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Chapter 4: Function, phylogeny and host assignment of 
gut phages 

 

4.1 Introduction and aims 

 

Analyses of predicted phage sequences from gut metagenomes have yielded fascinating 

insights into phage biology, such as the presence of sticky domains - which may facilitate 

adherence of some phage to the intestinal mucus (Barr et al., 2013) - reverse transcriptases to 

promote hypervariation (Minot et al., 2012), and proteins with ankyrin domains that may aid 

bacterial hosts in immune evasion (Jahn et al., 2019). However, previous functions have been 

inferred from bulk viral fragments, severely limiting the resolution to characterize individual 

phage genomes. 

 

Due to the difficulty of culturing anaerobic gut bacteria, the identity of the hosts targeted by 

gut phages is a crucial but largely unanswered question. Often phages are restricted to infect 

single bacterial species, however distantly related gut bacteria have been found to harbour 

CRISPR spacers that target similar phages (Shkoporov et al., 2019) and almost identical 

prophages (Cornuault et al., 2018). These results suggest that gut phages may be more 

promiscuous than expected. 

 

In this chapter, I describe common functions and auxiliary metabolic genes encoded by human 

gut bacteriophages. I also highlight instances of hypervariable domains which may indicate the 

presence of phage receptor binding proteins. I then shift the focus to the analysis of two clades 

of gut phages, namely the Gubaphage and the Picovirinae subfamily. The Gubaphage is the 

viral cluster (VC) with the highest number of GPD predictions after the p-crAssphage, while 

the Picovirinae subfamily was the most common predicted phage taxonomy in GPD. As I will 

show in Chapter 5, both clades are also highly prevalent across all continents. Finally, host 

assignment allows me to study patterns of phage diversity across bacterial clades of the human 

gut and investigate their host range patterns.   
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The aims of the research presented in this chapter are: 

 

• uncover functions encoded by human gut bacteriophages; 

• identify and characterize important phage clades of the human gut; 

• carry out host assignment and investigate patterns of phage diversity across gut 

bacteria. 
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4.2 Results and discussion 

 

4.2.1 Functions encoded by gut phages 

 

Having a collection of over 142,000 viral genomes from the human gut allowed me to explore 

the functional patterns of gut bacteriophages at an unprecedented scale. In order to avoid biases 

due to a large number of highly genetically related viral predictions, I carried out the analysis 

at the level of VCs and ranked the results by fraction of VCs encoding the predicted functions. 

In addition, given that prophages are found in GPD predictions, I only considered regions 

classified as “viral” by checkV (Nayfach et al., 2020) to safeguard against bacterial DNA. I 

investigated the most ubiquitous KEGG pathways and modules encoded by gut phages (Figure 

4.1A). The most frequent KEGG pathways detected were those associated with DNA 

replication (ko03030), mismatch repair (ko03430), purine and pyrimidine metabolism 

(ko00230, ko00240), homologous recombination (ko03440), and cysteine and methionine 

metabolism (ko00270). Although DNA replication, mismatch repair and homologous 

recombination can be thought of inherent pathways of phages, the last two are an example of 

auxiliary metabolic genes (AMGs). AMGs augment host metabolism during infection and have 

a bacterial origin (Breitbart et al., 2007). Inspection of purine and pyrimidine metabolism genes 

revealed that dUTPases and thymidylate synthases were prominent members of this category. 

Cellular dUTPases break down dUTP into dUMP and pyrophosphate, while thymidylate 

synthases convert dUMP into dTTP (Hizi and Herzig, 2015). Since most DNA polymerases 

can use dUTP instead of dTTP for DNA synthesis, gut phages can minimize the risk of 

misincorporation of uracil in their genome by lowering the intracellular dUTP/dTTP ratio with 

dUTPases and thymidylate synthases.  

 

I also found other frequent functions related to the metabolism of sulphur-containing 

compounds such as assimilatory and dissimilatory sulphate reduction (M00176 and M00596). 

I decided to specifically search for hits that included the phosphoadenosine phosphosulfate 

reductase and sulfate adenylyltransferase as both enzymes participate in the reduction of sulfate 

(Muyzer and Stams, 2008). Sulfate reduction can be harnessed for assimilatory (anabolic) 

reactions which are involved in the biosynthesis of S-containing amino acids, as well as for 

dissimilatory pathways (energy generation) which use sulphur instead of molecular oxygen as 

an electron acceptor. This analysis unveiled 215 VCs that primarily infect Bacteroides, 
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Bacteroides B, Parabacteroides, Prevotella, Bacteroides A, and Blautia_A. Phages encoding 

sulphur metabolism enzymes may seem enigmatic, however dissimilatory reactions could be 

exploited by phages to ensure sustained energy generation in the gut anaerobic environment. 

