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4.1 Introduction

The innate immune system acts as a first line of defence across cell types and species,

inhibiting pathogen replication and signalling pathogen presence to other cells. A key

feature of this response is the rapid evolution that many of the genes have undergone

along the vertebrate lineage, often attributed to pathogen-driven selection. As described

in Chapter 1.3, another characteristic of the response is the high level of heterogeneity

among responding cells, however the functional importance of this variability is unclear.

These two characteristics - rapid evolutionary divergence and high cell-to-cell

variability — seem to be at odds with the strong regulatory constraints imposed on the

host immune response: the need to execute a well-coordinated and carefully balanced

programme to avoid tissue damage and pathological immune conditions. How this tight

regulation is maintained despite rapid evolutionary divergence and high cell-to-cell

variability remains unclear, but it is central to our understanding of the innate immune

response and its evolution.

In this chapter, I present two angles of this question. Firstly, in a study led by

Tzachi Hagai, we studied the evolution of the innate immune programme using two

cells types — fibroblasts and mononuclear phagocytes — in di�erent mammalian

clades challenged with several immune stimuli. The results presented here focus on

the fibroblast results; the experimental methods are described in Chapter 2.4. I then

go on to use a larger human scRNA-seq dataset, described in Chapter 2.2, to define

the dynamics of the response at a single cell resolution, characterising response gene

modules.
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4.2 Innate immune variability: a cross-mammalian

study

4.2.1 Transcriptional divergence in immune response

First, we studied the transcriptional response of fibroblasts to stimulation with dsRNA

(poly(I:C)) across the four species (human, macaque, rat and mouse). Bulk RNA-

sequencing (RNA-seq) data was generated for each species after 4 h of stimulation,

along with respective controls (Figure 4.1a).

In all species, dsRNA treatment induced rapid upregulation of genes that encode

expected antiviral and inflammatory products, including IFN-—, TNF, IL1A and

CCL5 (Figure 4.1b). A similar transcriptional response between species was observed

when considering one-to-one orthologues (Spearman correlation, P < 10≠10 in all

comparisons), as reported in other immune contexts [183–185]. Furthermore, as seen

in other expression programmes [186–188], the response tended to be more strongly

correlated between closely related species than between more distantly related species

(Appendix D; Extended Data Figure 1).

Using these cross-species bulk transcriptomics data, we characterized the di�erences

in response to dsRNA between species for each gene. While some genes, such as those

encoding the NF-B subunits RELB and NFKB2, respond similarly across species,

other genes respond di�erently in the primate and rodent clades (Figure 4.1c). For

example, Ifi27 (which encodes a restriction factor against numerous viruses) is strongly

upregulated in primates but not in rodents, whereas Daxx (which encodes an antiviral

transcriptional repressor) exhibits the opposite behaviour.

To quantify transcriptional divergence in immune responses between species, we

focused on genes that were di�erentially expressed during the stimulation (see Appendix
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D; Methods) referred to as ‘responsive genes’ (Figure 4.1d). In this analysis, we study

the subset of these genes with one-to-one orthologues across the studied species, of

which there are 955 such responsive genes in dsRNA-stimulated human fibroblasts.

We define a measure of response divergence by calculating the di�erences between the

fold-change estimates while taking the phylogenetic relationship into account (Appendix

D; Methods).

For subsequent analyses, we split the 955 responsive genes into three groups on the

basis of their level of response divergence: (1) high-divergence dsRNA-responsive genes

(the top 25% of genes with the highest divergence values in response to dsRNA across

the four studied species); (2) low-divergence dsRNA-responsive genes (the bottom 25%);

and (3) genes with medium divergence across species (the middle 50%; Figure 4.1d).

4.2.2 Cell-to-cell variability in immune response

As described in Chapter 1.3, previous studies have shown that the innate immune

response displays high variability across responding cells. However, the relationship

between cell-to-cell transcriptional variability and response divergence between species

is not well understood. To study heterogeneity across individual cells, single cell

RNA-seq was performed in all species in a stimulation time course (Figure 4.1a).

Cell-to-cell variability was quantitatively measured using an established measure for

variability: distance to median (DM) [25]. We found a clear trend in which genes that

were highly divergent in response between species were also more variable in expression

across individual cells within a species (Figure 4.2); observed across the stimulation

time points and in di�erent species.

