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Chapter 3: The Gut Phage Database  
 

3.1 Introduction and aims 

 

The first metagenomic studies revealed that the majority of the viral gut diversity is novel 

(81%-93%) (Manrique et al., 2016; Reyes et al., 2010), and since only recently their bacterial 

hosts started to be cultured (Browne et al., 2016), gut phage host assignment and host range 

have remained largely uncharacterized. An exception has been crAssphage, a phage discovered 

in 2014 by computational analysis of metagenomic reads and found in >50% of Western human 

gut microbiomes (Dutilh et al., 2014). A surprising finding was that the majority of phage 

sequences uncovered by metagenomics could not be classified into any known viral taxonomy 

laid out by the International Committee on Taxonomy of Viruses (ICTV) (e.g. species, genus, 

family), prompting many researchers to organize phage predictions from metagenomic datasets 

into custom grouping schemes based solely on genomic features (Bin Jang et al., 2019).  

 

More recently, gut metagenomes have been mined in order to compile a more comprehensive 

list of gut phage genomes (Gregory et al., 2019; Paez-Espino et al., 2019). Nevertheless, the 

limited number (<700) of metagenomes used to construct these databases, and the median 

fragment size of their predictions (<15 kb as opposed to ~50 kb for an average Caudovirales 

phage genome), suggests that we have yet to capture a globally representative gut phage 

diversity and the current phage genomes are likely far from complete. Indeed, a recent report 

estimated that the IMG/VR database, which contains viral sequences from a wide range of 

environments including the human gut, showed that only 1.9% of the predictions were 

complete, and 2.5% high-quality (Nayfach et al., 2020). These issues highlight the need for a 

comprehensive resource of longer and complete reference phage genomes to enable genome-

resolved metagenomics for virome studies. 

 

In this chapter, I describe the construction of the largest database to date that harbours the 

human gut phage sequences, which were product of mining 28,060 metagenomes and 2898 

isolate genomes derived from the human gut microbiota. I investigate ways to organise the 

huge viral diversity uncovered in this work in order to improve the characterisation of gut 



 32 

phages in the following chapters. I also developed tools that can aid in the exploratory analysis 

of viral genomes that will be presented in this chapter. 

 

The aims of the research presented in this chapter are: 

 

• generate the Gut Phage Database (GPD), a high-quality and comprehensive database 

of the human gut bacteriophage sequences; 

• group viral diversity into meaningful clusters to enable more powerful downstream 

analyses; 

• Develop tools for the high-throughput analysis of genome synteny, hypervariation, and 

phylogeny of viral genomes. 
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3.2 Results and discussion 

 

3.2.1 Construction of the gut phageome database (GPD) 

 

In order to uncover the diversity of human gut bacteriophages, the biggest datasets of human 

gut metagenomes (n=28,060) and reference genomes of cultured gut bacteria (n=2,898) were 

mined. In addition, the metagenomes had a worldwide distribution, as they originated from 28 

different countries spanning six major continents (Africa, Asia, Europe, North America, South 

America and Oceania). To identify viral sequences among human gut metagenomes, over 45 

million contigs were assembled and screened with VirFinder (Ren et al., 2017), which relies 

on k-mer signatures to discriminate viral from bacterial contigs, and VirSorter (Roux et al., 

2015), which exploits sequence similarity to known phage and other viral-like features such as 

GC skew. Since obtaining high-quality genomes was paramount for downstream analyses, 

conservative settings were used for both tools and only predictions that were at least 10 kb long 

were kept. After removing contamination with a machine learning approach (see below) and 

dereplicating the final set of filtered sequences at a 95% nucleotide identity threshold (over a 

75% aligned fraction), a database of 142,809 gut phage sequences was generated (the gut phage 

database, hereafter referred to as GPD) (Figure 3.1). 

 

 

Figure 3.1. Generation of the Gut Phage Database (GPD). An initial dataset composed of 

28,060 public human gut metagenomes and 2898 gut bacteria isolate genomes were mined to 

identify phage genomes. After assembling 45 million contigs, predictions were carried out with 

VirFinder and VirSorter. Whereas the former is only able to process whole contigs, the latter 

can also detect integrated viral sequences or prophages. In order to minimize false positives, 

conservative setting were used for both tools and only fragments > 10 kb were kept. A neural 

network was trained to remove further contamination caused by ICEs. Predictions were 

dereplicated at 95% nucleotide identity and they were stored in the gut phage database. In order 
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to further organize viral diversity, predictions were grouped into viral clusters (VCs). Finally, 

read mapping was used to quantify prevalence of VCs in the original metagenomes 

(epidemiology results in Chapter 5).  