For instance, cyanophages can encode photosynthetic genes in order to boost energy 

production during the infection stage (Clokie and Mann, 2006). Sulphur metabolism genes 

have also been found in dsDNA phages from the deep ocean, where it has been hypothesized 

that they may be involved in supplementing or sustaining sulphur oxidation metabolism in 

bacteria to ensure continued viral infection and replication (Anantharaman et al., 2014). While 

the top predicted hosts are not considered sulphur-reducing gut bacteria, it has been shown that 

Parabacteroides and Bacteroides isolated from chicken cecum express proteins related to 

sulfate assimilation. In addition, when dietary carbohydrates are scarce, Bacteroides 

thetaiotaomicron can degrade host glycans (heparin and heparin sulfate) which have variable 

sulfation patterns. Prevotella strain RS2 and Bacteroides fragilis are also considered mucin-

degrading bacteria (Tailford et al., 2015). Thus, it remains a possibility that as these bacteria 

can metabolize sulphated compounds, phages could exploit sulphur pathways for their own 

advantage. 

 

When I was inspecting annotations of individual genomes of GPD phages, I discovered 

multiple genes annotated as transporters. Therefore, I decided to quantify the most common 

phage transporters found in GPD (Figure 4.1B). Top hits corresponded to transporters for 

pantothenate, Zinc, Cobalt, Taurine, Nicotinamide mononucleotide, Nicotinamide riboside, 

spermidine/putrescine, and potassium.  

 

Nutrient transporters have been identified in other phages. For instance, viral genomes from 

the North Atlantic Subtropical Gyre can code for the pstS gene which transports phosphate into 

the host (Warwick-Dugdale et al., 2019). Phosphate is a primary limiting nutrient in marine 

environments, so phages can benefit their host by coding for phosphate transporters. Certainly, 

phages isolated from phosphate limited environments have been found to carry more AMGs 

related to phosphate uptake than those from phosphate replete environments (Kelly et al., 

2013). It’s known that the human gut is not a homogenous environment but one with nutrients 

that vary in space and time (gut biogeography) (Donaldson et al., 2016). Thus, the type of 

transporters coded by phages may depend on nutrients that maximize the chances of survival 

of their bacterial host at a specific gut niche. In line with this thought, substrates that aid 

anaerobic respiration may be more common in the most hypoxic areas of the gut such as the 
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large intestine. For instance, Taurine (a major constituent of bile) can be metabolized into 

sulfite, enabling anaerobic respiration. Small amounts of bile salts that were not absorbed in 

the small intestine, may be better harnessed by phages coding for taurine transporters in the 

hypoxic environment of the large intestine. 

 

I then shifted my attention to investigate the incidence of specific genes previously found in 

viral metagenomes from human faeces such as reverse transcriptases (Minot et al., 2012) and 

sticky domains (Barr et al., 2013).    

 

Over 2500 VCs (~12% of all VCs) encode reverse transcriptases (RTs) (Figure 4.1C). RTs in 

phages have been found to play a role in the generation of sequence diversity in target phage 

genes such as receptor binding proteins, and thus RTs with that function are called diversity-

generating retroelements (Liu et al., 2002). The high incidence of RTs found here contrasts 

with previous reports that found very low prevalence of DGRs in phages (3 phages in ~600 

dsDNA phages from NCBI) (Schillinger and Zingler, 2012). Similarly, When I analysed the 

incidence of RTs in RefSeq phages, only 0.38% contained them. Recently, it was reported that 

retrons, which are composed of a RT and a non-coding RNA, can work as an anti-phage 

defence system (Millman et al., 2020) . It’s possible that many RTs carried by gut phages may 

be involved in defending against other phages, thus providing their host a selective advantage.  

 

I also detected phage genes with adhesive domains (Figure 4.1C). For instance, 

Immunoglobulin-like (Ig-like) domains which occur frequently on the surface of the 

Caudovirales (Fraser et al., 2006), were found in ~5% of VCs.  The Bacteroides-Associated 

Carbohydrate-Binding Often N-terminal domain (BACON), which has been hypothesized to 

help phages bind intestinal mucin (de Jonge et al., 2019), was found in 0.88% of VCs. Finally, 

the collagen triple helix repeat (CTHR) was found in ~8% of VCs. Collagens domains have 

been suggested to aid in the attachment of phages to E. coli (Yu et al., 2014). Sticky domains 

in phages are often found close to tail genes, and it has been suggested that they may facilitate 

phage adsorption to its host (Fokine and Rossmann, 2014). In many cases, successful phage 

infections in the gut are mediated by the correct combination of sticky domains and capsular 

polysaccharides on the surface of bacteria (Porter et al., 2020). 
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Figure 4.1. Functions encoded by gut phages. A) Top functions encoded by gut phages. 