Next, we examined the relationship between the presence of promoter elements

(CpG islands - CGIs - and TATA-boxes) and a gene’s cell-to-cell variability. Genes

that are predicted to have a TATA-box in their promoter had higher transcriptional
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Fig. 4.1 Response divergence across species in innate immune response. a) Study
design. Primary dermal fibroblasts from mouse, rat, human and macaque stimulated
with dsRNA or controls. Samples were collected for bulk and single cell RNA-seq and
ChIP–seq. b) Fold change of example genes (IFNB1, TNF, IL1A and CCL5) across
the four species after 4h dsRNA stimulation. c) Fold-change (FC) after 4h dsRNA
stimulation in fibroblasts for sample genes across species (edgeR exact test, based on
n = 6, 5, 3 and 3 individuals from human, macaque, rat and mouse, respectively).
False discovery rate (FDR)-corrected P values are shown (***P<0.001, **P<0.01,
*P<0.05). d) Estimating each gene’s level of cross-species divergence in transcriptional
response to dsRNA stimulation. Using di�erential expression analysis, fold-change
in dsRNA response was assessed for each gene in each species. We identified 1,358
human genes as di�erentially expressed (DE) (FDR-corrected q<0.01), of which 955
had one-to-one orthologues across the four studied species. For each gene with one-
to-one orthologues across all species, a response divergence measure was estimated
using: response divergence = log[1/4 x �i, j(log[FCprimatei] ≠ log[FCrodentj])2].
Genes were grouped into low, medium and high divergence according to their response
divergence values for subsequent analysis.
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Fig. 4.2 Cell-to-cell variability versus response divergence across species and conditions.
Cell-to-cell variability values, as measured with DM across individual cells, compared
with response divergence between species (grouped into low, medium and high diver-
gence). Variability values are based on n =29, 56, 55, 35 human cells, n = 20, 32,
29, 13 rhesus cells, n = 33, 70, 65, 40 rat cells, and n = 53, 81, 59, 30 mouse cells,
stimulated with dsRNA for 0, 2, 4 and 8 h, respectively. Rows represent di�erent time
points (0, 2, 4 and 8 h), and columns represent di�erent species. High-divergence genes
were compared with low-divergence genes using a one-sided Mann–Whitney test. Data
in boxplots represent the median, first quartile and third quartile with lines extending
to the furthest value within 1.5 of the IQR.
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variability, whereas CGI-containing genes tended to have lower variability (Figure 4.3a),

in agreement with previous findings [189]. This finding also applied to transcriptional

divergence between species (Figure 4.3b), showing that both these characteristics are

associated with the presence of specific promoter elements.

Fig. 4.3 Promoter architecture versus transcriptional divergence and variability. a)
Comparison of cell-to-cell variability of genes with and without a TATA-box and a CGI
(one-sided Mann–Whitney test). Cell-to-cell variability values are from DM estimations
of human fibroblasts stimulated with dsRNA for 4 h (n = 55 cells). b) Comparison of
divergence in response of genes with and without a TATA-box and a CGI in fibroblast
dsRNA stimulation.

4.2.3 Transcriptional divergence and variability of cytokines

We next investigated whether di�erent functional classes among responsive genes

are characterized by varying levels of transcriptional divergence. To this end, we

divided responsive genes into categories according to function (such as cytokines,

transcriptional factors and kinases) or the processes in which they are known to be

involved (such as apoptosis or inflammation). Genes related to cellular defence and

inflammation—most notably cytokines, chemokines and their receptors (hereafter

‘cytokines’)—tended to diverge in response significantly faster than genes involved in

apoptosis or immune regulation (chromatin modulators, transcription factors, kinases

and ligases) (Figure 4.4).
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Fig. 4.4 Transcriptional divergence in genes of di�erent functional categories. Distribu-
tions of divergence values of 9,753 expressed genes in fibroblasts, 955 dsRNA-responsive
genes and di�erent functional subsets of the dsRNA-responsive genes (each subset
is compared with the set of 955 genes using a one-sided Mann–Whitney test and
FDR-corrected P values are shown).

We subsequently compared the response divergence across species with the transcrip-

tional cell-to-cell variability of three groups of responsive genes with di�erent functions:

cytokines, transcription factors, and kinases and phosphatases (referred to as ‘kinases’).

