
 

 

 

 

 

 

 

Chapter 4 
Signatures of mutational processes in human cancer 
 

4.1 Introduction 

In the previous chapter of this thesis, I applied a newly developed 

computational approach to somatic mutational data derived from breast cancer 

genome and exome sequences, which revealed multiple signatures with distinct 

patterns of somatic mutations. Comparing these mutational patterns with the scientific 

literature as well as statistically associating them with molecular phenotypes provided 

an indication for the etiology of the mutational processes responsible for these 

signatures. In this chapter, I expand the scope of the mutational signatures analysis 

and apply the developed computational framework to 30 distinct cancer types. The 

approach taken in this chapter is analogous to the one used for breast cancer in the 

previous chapter; mutational signatures are extracted from mutational catalogues 

based on the , , , and  alphabets separately for each cancer type (with 

further separation for samples derived from whole-genome and exome sequencing in 

a single cancer type). The deciphered mutational signatures are hierarchically 

clustered, as demonstrated in the previous chapter, to derive the consensus mutational 

signatures in human cancer. In this chapter, I will focus on extracting the signatures of 

the operative mutational processes in 7,042 samples across 30 cancer classes, 

examining their patterns of somatic mutations, and discussing them in the context of 

the different cancer types in which they are found. It should be noted that this chapter 

does not discuss the potential etiologies of the identified consensus mutational 

signatures since these will be the focus of chapter 5. 

 



4.2 Data generation and filtering of mutational catalogues 

Similarly to breast cancer, no data were generated solely for the purposes of 

this thesis. Rather, I curate already identified somatic mutations from freely available

previously published and (at the time) unpublished data. The curated freely available 

data are taken from three distinct sources: 

 The data portal of The Cancer Genome Atlas (TCGA) 

 The data portal of the International Cancer Genome Consortium (ICGC) 

 Previously published in peer-review journals cancer genomics mutational data: 

(Agrawal et al., 2011; Barbieri et al., 2012; Berger et al., 2011; Biankin et al., 

2012; Dulak et al., 2013; Fujimoto et al., 2012; Govindan et al., 2012; Grasso et 

al., 2012; Gui et al., 2011; Imielinski et al., 2012; Jiao et al., 2011; Jones et al., 

2012a; Jones et al., 2010; Krauthammer et al., 2012; Le Gallo et al., 2012; Liu 

et al., 2012a; Liu et al., 2012b; Love et al., 2012; Morin et al., 2011; Nik-Zainal 

et al., 2012; Peifer et al., 2012; Puente et al., 2011; Pugh et al., 2013; Rudin et 

al., 2012; Sausen et al., 2013; Seo et al., 2012; Seshagiri et al., 2012; Shah et al., 

2012; Stephens et al., 2012; TCGA, 2012; Wang et al., 2011; Wei et al., 2011; 

Wiegand et al., 2010; Wu et al., 2011; Zang et al., 2012; Zhang et al., 2013) 

The unpublished data are generated internally by the Cancer Genome Project 

(CGP) or donated by collaborating investigators that were willing to participate in the 

performed large-scale pan-cancer mutational signatures analysis. The majority of 

exome data are taken from the ICGC data portal, TCGA data portal, or from the 

abovementioned published peer-reviewed publications. In contrast, the majority of 

whole-genomes are previously unpublished data. A summary of the number of 

Figure 4.1: Samples used for deciphering signatures of mutational processes in human cancer. 
Mutational catalogues of (A) 7,042 primary cancers derived from 30 different cancer types are 
examined for mutational signatures, including (B) 507 whole cancer genomes with matched normal 
pairs. 



samples based on cancer types is shown in Figure 4.1; in addition, a complete list 

including all samples, all examined cancer types, and their respective data sources is 

provided in Appendix II.  