 

3.2.2 Decontamination using a machine learning approach 

 

Many false positives (FPs) gene predictions coded for type IV secretion systems and relaxases, 

suggesting contamination by conjugative mobile elements (Guglielmini et al., 2013). Although 

plasmids can encode Type IV machinery, I decided to focus on integrative and conjugative 

elements (ICEs) as conjugation is an inherent feature of their lifestyle (Delavat et al., 2017). In 

a sense, ICEs behave like temperate “intracellular phages”: they integrate into a bacterial 

genome, can excise from the chromosome and encode a tail-like structural machinery 

necessary for injecting their DNA into another host. Thus, it’s understandable that some of 

them can be predicted as phages. However, given the widespread use of VirFinder and 

VirSorter, it came as a surprise that previous reports that used these tools never discussed or 

raised a warning about potential contamination by conjugative elements. This contamination 

issue was further exacerbated because many predictions contained truncated ICEs and 

uncharted diversity, making difficult to discriminate by a marker gene approach.  

 

In order to automate the detection of FPs, I devised a machine learning approach to carry out a 

further round of decontamination. A feedforward neural network was used to discriminate 

phages from ICEs. Gene density (genes/kb), kmer signature (pentanucleotide composition), 

and fraction of hypothetical proteins (hypothetical genes/total genes) were selected as machine 

learning features, since these metrics can be computed for incomplete sequences and do not 

rely on direct specific homology (Figure 3.2A and 3.2B). In general, phages had higher 

densities of genes and hypothetical proteins. The former could be attributed to a selective 

pressure of phages of fitting their genome into the capsid, while the latter could be explained 

by poor annotation of phage structural proteins due to their lack of conservation (Seguritan et 

al., 2012). The extent of discrimination of phages from ICEs by computing these two metrics 

can be appreciated in Figure 3.2C where they clearly segregate (phages in blue and ICEs in 

red). The classifier was trained with validated experimental sequences of phages (RefSeq, 

n=2,387) and ICEs (ICEberg 2.0, n=113). Model selection was carried out with 5-fold cross-

validation and the classifier showed an excellent performance in an independent test set 
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(AUC>0.97) harbouring human gut mobile genetic elements (MGEs) (Figure 3.2D). I carried 

out the classification by allowing a false positive rate of 0.25% with a recall of 91%. 

 

  

Figure 3.2 – A machine learning approach to distinguish phages from ICEs. In order to 

discriminate ICEs from phages I relied on three features: kmer signature, gene density, and 

fraction of hypothetical proteins. Kmer signature has already been exploited as a way to 

discriminate phages from host DNA. Generally, gene density A) and fraction of hypothetical 

proteins B) were lower for ICEs than for phages. C) When experimental sequences of ICEs (in 

red, n =113) and genomes of NCBI phages (in blue, n=2,387) are described by these two 

features, they clearly segregate. I trained a feed forward neural network that harnessed the 3 

features described using experimental sequences from ICEs and phages and benchmarked it 

with a dataset of gut phages (n=201) and ICEs (n=405). D) The classifier had an excellent 

performance in an independent dataset with an AUC>0.97. 
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3.2.3 GPD significantly expands gut bacteriophage diversity  

 

In order to assess the viral diversity of the GPD at high taxonomic levels, I used a graph-based 

clustering approach to group genetically related phages. Merging GPD with RefSeq and two 

other human gut phage databases (GVD and IMG/VR) (Gregory et al., 2019; Paez-Espino et 

al., 2019), resulted in the generation of 21,012 non-singleton viral clusters (VCs) with at least 

1 GPD prediction (GPD VCs). A VC corresponds to a viral population sharing approximately 

90% sequence identity over ~75% aligned fraction.  