In contrast to kinases and transcription factors, many cytokines display relatively high

levels of cell-to-cell variability across time points (Figure 4.5a). Furthermore, these are

expressed only in a small subset of responding cells (Figure 4.5b).This has previously

been reported for several cytokines, as described in Chapter 1.3. Here, we find that

cells show high levels of variability in expression of cytokines from several families (for

example, IFN-—, CXCL10 and CCL2).
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Fig. 4.5 Cell-to-cell variability levels in cytokines, transcription factors and kinases. a)
Violin plots showing the distribution of cell-to-cell variability values (DM) of cytokines,
transcription factors and kinases during a dsRNA stimulation time course in fibroblasts.
Number of cells used in each species (at 2, 4, 8 h dsRNA, respectively): human, 56,
55, 35; macaque, 32, 29, 13; rat, 70, 65, 40; mouse, 81, 59, 30. Purple, cytokines;
green, transcription factors; beige, kinases. Comparisons between groups of genes
were performed using one-sided Mann–Whitney tests. Violin plots show the kernel
probability density of the data. b) Histograms showing the percentage of fibroblasts
expressing cytokines (top), transcription factors (middle) and kinases (bottom) following
4 h dsRNA stimulation, in human, macaque, rat and mouse cells. The percentage of
expressing cells is divided into 13 bins (x-axis). The y-axis represents the fraction of
genes from this gene class (for example, cytokines) that are expressed in each bin.
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4.3 Characterising the Type I interferon response

in human fibroblasts

4.3.1 Single-cell RNA-sequencing data

Having characterised variability in the innate immune response from an evolutionary

perspective, the question of heterogeneity within the human population remains. In

order to address this, a comprehensive dataset comprising both bulk and single cell

RNA-sequencing data at two timepoints and with two stimulation conditions, along

with a control, was generated - as described in Chapter 2.

The single cell dataset was filtered as described in Chapter 3.2, and UMAP di-

mensionality reduction was used to gain an oversight of the full dataset (Figure 4.6).

It is clear to see that, as before, a major driver of variation is experimental batch

e�ect, although cells also cluster by experimental condition. Once again, the ’integrate’

function from the Seurat v3 package [167] was applied. This resulted in good mixing

of the two batches in UMAP space, with experimental condition now being the major

driver of variation in the dataset (Figure 4.6). The separation in unstimulated and

interferon-treated cells seen in the ’condition’ plot arises from cell cycle state, with

cycling cells forming the cluster of mixed conditions on the left side of the plot.

4.3.2 The temporal dynamics of the response

Harnessing the resolution available within the single-cell data generated, it is possible

to comprehensively study the innate immune response over time. Although both

poly(I:C) and IFN-— induce antiviral signalling within treated cells, the two elicit

di�erent responses, as can be seen in Figure 4.6.
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Fig. 4.6 Integration of scRNA-seq batches with Seurat. Dimensionality reduction
using UMAP on uncorrected data (upper panel) and corrected data using Seurat
v3’s ’integrate’ method (lower panel). Colours indicate, in order, experimental batch,
stimulation condition, and cell cycle phase. The first two UMAP dimensions are shown.
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In order to appropriately characterise the two response pathways, cells treated with

poly(I:C) were separated from those treated with IFN-—. The two time points for

each condition were considered together, along with control unstimulated cells. The

benefit of combining all treated cells is particularly apparent after poly(I:C) stimulation,

in which many cells after two hours of stimulation are transcriptionally similar to

unstimulated cells, highlighting heterogeneity in this response.

To create a pseudotime, the destiny package was used, which employs a di�usion map

approach [190]. This was applied to the 5000 most highly variable genes, calculated

with Seurat’s ’findVariableGenes’ function, to the IFN-— and poly(I:C) pathways

separately. Figure 4.7a shows Di�usion Components (DCs) 1 and 2 for each of these

responses. This demonstrates that the largest source of variability, segregating along

DC1, is stimulation condition. DC2 shows separation, particularly of unstimulated

cells, representing cell cycle e�ects. This is confirmed by GO term enrichment analysis

of the genes most highly correlated with DC2, along with visual inspection of the cell

cycle phase distribution versus DC2 - shown in the inset plots in Figure 4.7a.