In total, I compiled the mutational catalogues of 7,042 primary cancers of 30 

different classes: 507 from whole-genome and 6,535 from exome sequences (Figure 

4.1). In all cases, normal DNAs from the same individuals have been sequenced to 

establish the somatic origin of the variants. The somatic mutations are extensively

filtered to remove germline polymorphisms and sequencing artefacts as previously 

described for breast cancer (see chapter 3) and the final filtered dataset contains

4,938,362 somatic substitutions and small insertions/deletions (indels). The somatic 

mutations found in these 7,042 matched normal tumour pairs are used to decipher the

mutational signatures from catalogues based on the , , , and 

alphabets (see below). 

Examining the mutational catalogues of the 7,042 primary cancers revealed 

that the prevalence of somatic substitutions and indels is highly variable between and 

within cancer classes, ranging from about 0.001 somatic mutations per megabase to 

more than 400 somatic mutations per megabase (Figure 4.2). Certain childhood 

cancers carried fewest mutations whereas cancers related to chronic mutagenic 

exposures such as lung (tobacco smoking) and malignant melanoma (exposure to 

ultraviolet light) exhibited the highest prevalence. This variation in mutation 

prevalence is attributable to differences between cancers in the duration of the cellular 

Figure 4.2: Mutational burden in human cancer. Every dot represents a sample whereas the red horizontal 
lines are the median numbers of mutations in the respective cancer types. The vertical axis (log scaled) shows the 
number of mutations per megabase whereas the different cancer types are ordered on the horizontal axis based 
on their median numbers of somatic mutations. ALL stands for acute lymphoblastic leukaemia; AML for acute 
myeloid leukaemia; CLL for chronic lymphocytic leukaemia. 



lineage between the fertilized egg and the sequenced cancer cell and/or to differences 

in somatic mutation rates during the whole or parts of that cellular lineage (Stratton et 

al., 2009). 

 

4.3 Deciphering signatures of mutational processes in 30 human cancer types 

Mutational signatures are extracted using the previously defined four 

mutational alphabets: , , , and  (Appendix I). Briefly,  examines 

all somatic substitutions and additionally includes information on the sequence 

context of each substitution. This classification has 96 possible mutations since there 

are six classes of base substitution C>A, C>G, C>T, T>A, T>C, T>G (all 

substitutions are referred to by the pyrimidine of the mutated Watson-Crick base pair) 

and the bases immediately 5’ and 3’ to each mutated base are incorporated. The   

alphabet extends the  alphabet by incorporating three additional mutation types: 

dinucleotide substitutions, indels at repetitive elements, and indels at 

microhomologies. The  alphabet examines substitutions and their immediate 

sequence context; however, this alphabet incorporates two bases 5’ and 3’ to each 

mutated base instead of the one base used in the  alphabet. Lastly, the  

alphabet examines all somatic mutations in transcribed regions of the human genome. 

This alphabet has all the features of  but it also incorporates information on 

whether the mutation is occurring on the transcribed or the untranscribed strand of 

protein-coding genes. The 96 and 1,536 substitution classifications are particularly 

useful for distinguishing mutational signatures which cause the same substitutions but 

in different sequence contexts. In contrast, the  alphabet allows the evaluation of 

the amount of indels and dinucleotide substitutions caused by different mutational 

processes, while the  alphabet is leveraged to evaluate the activity of repair 

processes operative on the transcribed regions of the human genome. 

 Mutational signatures are deciphered independently for each of the 30 cancer 

types following the same analysis procedure as the one previously used in breast 

cancer (chapter 3). In total, 106 mutational signatures based on the  alphabet are 

extracted from these 30 cancer types. These mutational signatures are clustered using 

an unsupervised hierarchical clustering, where a cosine distance is used as a measure 



for comparing mutational signatures (Figure 4.3). Any signature derived from exome 

sequencing data is re-normalized towards the genome trinucleotide frequency prior to 

applying the clustering procedure.   

