variants and K clones,
where ci,k = 1 if somatic variant i is present in clone k and ci,k = 0 otherwise. Given C and
F , Cardelino aims to assign individual cells to one of K clones based on their expressed alleles
using a probabilistic clustering model (see graphical representation in Supp. Fig. S21). From
scRNA-seq data we extract, for each cell and variant that segregates between clones, the number
of sequencing reads supporting the reference allele (reference read count) and the number of
reads supporting the alternative allele (alternate read count). We denote the variant-by-cell
matrix of alternate read counts by A and the variant-by-cell matrix of total read counts (sum
of reference and alternate read counts) by D. Entries in A and D are therefore non-negative
integers, with missing entries in the matrix D indicating zero read coverage for a given cell and
variant.

The prior probability that cell j belongs to clone k could be taken as the clonal fraction
fk, but to avoid biasing cell assignment towards highly prevalent clones for cells with little
read information (where the prior is more influential) we use a uniform prior F such that
P (Ij = k|F ) = 1/K for all k. Note, the variable F is used to denote a uniform prior for
convenience here, which can be di↵erent from the output of Canopy or another clonal inference
method. Given this prior distribution, the posterior probability of cell j belonging to clone k

can be expressed as:

P (Ij = k|aj ,dj , C, F,✓) =
P (aj |dj , Ij = k, C,✓)P (Ij = k|F )

PK
t=1 P (aj |dj , Ij = t, C,✓)P (Ij = t|F )

, (1)

where Ij is the identity of the specific clone cell j is assigned to, and aj and dj are the observed
alternate read count and total read count vectors, respectively, for variants 1 to N in cell j.
The parameter vector ✓ is a set of unknown parameters to model the allelic counts, which will
be discussed in next section.

It is typically challenging to obtain a perfect clonal configuration from bulk exome-seq data
only. Hence errors are likely to exist in the input configuration C. To account for errors in
clonal configurations, we can use the input configuration as an informative prior (we use ⌦
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for this prior configuration) rather than as fixed and true. We can then learn the posterior
configuration (we use C for consistency with other sections) and its corresponding error rate ⇠.
Therefore, we aim to have the full posterior distribution as follows,

P (✓, C, ⇠|A,D,⌦, F ). (2)

2 Modelling allelic expression

The core part of the Cardelino model is to model the alternate read count using a binomial
model. For a given site in a given cell, there are two possibilities: the variant is “absent” in the
clone a cell is assigned to (i.e. the cell is homozygous reference at that position) or the variant
is “present” in the clone the cell is assigned to (i.e. the cell is heterozygous at that position), as
encoded in the configuration matrix C. When considering the “success probability” ✓ for the
binomial model, where here a success is defined as observing an alternate read, we consider two
alternative (sets of) parameters for each of these settings: ✓0 for homozygous reference alleles
(variant absent), and ✓1 = {✓1, ..., ✓N} for the case with heterozygous variants (variant present).
Note, here we use a common parameter ✓0 for homozygous reference alleles in all variants, but
✓i, i � 1 for each variant i to account for the gene specific level of allelic imbalance that causes
the probability of observing alternate reads to di↵er from 0.5. Therefore, the allelic counts base
model for the two genotypes can be written in the following binomial distributions,

p(ai,j |di,j , hi,j ,✓) =
(
Binom(ai,j |di,j , ✓0), if hi,j = 0.

Binom(ai,j |di,j , ✓i), if hi,j = 1.
(3)

where hi,j = ci,Ij 2 {0, 1} is the genotype of variant i in cell j, which is encoded by clonal
configuration C and cell identity Ij . Furthermore, the likelihood of cell j from clone k can be
formalised as follows,

P (aj |dj , Ij = k, C,✓) =
NY

i=1

p(ai,j |di,j , hi,j ,✓)

=
NY

i=1

�
Binom(ai,j |di,j , ✓i)ci,k ⇥ Binom(ai,j |di,j , ✓0)1�ci,k

 
(4)