 

Comparison of GPD against RefSeq phage genomes, revealed only 171 out 21,012 VCs 

overlaps. Phages from these 171 VCs mainly infect Escherichia, Enterobacter, 

Staphylococcus, and Klebsiella genera, reflecting the bias of the RefSeq database to harbour 

phages from well-known clinically important and traditionally culturable bacteria. Consistent 

with previous reports of phage predictions from metagenomic datasets (Hoyles et al., 2014), I 

was not able to confidently assign a family to the majority (~80%) of GPD VCs, while the rest 

corresponded mainly to the Podoviridae, Siphoviridae and Myoviridae families (Figure 3.3A). 

These 3 viral families belong to the Caudovirales order (phages characterized by having tails 

and icosahedral capsids) which from microscopic studies have been found to be enriched in 

human faeces (Hoyles et al., 2014; Roux et al., 2012).  

 

For comparison purposes, in addition to GPD VCs, I also considered VCs without GPD 

predictions (Figure 3.3B). Analysis of VCs composed from only GPD and IMG/VR genomes 

showed 3,699 overlaps, while I found 3,206 VCs composed of only GPD and GVD genomes. 

Moreover, GPD harboured the highest number of unique VCs with 12,731 novel clusters. On 

the other hand, 1099 VCs, and 113 VCs were unique to IMG/VR and GVD, respectively. In 

addition, 1205 VCs were shared by the three databases. Interestingly, the number of VCs with 

an assigned phage taxon was lower in the VCs that were unique to GPD as opposed to those 

shared with GVD and IMG/VR (18.74% vs 27.8%) (P = 1.96e-9, !"). Thus, GPD considerably 

increases the known gut phage diversity in the human gut. This phage diversity expansion is 

likely driven by the high number of gut metagenomes mined and their global distribution which 

allows the retrieval of rarer gut phage clades. 
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Figure 3.3. GPD taxonomy assignment and comparison against other gut phage 

databases.  A) Most of GPD VCs (~80%) could not be assigned to a phage family. The 

assigned fraction corresponded to mainly families of the Caudovirales. B) UpSet plot 

comparing GPD against other public gut phage databases. GPD captures the greatest unique 

diversity of phage genomes that inhabit the human gut.  
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3.2.4 Genome completeness of GPD 

 

Genome completeness is another important feature of a high-quality reference genome 

database. Unlike prokaryotic genomes, there is no current consensus tool to assess phage 

completeness and contamination, thus multiple complementary approaches were explored to 

assess the GPD genome completeness. First, I assessed genome size. The Caudovirales order, 

which is considered a dominant group of the human gut phageome, possesses an average 

genome size of ~50 kb (Ackermann, 1998). Based on this criteria, GPD harbours the most 

complete gut phage genomes as it has the largest median genome size with ~31 kb, followed 

by IMG/VR and GVD with 15 and 11 respectively (Figure 3.4A).  

 

I further assessed completeness by studying the genome organisation of the GPD phage. Figure 

3.4B shows the consensus position of marker genes along GPD genomes. I found that key 

marker genes localized at their expected positions within the predictions. For instance, 

integrases were more often found at the edges (terminal genes), terminases in the middle, and 

polymerases in between (semi-terminal genes). This observation reflects the highly complete 

nature of the GPD genomes. Moreover, this result highlighted the large number of linear 

genomes which can be a result of prophages or an inherent feature of a phage clade (e.g. 

Caudovirales) 

 

Finally, I estimated the level of completeness of each viral genome using CheckV (Nayfach et 

al., 2020) (Figure 3.4C). This tool estimates the expected genome length of a viral prediction 

based on the average amino acid identity to a database of complete viral genomes from NCBI 

and environmental samples. In total, 41,248 (29%) of the viral genomes were classified as high 

quality (of which 13,249 were predicted to represent complete genomes), 38,574 (27.01%) as 

medium quality, 53,116 (37.19%) as low quality, and 9,691 (6.78%) as non-determined. The 

median genome completeness of all genomes stored in the GPD was estimated to be 63.5% 

(interquartile range, IQR= 34.68%–95.31%) (Figure 3.4D). Estimation of non-viral DNA by 

checkV showed that 73.5% of GPD predictions had no contamination whereas 84.13% had a 

predicted contamination <10%.  
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Figure 3.4. Genome completeness of GPD. A) Compared to other public databases, GPD 

harbours the longest genomes with a median of 31 kb as opposed to 14 kb from IMG/VR and 

11 kb from GVD. B) Distribution of phage marker genes across GPD predictions. Three main 

types of consensus distributions were observed, namely terminal, semi-terminal, and middle 

genes. C) Genome completeness as judged by CheckV. Over 40,000 genomes were categorized 

as high-quality (28%) (genome completeness > 90%), while the rest were predicted to be 

genome fragments. D) The median genome completeness of the whole database was was 

estimated to be 63.5%. 