Given the correlation of DC1 with stimulation response in both treatment conditions,

this is used as a ’response pseudotime’. In the case of poly(I:C) stimulation, the reverse

of DC1 is taken as unstimulated cells lie on the right hand side. The distribution

of cells in each stimulation condition across this response pseudotime highlights the

heterogeneity in response (Figure 4.7b). This is particularly true in the response to

poly(I:C) treatment, where the earlier timepoint shows a bimodality in the cells. Many

of the cells show high similarity to the unstimulated state, while a subset are shifted

to the right in response pseudotime, overlapping with the peak of the poly(I:C) 6 hour

distribution (which itself has a broad distribution). In the IFN-— response pseudotime,

the peak around the middle of DC1 corresponds to cell cycle state, however a breadth

in distribution within responding cells can be seen.
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Fig. 4.7 A pseudotime of poly(I:C) and interferon response pathways. a) Cells plotted
after dimensionality reduction with ’destiny’ [190]; di�usion components (DCs) 1
and 2 shown for the ’IFN pathway’, left, and ’poly(I:C) pathway’, right, coloured
by stimulation condition. Inset plots show the number of cells per cell cycle phase,
assigned using ’cyclone’ [174] against DC2. b) Density of cells from each stimulation
condition across response pseudotimes, for the ’IFN pathway’, left, and ’poly(I:C)
pathway’, right.
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To confirm that the calculated pseudotimes capture the innate immune response, one

can look at expression of known response genes, such as ISG15 and IFN-— (Figure 4.9a).

It is worth noting that IFN-— treatment is not expected to induce IFN-— expression

itself, and that in response to poly(I:C) treatment only a subset of cells produce IFN-—

(rightmost panel), as discussed previously. Beyond example genes, it is possible to

verify the expression of an entire innate immune response gene set. Deschamps et al.

curated a set of 1553 innate immune genes (IIGs) from GO term annotation, InnateDB

and manual addition [191]. These genes are classified into di�erent functions, and

examples of the genes and their annotated functions are shown in Figure 4.8. Looking

at expression across the pseudotimes defined above, IIGs increase in the response to

both IFN-— and poly(I:C) (Figure 4.9b), whereas the opposite is true for the remainder

of genes (referred to as ’non-IIGs’).

Fig. 4.8 Functional classification of innate immune genes. A curated list of innate
immune genes (IIGs) was obtained from Deschamps et al. [191]. Examples involved in
Type I interferon signalling, and their functional classification, are shown here.
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Fig. 4.9 Expression of innate immune genes across response pseudotime. a) The
expression of ISG15 and IFNB1 against IFN pseudotime, left, and poly(I:C) pseudotime,
right. b) Average expression of the set of innate immune genes (IIGs) [191] and non-IIGs
over IFN pseudotime, left, and poly(I:C) pseudotime, right.
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4.3.3 Defining gene modules in the innate immune response

To define the dynamics of gene expression for each gene independently, it is possible

to fit a model to the expression of each gene across response pseudotime. Using the

SwitchDE package (Appendix E; Figure E.1a) [97], parameters for the activation

time (t0), expression level (µ) and slope of activation (k) were inferred for the IFN-—

and poly(I:C) responses. Using these inferred models, it is possible to look at the

pattern of gene expression across time. Genes were categorised as ’on’ or ’o�’ for

each response pathway based upon whether they had a positive or negative k value,

respectively. The top 500 most significant genes (taking the q-value from the SwitchDE

model) in each direction were considered, and hierarchical clustering was used to define

clusters of genes with shared temporal expression patterns. The number of clusters

was determined visually based upon the dendrograms of gene similarity, for the IFN-—

and poly(I:C) pseudotimes respectively. These clusters show good concordance with

modules defined using an alternative approach: WGCNA (Weighted gene correlation

network analysis)[100]; Appendix E, Figure E.1.

Each module was tested for enrichment of the IIGs described above, and results are

shown in Tables 4.1 and 4.2 for the response to IFN-— and poly(I:C) respectively. The

distribution of functional categories for these IIGs was considered, and is shown in the

right hand plots of Figures 4.10 and 4.11. Furthermore, GO term enrichment analysis

was conducted for each cluster, and the list of significantly enriched terms (pvalue <

0.05) is shown in Tables E.1 and E.2 (Appendix E).