A threshold of 0.18 is used to separate the original 106 mutational signatures 

into 27 unique clusters. This threshold is conservatively selected based on visual 

inspection and prior biological knowledge. More specifically, annotation 1 in Figure 

4.3 shows the separation of two mutational patterns overwhelmed by C>T mutations 

with a difference in their immediate sequence context (later referred to as Signature 7 

and Signature 11, Figure 4.5). The upper branch of annotation 1 contains patterns of 

mutations that are consistent with exposure to ultraviolet light, while the signatures in 

the lower branch are exclusively found in samples that are treated with an alkylating 

agent (see chapter 5). Since these two sets of mutational signatures have distinct 

patterns and etiologies, the selected clustering threshold needs to separate them and as 

such it needs to be lower than 0.184. Visual inspection of clustering of the original

mutational signatures (annotation 2, Figure 4.3) shows that all of these signatures

possess similar patterns of somatic mutations (e.g., C>T at CpG). However, these 

patterns are contaminated since, most probably, they cannot be extracted with the 

Figure 4.3: Clustering of mutational signatures. Clustering of 106 original mutational signatures 
deciphered from the mutational catalogues of 7,042 cancer samples. Each of the 27 unique clusters is 
displayed in a different colour. The cosine distance threshold for separating the signatures into 
clusters is set at 0.18 based on annotation 1 (green) and annotation 2 (red). 



same accuracy from different datasets (e.g., less than 40 samples are used for 

signature analysis in cervical cancer versus the almost 1,000 samples used for 

signature analysis in breast cancer). To ensure that these visually similar mutational 

signatures cluster together, a threshold of 0.18 is selected. It should be noted that 

visual examination may be misleading and it may result in clustering mutational 

signatures that are different. Nevertheless, this analysis provides a conservative 

estimation of the mutational signatures found in human cancer and it is foreseeable 

that some of the reported mutational signatures are, in fact, mixtures of multiple 

distinct signatures. Only further samples across all types of human cancer will allow a 

further separation of these mutational signatures. As was previously performed for 

breast cancer, each consensus mutational signature is derived using a weighted 

average of the signatures belonging to its respective cluster and the number of somatic 

mutations attributed to a consensus mutational signature in a sample is set to the 

number of mutations of the original signature found in that sample.  

In addition to deciphering mutational signatures using mutational catalogues

based on the  alphabet, an analysis is performed also for the , , and 

alphabets. In all cases the consensus signatures results from the  and 

catalogues are consistent with the previous observations based on the  alphabet. 

However, deciphering mutational signatures for the  alphabet produced results 

only for a few of the cancer types (see below). The inability to decipher mutational 

signatures using the 1,536 mutation types is, most probably, due to the absence of 

sufficient numbers of somatic mutations in the examined mutational catalogues. This 

is perhaps unsurprising

as ~93% of the 

examined mutational 

catalogues are derived 

from exome sequences, 

which harbour very few 

somatic mutations. 

Furthermore, the 

majority of whole-genome sequences are from childhood cancers and they have a low 

mutational burden (Figure 4.2). 

Figure 4.4: Types of statuses for validating mutational 
signatures. 



4.4 Validating consensus mutational signatures 

Validating a signature of a mutational process requires ensuring that a large 

set of somatic mutations, with a mutational spectrum resembling the one of the 

mutational signature of interest, is genuine in at least one sample in which this process 

is operative. As previously discussed with regard to breast cancer (chapter 3), 

validation is complicated as various mutational processes are found in a single cancer 

sample and, as such, every individual somatic mutation can be probabilistically 

assigned to several mutational signatures. In this analysis, I leveraged the same 

approach as the one used in validating mutational signatures in breast cancer: the 

dataset is examined for samples that are predominantly generated by one mutational 

signature (i.e., more than 50% of the somatic mutations in the sample belong to an 

individual mutational signature). Since I did not have access to the biological 

samples, I mostly relied on previously performed validation experiments (e.g., 

samples in TCGA sequenced by two different groups using two different next-

generation sequencing technologies) as well as visual validation of BAM files by an 

experienced curator. Based on the data, I identified the optimal available sample for 

every mutational signature and attempted to validate a subset of somatic mutations 

attributed to this signature using one of three methods (Figure 3.3): 

 Validation by re-sequencing with an orthogonal sequencing technology 

 Validation by re-sequencing with the same sequencing technology 

(including RNA-Seq, bisulfide sequencing, etc.) 