Then, we could have the likelihood of parameters ✓ = {✓0, ✓1, ..., ✓N} to observe a full data
set across M cells by marginalizing the mixture of cell assignments, as follows

L(✓) =
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F ). (5)

Furthermore, we could view the the clonal assignment in a Bayesian way, and introduce
informative prior distributions for unknown parameters ✓. By multiplying the prior probability
by the likelihood, we could have the posterior probability as follows,

P (✓|A,D,C, F,⌫) / P (✓|⌫)⇥
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F )

= Beta(✓0|↵0,�0)
NY

i=1

Beta(✓i|↵1,�1)⇥
MY

j=1

KX

Ij=1

P (aj |dj , Ij , C,✓)P (Ij |F ),

(6)
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where we use a beta prior distribution, a conjugate distribution to the binomial distribution,
for each ✓, and the hyperparameters ⌫ = {↵0,�0,↵1,�1} of the prior are learned from germline
heterozygous variants.

Accounting for the uncertainty of ✓, this unknown parameter can be marginalised in the
posterior probability of clonal assignment, as follows,

P (Ij = k|aj ,dj , C, F ) =

Z

✓
P (Ij = k|aj ,dj , C, F,✓)P (✓|A,D,C, F,⌫)d✓. (7)

3 Inference for the Cardelino model

In the above section, we defined the posterior probability of clonal assignment I and binomial pa-
rameters ✓, the configuration matrix C and its error rate ⇠. With conjugate prior distributions,
a Gibbs sampler can be used to generate a set of samples following the posterior distribution.

In this Gibbs sampling algorithm, we sample cell assignment I, parameters ✓, the configura-
tion matrix C and its error rate ⇠ alternately. Given that three of these four unknown variables
are fixed, the elements of the other parameter are conditionally independent. Therefore, given
✓ and C, we could sample the clonal identity Ij via a categorical distribution, taking Eq(4,3),
as follows

P (Ij = k|I�j , A,D,C, F,✓) = P (Ij = k|aj ,dj , C, F,✓)

/ P (Ij = k|F )P (aj |Ij = k,dj , C,✓).
(8)

Similarly, given the clonal identity I and configuration C in a previous step, ✓i, 0  i  N

are independent from each other, and the posterior probability in Eq(6) can be rewritten by
inserting the base model in Eq(3) as follows,

P (✓|A,D,C, I,⌫) / Beta(✓0|↵0,�0)
NY

i=1

Beta(✓i|↵1,�1)

⇥
MY

j=1

NY

i=1

Binom(ai,j |di,j , ✓0)1�ci,Ij Binom(ai,j |di,j , ✓i)ci,Ij

= Beta(✓0|↵0,�0)
MY

j=1

NY

i=1

Binom(ai,j |di,j , ✓0)1�ci,Ij

⇥
NY

i=1

8
<

:Beta(✓i|↵1,�1)
MY

j=1

Binom(ai,j |di,j , ✓i)ci,Ij

9
=

; .

(9)

Therefore, we could sample individual ✓ values via a beta distribution as follows,

✓0|I ⇠ beta(↵0 + u0,�0 + v0); ✓i|I ⇠ beta(↵1 + ui,�1 + vi), i > 0 (10)

where

u0 =
NX

i=1

MX

j=1

ai,j(1� ci,Ij ), v0 =
NX

i=1

MX

j=1

(di,j � ai,j)(1� ci,Ij ),

ui =
MX

j=1

ai,jci,Ij , i > 0, vi =
MX

j=1

(di,j � ai,j)ci,Ij , i > 0.