Common functions included KEGG pathways and modules related to DNA replication and 

DNA repair. However, I also detected instances of auxiliary metabolic functions such as those 

involved in nucleotide and sulphur metabolism. B) Transporters found in gut phages which 

may provide a selective advantage to their hosts depending on its intestinal niche. C) Reverse 

transcriptases (RTs) can help phages to generate sequence diversity and potentially act as 

defence systems against other phages. Sticky domains (red) may facilitate adsorption to hosts 

and binding to intestinal mucus. 

 

4.2.2 Protein clusters encoded by gut phages 

 

While the functions described above corresponded to curated pathways and targeted searches, 

I then took a more agnostic approach by analysing the whole proteome of GPD. I clustered all 

the GPD proteins with the phage RefSeq proteome to understand the functions encoded by the 

resultant protein clusters (PCs) (Figure 4.2A). After removing singletons I ended up with 

172,449 PCs. Top hits included PCs containing proteins involved in the integration of DNA 

into the host and the maintenance of a lysogenic state (anti-repressor and integrases), DNA 

processing (single-stranded DNA-binding protein), pore formation for DNA injection (tape-

measure protein), DNA packaging into procapsids (terminases), and DNA methylases (defence 

against host endonucleases). Interestingly, the 11th most common PC (PC_11) which was 

D 
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encoded by ~8.5% of all VCs could not be clustered with any viral protein from RefSeq. I 

inferred that this PC encompassed a family of relatively large (median: 259 aa, IQR: 33 aa) 

single-pass membrane proteins, as they carry a transmembrane region near the N-terminus. 

Submission of members of PC11 to HHpred (Söding et al., 2005), one of the most sensitive 

tools for protein homology detection, could not retrieve confident hits. Prediction of the host 

range of phages carrying proteins that belonged to this PC11, showed that it was mainly found 

in the Firmicutes phyla. This unknown PC highlights our lack of understanding of ‘core’ phage 

proteins that are widely spread in phages. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Protein clusters (PCs) encoded by gut phages. Prediction of the whole proteome 

found in GPD and RefSeq phages resulted in the generation of 172,449 PCs. After ranking the 

PCs by fraction of VCs they were encoded in, the top hits corresponded viral functions such as 

anti-repressor proteins, integrases, and structural proteins. Interestingly, one of the PCs found 

in ~8% of the VCs could not be assigned a function based on RefSeq proteins.  
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4.2.3 Identification of hypervariation domains uncovers putative phage tropism 

determinants 

 

Prediction of the gene that confers bacterial host specificity to a phage (receptor binding 

protein) is important for characterization purposes but also because it can be mutagenized to 

expand the host range (Dunne et al., 2019). The latter is particularly interesting as viruses with 

broad host range can be harnessed to improve the effectiveness of phage therapy against 

antibiotic resistant bacteria (Yehl et al., 2019). Receptor binding proteins (RBPs) recognize a 

bacterial membrane protein (phage receptor) which facilitates adsorption of the phage onto 

their host (Dowah and Clokie, 2018). As a countermeasure to avoid infection, bacteria often 

mutate their receptor. However, phages respond by evolving their RBPs to recognize the new 

receptor. This predator-prey dynamics give rise to hypervariation in the binding domain of the 

RBPs and the bacterial receptor (Hampton et al., 2020). 

 

I exploited the genetic variation present in the top VC of GPD to identify a candidate RBP for 

p-crAssphage (Figure 4.3A). After clustering the whole proteome of the crAssphage VC at 

>70% sequence identity and >90% coverage of both sequences, I sought to quantify amino 

acid diversity along a cluster of homologous crAssphage proteins. A sudden surge in diversity 

(hypervariation) would indicate the presence of a binding domain involved in host recognition. 

I identified such pattern in a group of homologous proteins predicted to be tail fibres. 

Attachment of tailed phages to bacteria is often mediated by tail fibres and surface receptors, 

providing further evidence that this set of proteins represent the RBP of p-crAssphage. The 

spike of amino acid diversity spanned ~70 amino acids and was located at the C-terminus. This 

finding is consistent with other phage receptor binding proteins that have their hypervariable 

domains at the C-terminus (Dunne et al., 2019). 

 

I repeated the same exercise but with genomes found in the VC which corresponds to the 

Gubaphage clade (Figure 4.3B). I identified a large protein (> 2000 amino acids) with a 

hypervariable region of ~150 amino acids. Proximal genes to this protein included the major 

capsid protein and the terminase which due to phage modularity tend to be close to tail genes, 

so the identified protein with an hypervariable domain from Gubaphage is well suited to be a 

candidate receptor binding protein. 