 

3.2.5 Clustering of phages into VCs 

 

As explained above, I further organized the viral diversity contained in GPD into VCs. Even 

though a 95% nucleotide identity threshold has been proposed to delineate species in bacterial 

viruses (Adriaenssens and Brister, 2017), when I examined the final set of predictions 

(142,809), I realised that many phage genomes were still very similar between each other. 

Different predictions had extensive synteny with nucleotide identity < 95% and thus shared the 

majority of genes. 

 

I then decided to explore further clustering by computing how many genomes were related to 

a “bait” genome at different thresholds of Mash distance (Figure 3.5A). Most of the genomes 

related to the bait were already saturating at a Mash distance of 10 (~90% nucleotide identity), 

which I considered as a more appropriate clustering threshold than a Mash distance of 5 (~95% 

nucleotide identity) (Figure 3.5B).  

 

Since Mash doesn’t take into consideration alignment fraction, I switched to BLAST to enforce 

a minimum alignment fraction of 75% of the shortest sequence and allowed a minimum of 90% 

nucleotide identity between genomes. In order to automatize the generation of clusters, I relied 

on an unsupervised approach, namely the Markov Clustering Algorithm or MCL (Dongen, 

2000) (see Methods). In short, MCL uses random walks to automatically identify highly 

connected nodes (phage genomes in this case). After MCL clustering, GPD diversity ended up 

encapsulated in 21,012 non-singleton VCs.  Benchmarking against the RefSeq phages revealed 

that GPD VCs were equivalent to a subgenus level, as >99% of all VCs were contained within 

a genus and in some cases, multiple VCs were associated to a single genus (Figure 3.5C). 
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Figure 3.5. Clustering of phages into VCs. A) Even though 95% sequence similarity 

delineates species level in phages, I noticed extensive synteny between GPD predictions at that 

threshold. I explored other sequence identity thresholds by computing how many GPD 

genomes were related to a bait genome. B) Viral clusters started to saturate at a Mash distance 

of 10 (~90% sequence similarity), rather than 5 (~95% sequence similarity).  C) Benchmarking 

against RefSeq phages showed that a single phage genus could be associated to several VCs, 

suggesting subgenus clustering.  

 

3.2.6 Viral clusters reconstruct the phylogenetic structure of gut phages 

 

The resultant VCs were not of uniform size but instead followed a negative exponential 

distribution with a few clusters (<50) composed of a large number of phage (>100 predictions) 

followed by a rapidly decreasing long tail of VCs with smaller membership size (Figure 3.6A). 
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This result suggested that genetic diversity is not evenly distributed in GPD. The number of 

genomes per VC could reflect inherent genetic diversity of a phage clade, however the most 

likely explanation here may be sampling bias (oversampled VCs will capture more genetic 

variation). The top VC was identified as the highly prevalent crAssphage (p-crAssphage), 

while the second contained a clade of phages characterized by a relatively long genome 

(~80kb), a BACON domain-containing protein, and Bacteroidales host range (hereafter 

referred to as the Gubaphage clade). The Gubaphage clade is a novel clade of gut phages 

proposed in this thesis and it is further characterized in Chapter 4. The phylogenetic structure 

of GPD could be visualized based on a network analysis of VCs (Figure 3.6B). Several VCs 

were highly inter-connected, forming super clusters and hinting to higher taxonomic clustering 

(e.g. viral subfamilies). On the other hand, isolated VCs may correspond to very genetically 

homogeneous viral clades.  
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Figure 3.6. Distribution of genomes per VC and phylogenetic structure of GPD A) 

Distribution of genomes per VC. Only the 100 most prevalent VCs are shown. A member of 

the crAssphage family (p-crAssphage) was identified as the VC with the bigger cluster size, 

followed by a VC referred to as the Gubaphage. B) Visualization of the top 100 VCs reveal a 

subset of connected clusters and isolated ones. Inter-connection of VCs likely reflect higher 

phylogenetic structures such as subfamilies.  
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3.2.7 Bioinformatics tools 

 

During the course of this work, I developed 3 bioinformatics tools that helped with the 

exploratory data analysis of GPD genomes, namely dotBlast (synteny analysis), hyperVir 

(visualization of hypervariable regions), and vMatch (classification of phage sequences). The 

development of these tools was motivated by the lack of ad-hoc bioinformatics tools to manage 

the sheer amount of genomes in GPD. 