In both the IFN-— and poly(I:C) response, there is one major cluster which represents

the canonical Type I interferon response. In the case of IFN-— treatment, this is

cluster coloured in black (Figure 4.10). This module of genes shows low expression in

unstimulated cells (visible in the heatmap), a high enrichment of IIGs (hypergeometric

test; pvalue = 1.98e-30), and inclusion of typical genes (such as DDX58, MYD88,
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OAS3, ISG15, ISG20, IRF7, IFIT2, TRIM25, SAMHD1, IFI6, IFI35 and STAT1). The

GO terms for this cluster reflect this signalling pathway, with the two most significant

terms being "defense response to virus" and "type I interferon signaling pathway".

This cluster has a particularly high representation of IIGs in the classes ’e�ector’,

’regulator’, and ’sensor’. highlighting functions across the pathway (Figure 4.10a; right

panel). The same trend can be seen in the ’black’ cluster in poly(I:C), which shows

highest expression in later stages of the poly(I:C) response pseudotime. The most

significant GO terms include "innate immune response", "defense response to virus"

and "cytokine-mediated signaling pathway", and all of the example genes listed above

fall within the cluster (with the exception of IRF7, however IRF9 is included). Again,

IIGs are highly enriched (hypergeometric test; pvalue = 3.58e-42), and show functions

across the pathway (Figure 4.11a; right panel).

Beyond these two major clusters, modules of genes with discrete innate immune

response functions can be identified. For example, in response to IFN-—, there is a

co-expressed set of genes (pink) which show involvement in signal transduction and

regulation. This cluster includes genes such as DHX58, JAK2, STAT3 and TRADD.

The third cluster, on the other hand, shows a higher level of e�ector function, with

enrichment of GO terms relating to cytokine production, and genes such as CCl2,

CXCL11 and CXCL16.

These alternative modules are less clear in the poly(I:C) response. Here, the second

group of genes is a small cluster dominated by mitochondrial genes, which is reflected

in the enriched GO terms. The two annotated IIGs within this cluster are IFITM2

and IFITM3, both of which are classified as ’e�ector’ proteins. The third cluster, while

enriched in IIGs, shows less ubiquitous expression in responding cells than cluster 1.

There are no significant GO terms for this cluster, however members include genes
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known to be involved in the type I interferon response, such as NFKBIA + NFKBID,

SOCS3, CCL5, DDX3X and JUN, and particularly in signal transduction.

Along with categorising up-regulated gene sets, it is interesting to consider the

set of genes down-regulated in response to the mock-viral stimulations. In response

to IFN-— treatment, two major clusters of genes are down-regulated. One cluster,

expressed in unstimulated cells but switched o� in the response (Figure 4.10b; left

panel) reflects processes around chromatin organisation and nucleic acid processing.

Example genes in this cluster are HDAC2, SMARCA2, and ZNF287. The other cluster

represents the cell cycle, with strongly enriched GO terms such as ’cell cycle’ and ’DNA

metabolic process’. Genes include CDK1, CCNA2, CDCA2, CCDC18, and several

members of the CENP family.

In response to poly(I:C) stimulation, there are two major functions of down-regulated

genes. The largest cluster of genes, which show decreased expression in responding cells,

are involved in biological processes such as ’organelle organisation’ and ’establishment

of localisation in cell’. The second and third cluster are less clearly defined, however one

cluster (pink) shows enrichment of GO terms highlighting metabolic processes, while the

other centres on protein localisation and processing. Furthermore, these two modules

show di�erent temporal dynamics across the response pseudotime (Figure 4.11b; left

panel).

The definition of these modules across response pseudotimes highlights a tightly

regulated type I interferon response, with coordinated modules of genes showing discrete

innate immune functions.
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Table 4.1 Enrichment of IIGs in modules of co-expressed genes in the IFN-— response.

Gene module Total group size Number of IIGs
Enrichment
p-value

Canonical Type I IFN 81 44 1.98e-30
Regulator/signal transduction197 53 4.66e-18
E�ector 222 40 2.65e-08
Cell cycle 244 19 0.33
Chromatin organisation 256 16 0.69

Table 4.2 Enrichment of IIGs in modules of co-expressed genes in the poly(I:C) response.