 



 63 

Thus, identification of hypervariable regions can help narrow down the function of important 

phage genes such as their receptor binding proteins. Elucidation of alternative strategies to 

homology search can prove invaluable in the characterization of the large fraction of 

hypothetical proteins in phages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Hypervariable domains can narrow down protein function in phages. 

Detection of hypervariation protein domains can be useful to narrow down protein function in 

phages. Using this strategy I was able to identify candidate proteins to be the receptor binding 

proteins of the p-crAssphage A) and the Gubaphage clade B).  

 

4.2.4 The Gubaphage represents a novel clade of gut phages 

 

As mentioned in the previous chapter, the top two VCs of GPD predictions (p-crAssphage and 

Gubaphage) represented outliers regarding genetic diversity (as number of genomes / VC). 

Nucleotide sequence alignment with p-crAssphage revealed no significant similarity. 

However, they shared some functional features such as large genome size (>80 kb), a BACON 

domain-containing protein, predicted Bacteroides host range, and circular genomes. Searching 

p-crAssphage 

Gubaphage 

A 

B 
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for sequences in the GPD with significant similarity to the Gubaphage large terminase gene 

(E-value < 1x10-6), I identified other 205 related VCs. Given its reminiscent features to 

crAssphage, I decided to investigate if the Gubaphage belonged to the recently proposed crAss-

like family which consists of 10 genera and 4 subfamilies (Guerin et al., 2018). I examined this 

relationship by building a phylogenetic tree using the large terminase gene (Figure 4.4A). The 

tree successfully clustered all the crAss-like genera as expected, however the Gubaphage 

significantly diverged from the other crAss-like phages forming a distinct clade.  

 

I then sought to characterize the phylogenetic structure of Gubaphage (Figure 4.4B). Analysis 

of protein overlap between Gubaphage’s genomes revealed that this clade is composed of 2 

clusters that share more than 20% but less than 40% of homologous proteins between them. 

This structure suggests two genera (G1 and G2) from a single viral subfamily. In addition, 

within G1 I identified another phylogenetic substructure composed of 3 large clusters (G1.1, 

G1.2, and G1.3) composed of 313, 514, and 502 phage genomes respectively. Host range 

prediction revealed that G1.1 infects Bacteroides caccae and Bacteroides xylanisolvens B, 

G1.3 Bacteroides B vulgatus, and G2 Parabacteroides merdae and Parabacteroides distasonis. 

In the case of G1.2, I couldn’t confidently predict a putative host. Interestingly, the larger 

genetic distance between G1 and G2 also resulted in a more extreme host range switch, from 

Bacteroidaceae (G1) to Porphyromonadaceae (G2). Core genes of the Gubaphage included 

homing endonucleases, DNA polymerase I, FluMu terminase, DNA primase, DNA helicase, 

Thymidylate kinase, dUTPase, among others. Annotation of its genome revealed that 

Gubaphage is organized into three distinct regions (Figure 4.4C). One region encodes DNA 

machinery, the second is composed mainly structural genes and the third codes for a series of 

hypothetical proteins.  
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Figure 4.4. The Gubaphage clade. A) Unrooted tree showing the relationship of the crass-

like phages and the Gubaphage. Each of the crAss-like clades (I to X), represents a different 

genus. The Gubaphage forms a clade of its own, suggesting a distant relationship to the crAss-

like phages. The tree was constructed by carrying out a multiple alignment of the large 

terminase genes. B) Analysis of Gubaphage phylogenetic structure revealed two genera 

infecting member of the Bacteroides (G1) and Parabacteroides (G2) genera. C) Inspection of 

Gubaphage genome reveals that it is composed of 3 parts. The first one (blue-green) codes for 

DNA machinery, the second (red) harbours structural proteins such as the large terminase, and 

tail proteins, the third (grey top left) consists of only hypothetical proteins. Inner bars represents 

GC skew.  

 

4.2.5 Expansion of the Picovirinae subfamily 

 

Hitherto I have focused on novel phage clades (crAss-like family and Gubaphage clade), 

however phages belonging to traditional phage subfamilies such as Spounavirinae, 

Peduovirinae, Autographivirinae, and Picovirinae have been detected in human faces (Waller 

C 
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et al., 2014). I decided to explore the diversity of the Picovirinae subfamily because it was one 

of the most common taxa predicted in GPD.  