 

3.2.8 Synteny analysis for viral genomes (dotBlast) 

 

During the exploratory analysis stage of this work I realised that I needed a high-throughput 

way to compare viral genomes. Sequence identity is a way forward, and adding coverage 

thresholds can lead to more robust strategies to assess similarity between two genomes. 

Nonetheless, the source of these two metrics (sequence identity and coverage) is the sequence 

alignment, and its inspection can help uncover more subtle differences such as insertions, 

deletions, and inversions.  

 

In bioinformatics, a dot plot (also known as a similarity matrix) is one way to efficiently 

visualize a pairwise sequence alignment. The dot plot was introduced in 1970 by Gibbs and 

McIntrye and it can be constructed by placing the bases of the first sequence as columns of a 

matrix, while the second sequence runs perpendicularly and thus fills up the rows of the matrix. 

Then we simply shade a cell in black if the residues in the corresponding column and row are 

identical. A consequence of this pattern is that matching subsequences appear as diagonal lines 

across the matrix.  

 

If “n” and “m” are the lengths of the two sequences to analyse, then the number comparisons 

is n*m. However, generating the matrix this way is computationally inefficient (quadratic time 

complexity) and leads to a lot of noise. If a tool is meant to generate hundreds of dot plots in a 

reasonable amount of time, then this naïve strategy is not practical. A way around is simply to 

shade cells if they belong to a significant alignment. Fortunately, BLAST can readily process 

hundreds of queries in an efficient manner.  
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By incorporating the BLAST output of two aligned sequences, I developed dotBlast which 

given a blast reference viral genome and a set of queries, can quickly generate the coordinates 

for the generation of dot plots that compare each query to the reference (Figure 3.7A). In 

addition, in order to explore more conserved regions, the user can control the alignment 

significance threshold (Figure 3.7B). By generating dot plots, it’s possible to have a quick 

glance of synteny across hundreds of queries against a reference (e.g. a member of a known 

viral subfamily). Analysis of dotplots can provide subtle details of genomic organisation e.g. a 

“broken” main diagonal may indicate circular genomes, a “jump” in the alignment can hint to 

an insertion or deletion. 

 

With the increasingly large number of viral genomes mined from metagenomes, it is becoming 

more necessary to have high-throughput tools to easily visualize relationships between phage. 

DotBlast depends only on BLAST and Python, which are usually already available in a large 

number of bioinformatics systems or can be easily installed. 
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Figure 3.7. DotBlast tool. A) DotBlast can compare hundreds of viral genomes against a 

reference (e.g. a member of a viral subfamily) by generating dot plots. It uses BLAST to 

calculate significant alignments and plots them in a dot plot format in a fast manner. B) The 

significance of alignments can be controlled, allowing to identify highly conserved regions (or 

decrease noise). 
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3.2.9 Hypervariation analysis (hyperVir) 

 

Having a large genetic diversity encapsulated in a clade of closely related viral genomes (e.g. 

species or genus) enables a large number of analyses. The discovery of hypervariation within 

proteins is particularly interesting because it can lead to the identification of genes with binding 

domains. These genes can be involved in recognition of bacterial receptors, binding of mucus, 

and even depolymerization of surface decorating polysaccharides by lytic phage enzymes. 

Analysis of gut viromes has suggested the existence of multiple hypervariable loci in gut 

phages (Minot et al., 2012), and thus the assessment of hypervariation in GPD phages can 

prove to be useful for their characterization. In order to facilitate hypervariation analysis in 

viral genomes I developed hyperVir which allows visualization of amino acid diversity and 

automatic detection of hypervariable regions in viral contigs.   