(11)
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Furthermore, given the cell assignment I and the binomial parameters ✓ and the error rate
⇠, we can obtain the distribution of the configuration C as follows,

P (Ci,k = 1|C�i,k, A,D, I, F,✓, ⇠)

=
|⌦i,k � ⇠|

QM
j=1 I(Ij = k)binom(ai,j |di,j , ✓i)

|⌦i,k � ⇠|
QM

j=1 I(Ij = k)binom(ai,j |di,j , ✓i) + |⌦i,k � ⇠ � 1|
QM

j=1 I(Ij = k)binom(ai,j |di,j , ✓0)
(12)

Given the configuration C, we can also have the distribution of the error rate ⇠. Here, we
introduce a conjugate prior beta distribution with hyper-parameter 0,1, hence we can write
the posterior of ⇠ as follows,

P (⇠|C,⌦,0,1) = beta(0 +
X

i,k

I(⌦i,k 6= Ci,k),1 +
X

i,k

I(⌦i,k = Ci,k)) (13)

Now, based on Eq (8-13), we could sample the full joint distribution of I, ✓, C and ⇠ with
Gibbs sampling in the following Algorithm 1.

Algorithm 1: Gibbs sampling for Cardelino model

1 Initialize ✓ = {✓0, ✓1, ..., ✓N}
2 for t = 1 to H do
3 for j = 1 to M do
4 Sample: Ij = k|I�j , A,D,C, F,✓ with Eq(8)

5 for i = 0 to N do
6 Sample: ✓i|I, A,D,C, ✓�i with Eq (10)

7 for i = 0 to N do
8 for k = 1 to K do
9 Sample: Ci,k = 1|C�i,k, A,D, I, F,✓, ⇠ with Eq (12)

10 Sample: ⇠|C,⌦,0,1 with Eq (13)

In practice, we could sample 3,000 iterations and check the convergence with Geweke’s
convergence diagnostic (Z score) by using the first 10% and the last 50% iterations of the
sampled chain. If |Z| > 2, then 100 more iterations will be added until the criterion is passed.
Usually, this algorithm converges very quickly, even with as few as 100 iterations in some cases.

4 Inference with the EM algorithm to assign cells to donors

With a couple of tweaks the Cardelino model described above is also useful for assigning cells to
the donor from which they originate in experimental settings where cells from multipled donors
are pooled together before they are assayed (“multiplexed”). For the task of assigning cells to
donors of origin rather than clone, we assume that the clonal tree configuration is fixed (here
we interpret the “clonal tree configuration” as the reference genotypes of the donors, which
we have access to), and all sites have a common parameter when variant is “present”, i.e.,
✓1 = ✓2 = ... = ✓N . For simplicity, we use ✓1 to denote this shared parameter and ignore the
conflict with the symbol in the Cardelino model. Therefore, the alternative model only has two
parameters ✓0 and ✓1, for the “success probability” for variant absent and present, respectively.

In this donor-assignment setting, an attractive alternative possibility for inference in the
Cardelino model is to use the Expectation-Maximisation (EM) algorithm. The EM algorithm
has the advantage of being much more computationally e�cient than the Gibbs sampler de-
scribed above. However, EM inference yields only point estimates of parameter values and will
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lose the uncertainty in the parameters for clonal assignment. Consequently, it can su↵er from
over-fitting if there are very few sequencing reads, especially in lowly expressed genes. There-
fore, for EM inference it is important to use a single parameter for all variants and turn o↵ the
gene specific parameters in original Eq(3) to retain su�cient reads for a robust point estimate.

This setting proves very useful in assigning cells to donors given genotypes in multiplexed
experiments, where the statistical framework is fundamentally the same but the error in the
genotypes is much lower than from a clonal tree, and the large number of variants benefits from
the high computational e�ciency of the EM algorithm. Here, we introduce the algorithm with
all ✓i, 1  i  N turned into a single shared parameter ✓1; all equations in above sections still
hold. In the real data analysis in the main text, we use this EM inference method to assign
cells to donors from our three-donor multiplexed experimental design.