  

Picovirinae phages are known to have a small linear double stranded DNA genome of about 

16-20 kb. They belong to the Caudovirales order and have an icosahedral capsid with a non-

contractile tail (Figure 4.5A). The Picovirinae subfamily is currently composed of 3 genera 

namely Salasvirus, Negarvirus, and Cepanuvirus (Hulo et al., 2011). I predicted all the phages 

in GPD from this family by using a marker gene approach and obtained 4807 genomes.  

 

In order to study the phylogenetic structure of the recovered genomes, I calculated all the 

pairwise overlaps of protein clusters between the Picovirinae genomes. Interestingly, after 

clustering the genomes and visualizing them in a heatmap, a phylogenetic substructure 

consisting of 4 large clades emerged (Figure 4.5B). Furthermore, an unrooted tree inferred 

from the PCs overlap clearly suggested 4 clades (Figure 4.5C). Given this evidence, I decided 

to structure the Picovirinae subfamily into 4 clades: Picovirinae_1 (P1), Picovirinae_2 (P2), 

Picovirinae_3 (P3), and Picovirinae_4 (P4). In addition, P1 clade was clearly divided into two 

clades, Picovirinae_1_1 (P1_1) and Picovirinae_1_2 (P1_2). With this new structure I was able 

to assign a clade to the three classified genera, while Salasvirus were assigned to P2, 

Cepanuvirus and Negarvirus were assigned to P1_1. In addition, I assigned a clade to several 

unclassified members of the Picovirinae with this expanded phylogenetic structure. Notably, 

P1_2, P3, and P4 remained without any known Picovirinae phage members assigned to them.  

 

Host assignment revealed more than 288 gut bacteria isolates distributed between the 

Firmicutes and Actinobacteriota, moreover, P1_2, P3 and P4 were restricted to the Firmicutes, 

leaving P1_1 as the only inter-phyla Picovirinae clade. Containment of phage clades to a 

specific phylum is expected, as very distantly related host bacteria can present challenges to 

polyvalent phages e.g. substantially different replication machinery. In total, 31 genera of the 

human gut microbiota were predicted to be susceptible to infection by Picovirinae phages 

(Figure 4.5D). 

 

This finding represents a clear example of the importance of metagenomics to fill in viral 

diversity gaps. In addition, gaining further knowledge of Picovirinae phages is important 

because their lytic lifestyle is suitable for phage therapy directed to Actinobacteriota and the 

Firmicutes. 
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Figure 4.5. Expansion of the Picovirinae subfamily. A) The Picovirinae subfamily is 

characterized by having relatively small genomes (16-20kb) and a lytic lifecycle. They possess 

a linear double stranded DNA and have an icosahedral capsid with a non-contractile tail. B) 

Analysis of the phylogenetic structure of gut Picovirinae phages by fraction of shared protein 

clusters suggested 4 large clades. 
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Figure 4.5. Expansion of the Picovirinae subfamily. C) Unrooted tree of shared protein 

clusters. The 4 clades were named  Picovirinae_1, Picovirinae_2, Picovirinae_3, Picovirinae_4. 

This expanded diversity of the Picovirinae was able to accommodate the 3 known genera and 

several unclassified phages. Notably, Picovirinae 3 and 4 represented completely novel clades. 
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The tree was generated by calculating the fraction of shared protein clusters among individual 

Picovirinae phages and then carrying out hierarchical clustering with average linkage and 

Euclidean metric. D) Host assignment of Picovirinae phages to gut bacteria. Hosts were 

predicted by CRISPR spacer exact matching and prophage assignment. The tree was built by 

concatenating 40 universal core marker genes from each of the 2898 gut bacteria isolates and 

then carrying out a multiple sequence alignment. P1_2, P3 and P4 were restricted to the 

Firmicutes, leaving P1_1 as the only inter-phyla Picovirinae clade (Firmicutes and 

Actinobacteriota host range). 

 

4.2.6 Viral diversity across gut bacteria clades 
 

I next inferred the most likely bacterial hosts for each phage prediction using a comprehensive 

collection of 2898 human gut microbiota isolate genomes. By screening for the presence of 

CRISPR spacers (Edwards et al., 2016) targeting phage and by linking the prophages to their 

assemblies of origin, I was able to carry out host assignment. In order to estimate the rate of 

false positives (FPs) due to CRISPR random matches, I generated synthetic random spacers 

and mapped them against the GPD. Repeating this procedure 100 times revealed the 

distribution of the expected number of FPs across different matching criteria (Figure 4.6A). As 

can be seen from the graphs, no FPs are detected due to random chance when no mismatches 

are allowed across the whole length of the spacer (the criteria used in this work for the original 

mapping). However, as more mismatches are allowed, there is an increase in random matches 

across all coverages tested. Notably, at 80% coverage and only 4 mismatches allowed, the 

expected false positive rate due to random chance reach 2.6% of all the matches reported from 

the original mapping.  