 

The basic workflow (Figure 3.8A) involves an input FASTA file containing protein sequences, 

followed by a multiple sequence alignment with MAFFT, and finally the estimation of amino 

acid diversity at each position of the alignment by calculating Shannon’s entropy. The signal 

is smoothed out by passing the Savitzky-Golay filter and hypervariable regions can be detected 

by a spike of amino acid diversity (Figure 3.8B). 

 

HyperVir is thus a tool that conveniently can uncover viral genes with hypervariable domains 

which can help narrow down gene function. A more rigorous method involves the detection of 

positive selection with the Ka/Ks ratio. However, HyperVir is geared towards the detection of 

highly variable regions (hypervariation), speed, and high throughput visualization of results 

(Figure 3.8C).  
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Figure 3.8. HyperVir tool. A) Pipeline to identify hypervariable genes. The input is a FASTA 

file containing a set proteins. After generating a multiple sequence alignment of the proteins, 

hyperVir calculates the amino acid diversity at each amino acid position by computing 

Shannon’s entropy. Finally, the signal is smoothed with the Savitzky-Golay filter and the 

amino acid diversity plots visualized. B) Output of hyperVir. Amino acid variation is showed 

per position of the multiple sequence alignment. An hypervariable region is highlighted in red. 

C) hyperVir applied to 64 sets of proteins shows different hypervariation patterns. Pointed by 

arrows are examples of proteins with high hypervariation domains. 
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3.2.10 Exploring viral taxonomy through shared protein clusters (vMatch) 

 

Large-scale classification of phage predictions is a recurrent challenge in metagenomic 

projects. Unlike bacteria, viruses lack a common marker gene and thus it’s difficult to reliably 

estimate the phylogenetic distance between clades. This issue is compounded because phages 

often recombine and become mosaic, further blurring genetic distances between them. Finally, 

metagenomic projects often generate viral fragments which decrease the performance of 

methods that exploit specific-clade marker genes. The idea of using shared homologous 

proteins as a criterion to demarcate phage clades looked particularly promising e.g. the Phage 

Proteomic Tree (Rohwer and Edwards, 2002). In recent years, several tools were developed to 

harness the use of protein clusters to carry out phage taxonomy assignment. However, the 

majority of these methods were not implemented in packages, limiting their widespread use. A 

notable exception was the VICTOR tool, which was accessible online but had scalability issues 

(limit to 100 genomes) (Meier-Kolthoff and Göker, 2017). More recently, vContact2.0 

combined a network approach with the idea of sharing protein clusters, and optimized it for the 

classification of viral predictions at the genus-level. Furthermore, vContact2.0 is also available 

as a standalone version, making it more accessible for custom datasets (Bin Jang et al., 2019).  

 

Unfortunately, vContact2.0 is not scalable for huge datasets like GPD as the program could not 

finish processing the sheer volume of predictions (>140,000) submitted. Submission of shorter 

queries also failed to return taxonomy classification, but only the genus-like clusters. In 

addition, although useful, the genus scope of the program is a conservative taxonomy 

assignment. I believe that predictions can be more meaningfully placed into candidate viral 

subfamilies. This is particularly useful in metagenomes with huge novel viral diversity, as 

subfamilies can potentially bring together a multitude of novel genera that otherwise would be 

disconnected from known viral clades and deemed as “dark matter” of the dataset. Importantly, 

downstream analyses can be negatively affected, as hypothesis testing of associations of 

specific clades with another variable of interest (e.g. geographical distribution or disease) can 

end up underpowered. While the criteria for the inclusion of a phage into a specific viral 

subfamily varies, a sharing of at least 20% of homologous proteins between two genomes has 

been used to bioinformatically define viral subfamilies (Lavigne et al., 2008, 2009). This was 

the case of the crAss-like clade, in which the authors segregated all the crass-like sequences 

into viral subfamilies (20-40% sharing) and genera (>40% sharing) (Guerin et al., 2018).  
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With this in mind, my objective was to generate a tool for easy taxonomic exploratory data 

analysis of metagenomic datasets. I developed a standalone program (vMatch) for putative 

taxonomic assignment of metagenomic viral predictions against reference viral sequences (e.g. 