Group Total group size Number of IIGs
Enrichment
p-value

Canonical Type I IFN 311 103 3.58e-42
Mitochondrial 25 2 0.27
Signal transduction 164 24 0.00032
Organelle localisation 298 26 0.15
Metabolic processes 127 21 0.00011
Protein regulation 75 10 0.018
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Fig. 4.10 Modules of co-expressed genes in the response to IFN-—. The SwitchDE
package [97] was used to infer a dynamic model of expression for each gene. Genes
with a positive ’k’ value were termed ’on’ genes and those with a negative ’k’ as ’o�’
genes, shown in panels a and b respectively. The 500 ’on’ and ’o�’ genes with the
most significant qvalue were selected. Their z-score normalised expression across the
pseudotime defined in Figure 4.7 is shown on the left; genes were clustered using
hierarchical clustering with the ward method. Right: proportion of genes from each IIG
functional category within the total cluster; the background set shows representation
in the entire set of 15363 genes tested in SwitchDE.
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Fig. 4.11 Modules of co-expressed genes in the response to poly(I:C). The SwitchDE
package [97] was used to infer a dynamic model of expression for each gene. Genes
with a positive ’k’ value were termed ’on’ genes and those with a negative ’k’ as ’o�’
genes, shown in panels a and b respectively. The 500 ’on’ and ’o�’ genes with the
most significant qvalue were selected. Their z-score normalised expression across the
pseudotime defined in Figure 4.7 is shown on the left; genes were clustered using
hierarchical clustering with the ward method. Right: proportion of genes from each IIG
functional category within the total cluster; the background set shows representation
in the entire set of 15363 genes tested in SwitchDE.
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4.4 Discussion

In this chapter, I have described work charting the evolutionary architecture of the

innate immune response. We showed that genes that diverge rapidly between species

show higher levels of variability in their expression across individual cells than genes that

diverge more slowly. Both of these characteristics are associated with a similar promoter

architecture, enriched in TATA-boxes and depleted of CGIs. Notably, such promoter

architecture is also associated with the high transcriptional range of genes during the

immune response. Thus, transcriptional changes between conditions (stimulated versus

unstimulated), species (transcriptional divergence), and individual cells (cell-to-cell

variability) may all be mechanistically related to the same promoter characteristics.

In yeast, TATA-boxes are enriched in promoters of stress-related genes, displaying

rapid transcriptional divergence between species and high variability in expression

[192, 193]. This finding suggests intriguing analogies between the mammalian immune

and yeast stress responses—two systems that have been exposed to continuous changes

in external stimuli during evolution.

We have also shown that genes involved in regulation of the immune response—such

as transcription factors and kinases—are relatively conserved in their transcriptional

responses. These genes might be under stronger functional and regulatory constraints,

owing to their roles in multiple contexts and pathways, which would limit their ability

to evolve. This limitation could represent an Achilles’ heel that is used by pathogens

to subvert the immune system. Cytokines, on the other hand, diverge rapidly between

species, owing to their promoter architecture and because they have fewer constraints

imposed by intracellular interactions or additional non-immune functions. Cytokines

may therefore represent a successful host strategy to counteract rapidly evolving

pathogens as part of the host–pathogen evolutionary arms race.
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Cytokines also display high cell-to-cell variability and tend to be co-expressed with

other cytokines and cytokine regulators in a small subset of cells, and this pattern is

conserved across species. As prolonged or increased cytokine expression can result in

tissue damage [194–196], restriction of cytokine production to only a few cells may

enable a rapid, but controlled, response across the tissue to avoid long-lasting and

potentially damaging e�ects. This cellular variability in response is also observed in the

larger human scRNA-seq dataset, where cells in each stimulation condition show a wide

distribution of positions across the IFN-— and poly(I:C) response pseudotimes. This

further strengthens the notion that the response is heterogenous but highly regulated.

One mechanism to achieve a strongly coordinated response is the regulation of gene

modules with discrete functions. By characterising genes whose expression changes

across response stimulation, I showed that it is possible identify distinct modules. In

both stimulation timepoints, a gene module representing the canonical type I interferon

pathway was observed. Further discrete gene clusters were seen, such as those involved

in signalling or e�ector functions. These modules showed di�erences in temporality

and variability of expression. For example, the ’e�ector’ module showed less ubiquitous

expression across cells in response to IFN-— treatment compared to the type I interferon

module, mirroring the cytokine heterogeneity seen in the cross-mammalian work. These

features further suggest tight regulation of expression within each gene set, and across

the response as a whole.