 

In total, I assigned 2,157 hosts to 40,932 GPD phage (28.66% of all predictions). This 

corresponded to at least one phage for 74.43% of all cultured human gut bacteria. I then 

analysed if there was any preference for phage infection across 5 common human gut bacterial 

phyla (Firmicutes, Bacteroides, Proteobacteria, and Actinobacteriota). At the phylum level, I 

detected significant lower phage prevalence in Actinobacteriota, with 58.79% infected isolates 

compared to at least 70% for the other phyla (Figure 4.6B).  

 

I then measured viral diversity (measured by the number of VCs per isolate) within each 

phylum (Figure 4.6C). This analysis revealed that the Firmicutes harbour a significantly higher 
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viral diversity, with an average of 3.13 VCs/isolate while also harbouring 60% of the total VCs 

assigned across all phyla. Interestingly, the Firmicutes diversity was unevenly distributed as 

most of the viral diversity originated from the Negativicutes and Clostridia classes, with an 

average of 4.88 VCs and 3.9 VCs per isolate in contrast with the Bacilli (0.99 VCs/isolate), 

and none for Bacilli_A and Desulfitobacteriia classes.  

 

Analysis at the bacterial genus level across all phyla revealed that Lachnospira, Roseburia, 

Agathobacter, Prevotella, and Blautia_A host the highest number of VCs/isolate (Figure 4.6D). 

With the exception of Prevotella, which belongs to the Gram-negative Prevotellaceae family, 

these genera are members of the Gram-positive Lachnospiraceae family of Firmicutes 

associated with butyrate-producing spore-formers. In contrast, the lowest viral diversity per 

isolate was detected among Helicobacter, and the lactic acid bacteria Lactobacillus, 

Lactobacillus_H, Enterococcus_D and Pediococcus. Thus, I observe a wide distribution of 

phage abundance and prevalence across human gut bacteria, even within the same phylum. 

 

CRISPR spacers can be used to link phages with their host but a limitation is that some bacteria 

do not encode them and thus their phages will not be detected in the analysis. Although it’s 

estimated that around 46% of bacteria code for CRISPR systems (Karginov and Hannon, 

2010), I detected CRISPR spacers in 56.36% of the gut isolate genomes. Despite the 

discrepancy with the previous estimate, a larger prevalence in the gut may be plausible. It’s 

possible that the incidence of CRISPR systems may vary across different environmental niches. 
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Figure 4.6. Viral diversity across gut bacteria clades. A) In order to quantify the rate of FPs 

due to CRISPR random matches, I generated 100 sets of synthetic random spacers and mapped 

them against the GPD. No FPs were detected at 100% coverage and no mismatches allowed. 

Across all coverages tested, the rate of FPs increased as more mismatches were allowed. B) 

Percentage of isolates of each phylum linked to phage. Actinobacteriota had the lowest 

percentage of isolates predicted to be a phage host. Actinobacteriota vs Bacteroidota (P = 

0.007, !" test), Actinobacteriota vs Proteobacteria (P = 0.0025, !" test), Actinobacteriota vs 

Firmicutes (P = 1.01 x 10-5, !" test). C) The Firmicutes hosted the highest viral diversity 

(highest number of VCs/isolate). Firmicutes vs Bacteroidota (P = 0.021, !"test), Firmicutes vs 

Proteobacteria (P = 4.41 x 10-6, !" test), Firmicutes vs Actinobacteriota (P = 1.1 x 10-31, 

!"test). D) Bacterial genera with the highest viral diversity were Lachnospira, Roseburia, 

Agathobacter, Prevotella, and Blautia_A. On the other hand, the lowest viral diversity was 

harboured by Helicobacter and the lactic acid bacteria Lactobacillus, Lactobacillus_H, 

Enterococcus_D and Pediococcus. 

 

4.2.7 Evaluating host range of gut phages 
 

Horizontal transfer of genes between bacteria via transduction is a major driver of gene flow 

in bacterial communities (Chen et al., 2018). Host tropism of bacteriophage is believed to be 

limited by phylogenetic barriers, with most phages being usually restricted to a single host 

bacterial species (Ackermann, 1998). However, this has not been investigated at large scale 

across the human gut bacteria. Host assignment at different bacterial taxonomic ranks revealed 

that the majority of VCs were restricted to infect a single species (64.51%) (Figure 4.7A). I 

also found many VCs with broader host ranges such as those restricted to a single genus 

(22.39%), family (10.79%), order (1.86%), class (0.26%) and phylum (0.13%). These findings 

are in line with a recent survey of the host range of gut phages by meta3C proximity ligation 

(6,651 unique host-phage pairs) which found that ~69% of gut phages were restricted to a 

single species (Marbouty et al., 2020). Visualization of very broad range VCs (i.e. those not 

restricted to a single genus) reveals the large-scale connectivity between phylogenetically 

distinct bacterial species (Figure 4.7B).   