RefSeq) based on the principle of shared PCs to demarcate clades. vMatch takes in a file 

containing clusters of homologous proteins derived from pooling the proteome of the queries 

(e.g. metagenomic predictions) and reference viral sequences and then calculates the fraction 

of shared PCs between them. It then stores the results in a matrix in which the rows correspond 

to the queries and columns to the reference sequences (Figure 3.9A). Each entry corresponds 

to the pairwise mean of the shared PCs between the query and a reference. The matrix can then 

be visualized with a clustered heatmap. For instance, members of reference phage clades 

(Skunavirus, Peduovirus, Pahexavirus, Teseptimavirus) are columns of the heatmap, while 

rows are queries (Figure 3.9B). Clustering of the rows reveals a putative membership of the 

queries (e.g. metagenomic predictions). If the queries are also used as reference viral 

sequences, then visualization of the matrix enables the identification of novel clades (red boxes, 

Figure 3.9B).  
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Figure 3.9. vMatch tool. A) Given a query and a set of viral sequences, vMatch calculates the 

fraction of shared protein clusters (PCs) between them as a proxy of their relationship. For 

instance, if two viral sequences share >20% of PCs, then they may belong to same candidate 

subfamily. B). Visualization of vMatch results with clustered heatmap. On the left, a set of 

queries is compared against reference sequences, rows cluster according to their membership. 

On the right, the queries are also provided as reference sequences. The heatmap allows the easy 

identification of clades within the input sequences. 
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3.3 Conclusions 

 

In this chapter, I presented the framework and rationale for the downstream analyses of human 

gut phages. By processing viral predictions from 28,060 gut metagenomes and 2898 bacterial 

isolate genomes, I generated a comprehensive and high-quality database of bacteriophage 

genomes, namely the gut phageome database (GPD). I showed that two popular tools for viral 

predictions (VirFinder and VirSorter) even with conservative settings, often predict integrative 

and conjugative elements (ICEs) as phages. I discovered that phages and ICEs significantly 

differ in gene density, fraction of hypothetical proteins, and kmer profile and thus these features 

can be exploited to segregate them. I trained a neural network to learn these differences and 

deployed it across thousands of predictions to minimize the number of false positives in GPD.  

 

As reported in recent studies that analysed viromes from other environments, I uncovered an 

enormous amount of novel viral diversity in the human gut, which was particularly prominent 

when GPD is compared to the gold standard set of known viral genomes (RefSeq phages). This 

comparison highlighted three main things, namely the outstanding diversity of phages, the 

limited number of currently available high-quality phage genomes, and how mining of 

metagenomes can be harnessed to counter the lack of genomic data for phages. Comparing to 

other public phage databases, GPD outperformed in diversity and genome completeness by a 

wide margin. These improvements were due to the large number of metagenomes mined, and 

the diversity of samples which spanned all the 6 continents.  

 

Even though viral predictions were non-redundant at 95% nucleotide identity (which roughly 

correspond to species level) (Adriaenssens and Brister, 2017), I noticed that at this threshold 

many predictions still had extensive synteny and nucleotide identity (>90%) to other 

predictions. For this reason, I decided to further group them into viral clusters (VCs) which 

consisted of more discrete viral populations. A recent study proposed to formalize the use of 

species-rank virus groups (Roux et al., 2019). This study found a cluster of genome pairs 

(suggestive of a species rank) that encompassed a large fraction of phage genomes with a 

nucleotide identity >90%, providing further support to a departure of the minimum 95% 

threshold. The generation of VCs is a powerful concept, because it enables to encapsulate 

highly related viruses into homogenous phage clades and allows to obtain better consensus of 

their inherent features such as their core and accessory genomes or average genome length. 

This becomes more evident in the next couple of chapters when I profile the biological 
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functions and epidemiology of gut phages. In addition, the quality of VCs defined in this work 

are benefited by the significantly longer genomes hosted by GPD (median>31kb), and provide 

more sensitivity to find distinctive features of a phage clade.  

 

A critical step in this work was the exploratory data analysis. Unfortunately, none of the 

existing bioinformatic tools were suitable to handle the large number of GPD genomes. Thus, 

I decided to create standalone versions of programs that were useful during the development 

of this work. In addition, due to the large-scale nature of my dataset, processing speed was a 

priority and therefore all the tools are suitable for high-throughput analyses. The 3 programs 

developed here are suitable for the assessment of relatedness of viral genomes (dotBlast), study 

of hypervariation (hyperVir), and exploration of phage phylogeny by overlap of PCs (vMatch). 

 