In order to maximise the likelihood in Eq(5) (or log likelihood for convenience), let us first
rewrite the likelihood of assigning a single cell j to a certain clone k by extending the binomial
probability as follows,

P (aj |dj , Ij = k, C,✓) =
NY

i=1

P (ai,j |di,j , ✓, ci,k) =
NY

i=1

B(ai,j ; di,j , ✓ci,k)

= wj ⇥ ✓
S1
j,k

0 ⇥ (1� ✓0)
S2
j,k ⇥ ✓

S3
j,k

1 ⇥ (1� ✓1)
S4
j,k ,

(14)

where wj =
QN

i=1

�di,j
ai,j

�
is a product of binomial coe�cients. S

1
j,k, S

2
j,k, S

3
j,k, S

4
j,k are the sum-

marized read counts of alternative and reference alleles in genotypes without or with variant,
respectively, as follows,

S
1
j,k =

NX

i=1

ai,jI(ci,k = 0), S
2
j,k =

NX

i=1

(di,j � ai,j)I(ci,k = 0),

S
3
j,k =

NX

i=1

ai,jI(ci,k = 1), S
4
j,k =

NX

i=1

(di,j � ai,j)I(ci,k = 1).

(15)

These values can be equivalently taken from dot products of matrices S
1 = A

>(1 � C), S2 =
(D �A)>(1� C), S3 = A

>
C, and S

4 = (D �A)>C.
Now, we can estimate the clonal assignment Ij and the parameters ✓ = {✓0, ✓1} with an EM

algorithm. In the initialization, we set the parameter ✓ randomly. Then we iterate the E step
and M step in the EM algorithm. In the E-step, given the parameter in the previous step, we
calculate the posterior of the cell assignment

�j,k = P (Ij = k|aj ,dj , C, F, ✓) =
P (aj |dj , Ij = k, C,✓)P (Ij = k|F )

PK
t=1 P (aj |dj , Ij = t, C,✓)P (Ij = t|F )

, (16)

which is often called component responsibility in the EM algorithm. In the M-step, given the
posterior of cell assignment, we optimize the parameter to maximize the likelihood. By setting
the derivation of the log likelihood Eq (5) (taking Eq (14)) to 0, we could have the following
condition to satisfy,

logL(✓)
✓0

=
MX

j=1

KX

k=1

�j,k

"
S
1
j,k

✓0
�

S
2
j,k

1� ✓0

#
= 0. (17)

Therefore, we can have a closed form solution for ✓0 (and ✓1 similarly) as follows,

✓0 =

PM
j=1

PK
k=1 �j,kS

1
j,kPM

j=1

PK
k=1 �j,k(S

1
j,k + S

2
j,k)

✓1 =

PM
j=1

PK
k=1 �j,kS

3
j,kPM

j=1

PK
k=3 �j,k(S

3
j,k + S

4
j,k)

. (18)
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Here, we summarize the EM algorithm for the cell assignment and parameter estimate in
the following Algorithm 2. To end the algorithm, we could check if the improvement of the log
likelihood is lower than a threshold or set a fixed number of iterations (e.g. 100 iterations are
su�cient in many cases).

Algorithm 2: EM algorithm for cell assignments to clones

1 Initialize ✓ = {✓0, ✓1} and evaluate logL(✓)
2 while not converged do
3 E step: Calculate �j,k with current parameters

4 �j,k = P (Aj |Ij=k,Dj ,C,F,✓)P (Ij=k)PK
t=1 P (Aj |Ij=t,Dj ,C,F,✓)P (Ij=t)

5 M step: Maximizing likelihood on parameters with current responsibilities

6 ✓
new
0 =

PM
j=1

PK
k=1 �j,kS

1
j,kPM

j=1

PK
k=1 �j,k(S

1
j,k+S2

j,k)
; ✓

new
1 =

PM
j=1

PK
k=1 �j,kS

3
j,kPM

j=1

PK
k=3 �j,k(S

3
j,k+S4

j,k)

7 Update logL(✓) and check convergence

8 return ✓,�, logL(✓)

In addition, the binomial distribution can be switched into simpler Bernoulli model by
setting a threshold s (e.g. 1) as âi,j = I(ai,j � s) and d̂i,j = I(di,j � s), and all above
equations and inference methods remain applicable. The Bernoulli base model can be useful
when the sequencing coverage is highly even, e.g., in scDNA-seq [2] or when the variance of
allelic expression is extremely high.
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