 

In general, the higher the viral diversity per bacterial genus, the higher the number of phages 

with broad host range (Spearman’s Rho = 0.6685, P= 3.91x10-9) (Figure 4.7C). Even though 
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this trend could be explained due to the presence of random matches, as discussed above, no 

FPs were detected using perfect matches. In addition, when I permuted the labels of the host 

assignment 300 times, I found the original linear model to significantly deviate from the 

random one (P < 0.001). The average number of broad host range hits for the permuted 

assignments was 726.9 versus 38.344 for the original assignment, highlighting the containment 

of phages within bacterial clades. 

 

Surprisingly, two VCs (VC_269 and VC_644) had a host range that spanned two bacterial 

phyla. VC_269 was predicted to infect Faecalibacterium prausnitzii_C (Firmicutes) and two 

Bifidobacterium spp. (Actinobacteriota), while VC_644 had a host range that included 5 

Bacteroides spp. (Bacteroidota) and Blautia_A wexlerae (Firmicutes). I predicted VC_269 to 

be a Myoviridae phage, on the other hand, I could not assign a taxonomy rank to VC_644. The 

presence of integrases in both VCs suggest that these are temperate phages. I hypothesize that 

additional phages infecting both Actinobacteriota and Firmicutes may be more common, as 

recent evidence supports a shared ancestry between phages that infect both Actinobacteriota 

(Streptomyces) and Firmicutes (Faecalibacterium) (Koert et al., 2019).  

 

Taken together, I reveal that approximately one third of gut phage have a broad host range not 

limited to a single host species. This analysis provides a comprehensive blueprint of potential 

phage mediated gene flow networks in human gut microbiome. 

 

The emergence of broad host range phages or ‘generalists’ has been linked with shifts in 

bacterial composition linked to nutrient availability (Warwick-Dugdale et al., 2019). In 

addition, phage generalism has been associated with lower infection efficiency (Howard-

Varona et al., 2018). Many members of the gut microbiome are considered copiotrophs based 

on the copy number of the Ribosomal RNA operon (rrn), as it positively correlates with cellular 

ribosomal content and maximum growth rate (Gao and Wu, 2018). This would imply that in 

general, the gut is not a limited nutrient environment and phages can ‘secure’ a stable host. As 

stated, the majority of the viral diversity reported here was predicted to infect a single species, 

which is in line with copiotroph hosts. It’s important to consider that some gut bacteria may be 

oligotrophs as it’s increasingly recognized that nutrients in the gut vary spatially (Donaldson 

et al., 2016). This scenario would probably result in a higher proportion of broad host range for 

some bacterial species. 
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Figure 4.7. Host range of gut phages. A) The majority of VCs were found to be restricted to 

infect a single species (P = 0.0 ,binomial test). However, a considerable number of VCs (~36%) 

had a broader host range. B) Phylogenetic tree of 2898 gut bacteria isolates showing phage 

host range. Host assignment was carried out by linking prophages with their assemblies and 

CRISPR spacer matching. Orange connections represent VCs not restricted to a single genus). 

Black connections represent VCs able to infect two phyla. Outer bars show phage diversity 

(VCs/isolate). 
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Figure 4.7. Host range of gut phages. C) In general, the higher the viral diversity per bacterial 

genus, the higher the number of phages with broad host range (Spearman’s Rho = 0.6685, P= 

3.91x10-9). This trend was significantly different than the one generated from permuting the 

host assignment labels (P < 0.001). 
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4.3 Conclusions 

 

In this chapter, I carried out a large-scale analysis of gut phages to shed light into their encoded 

functions. Top viral functions were primarily involved in basic functions of the life cycle of 

phages such as replication, virion assembly, and lytic enzymes. However, a particular interest 

of mine was to explore the possibility of gut phages carrying non-canonical viral proteins. In 

that regard, I found several clades of phages encoding enzymes that participate in sulphur and 

nucleotide metabolism.  

 

I expect that many of these non-classical viral proteins are involved in promoting a successful 

infection by energy generation (dissimilatory sulfate reduction) or by manipulating the 

bacterial nucleotide pool to avoid misincorporation of uracil into the genome of DNA phages. 

I found that gut phages commonly encode reverse transcriptases (RTs) (~13% of VCs) as 

opposed to RefSeq phages (<1%). These viral RTs may be fulfilling critical roles in gut phages 

such as generation of sequence diversity in their receptor binding proteins (RBPs) and 

protecting lysogens from infection by other phages (superinfection immunity). I also 

discovered other rare instances (<0.5% of VCs) of phages encoding nutrient uptake genes (e.g. 

taurine, zinc) which may be of benefit to the bacterial host.  

 

A common issue when analysing metagenomics data is the significant number of proteins 

annotated as ‘hypothetical’, hindering efforts to carry out comprehensive functional analyses. 

This problem is further exacerbated with phages, in part due their large genetic diversity and 

because many functional experiments have been carried out only in a handful of bacteriophage 

models (e.g, T4, T7, # phage). For instance, I found a family of hypothetical proteins present 

in ~8.5% of all VCs. This observation reflected the lack of annotation for even widespread 

phage proteins. Despite the limitation regarding functional annotation, I explored the 

possibility of predicting function for hypothetical viral proteins by exploiting hypervariation 

motifs. This analysis is particularly suitable for the prediction of RBPs in phages given that the 

binding domain of RBPs is often under selection to overcome mutations in the bacterial 

receptor. Using this strategy I was able to identify RBP candidates for two of the most 

genetically diverse phages in GPD (as measured by genomes per VC), namely the p-

crAssphage and the Gubaphage. As hypervariation domains are often found in phages, this 
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analysis provides a powerful way to narrow down gene function in phages when there is enough 

availability of viral genetic diversity.  

 

In this chapter I also analysed the Gubaphage clade in detail. Despite the lack of sequence 

similarity of Gubaphage to p-crAssphage, these phages shared other functional features such 

as large genome size (>80 kb), Bacteroides host range, a BACON-containing protein and a 

circular genome. Given the high variation of the crAss-like family, these features prompted me 

to investigate if Gubaphage belonged to a current or novel crAss-like genus or if it was a 

completely novel clade. By compiling a list of genomes representing all the crAssphage genetic 

diversity and then constructing a tree using terminase large subunit gene, I discovered that the 

Gubaphage did not fit any of the previous crAssphage clades. Another interesting feature of 

Gubaphage was the high number of genomes associated to its VC, suggesting its high 

prevalence in human metagenomes. Indeed, in the next chapter I use more sensitive methods 

to confirm its high prevalence across human populations. Elucidation of the functional traits of 

Gubaphage will require its isolation and characterization as this will help to establish a clearer 

view of its role in the human gut microbiome.  

  

Having investigated a novel clade of gut phages, I decided to explore the possibility of 

expanding the diversity of a known phage clade, namely the Picovirinae subfamily. In order to 

study the phylogenetic structure of Picovirinae gut phages I computed the fraction of shared 

PCs among them. This analysis uncovered 4 major phage clades. Notably, all RefSeq classified 

and several unclassified Picovirinae phages were assigned to one of the 4 clades. However, 

two major clades remained composed of only phages found in GPD. The expansion in diversity 

of the Picovirinae subfamily showcases the importance of metagenomics in filling in diversity 

gaps in phage taxonomy.   

 

Given the technical challenges when culturing gut bacteria, host assignment of gut phages 

remains largely unexplored. I opted for two strategies namely CRISPR and prophage matching 

and in order to minimize false positives, I only considered exact matching. This analysis 

allowed me to explore viral diversity patterns across different bacterial taxonomic groups. For 

instance, I found that viral diversity was highest in the Firmicutes while at the genus level, 

Lachnospira, Roseburia, and Agathobacter harboured the highest number of VCs/isolate, 

whereas Enterococcus_D, Helicobacter and Pediococcus the least. Notably, I considerably 

increased the number of phages assigned to less studied bacterial clades. For instance, a search 
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on “NCBI virus” of phages infecting Lachnospiraceae bacteria returns only 8 hits. On the other 

hand, on this thesis I predicted 2,985 VCs that infected Lachnospiraceae bacteria (with an 

estimated median phage genome completeness of 81.62%). 

 

Although the majority of VCs were found to be restricted to a single bacterial species, a 

significant percentage (~36%) was predicted to infect multiple species, genera, families, 

orders, and even classes.  A consequence of broad host range phages is an increased 

connectivity for horizontal gene transfer events between gut bacteria. Since phages can carry 

genes from their hosts by transduction, broad host range phages can play critical roles in “gene 

spillage” across very different bacterial clades from the gut microbiome. For instance, a phage 

can transduce genes from a different family into another bacterial clade. In another transduction 

event, narrow host range phages (which are more common), can help to move the newly 

acquired gene into the clade. These events can have important roles in bacterial adaptation in 

the human gut. 

 