 Validation by visual examination of somatic mutations performed by an 

experienced curator using a genomic browser and BAM files for both the 

tumour and its matched normal 

When possible, somatic mutations are validated by either re-sequencing with 

orthogonal technology or re-sequencing using the same sequencing technology. I 

resorted to visual validation only when there is no other possibility for validating a 

mutational signature. 22 of the 27 consensus mutational signatures were validated 

(Table 4.1 and Figure 4.4). Three of the mutational signatures failed validation 

(termed Signatures R1 to R3), while another two mutational signatures were not 

validated (termed Signatures U1 and U2) due to lack of access to biological samples 

and BAM files for the samples with sufficient numbers of somatic mutations 

generated by these two mutational signatures. A validation summary for all consensus 



mutational signatures is provided in Table 4.1. The validated mutational signatures 

are depicted in Figure 4.5, while the signatures that failed validation and the 

signatures that remain with unknown validation status are shown respectively in 

Figure 4.6 and Figure 4.7.  

4.5 The landscape of consensus mutational signatures in human cancer 

Applying the developed computational approach to the 7,042 samples derived 

from 30 cancer types revealed 22 distinct and validated mutational signatures (Figure 

4.5; an individual figure for each signature can be found in Appendix III). These 22 

mutational signatures show substantial diversity in their patterns of somatic 

mutations. There are signatures characterized by the prominence of only one or two of 

the 96 possible substitution mutations, indicating a remarkable specificity of mutation 

type and sequence context. One such example is Signature 10, which is 

Mutational 
Signature

Validation 
Type 

Total Mutations in 
Sample 

Total Mutations 
by Signature 

Examined 
Mutations 

Validated 
Mutations 

Signature 1A VA 48 40  48 48 (100%) 
Signature 1B VA 58 55 58 56 (97%) 
Signature 2 VA 76 75 76 72 (95%) 
Signature 3 VA 70 65 70 69 (99%) 
Signature 4 VA 196 192 196 182 (95%) 
Signature 5 VC 332 286 91 75 (82%) 
Signature 6 VA 598 440 598 540 (90%) 
Signature 7 VA 470 432 470 412 (88%) 
Signature 8 VA 4,514 1,558 250 227 (91%)
Signature 9 VB 4,423 2,811 4,423 3,977 (90%) 
Signature 10 VA 12,848 10,558 12,848 9,420 (74%) 
Signature 11 VA 102 100 102 67 (66%) 
Signature 12 VC 2,808 2,327 100 93 (93%) 
Signature 13 VA 8,612 5,697 200 190 (95%) 
Signature 14 VC 12,984 12,984 100 86 (86%) 
Signature 15 VA 784 784 31 30 (97%) 
Signature 16 VA 793 678 73 69 (95%) 
Signature 17 VB 2,627 1,959 2,627 2,476 (94%) 
Signature 18 VA 158 156 158 142 (90%) 
Signature 19 VC 769 769 103 102 (99%) 
Signature 20 VA 885 488 198 198 (100%) 
Signature 21 VC 6,790 4,368 121 103(85%) 
Signature U1 N/A N/A N/A N/A N/A 
Signature U2 N/A N/A N/A N/A N/A 
Signature R1  FC 11,869 7,955 100 2(2%) 
Signature R2 FC 738 738 50 1(2%) 
Signature R3 FC 385 235 83 3(4%) 
Table 4.1. Validating consensus mutational signatures found in human cancer. The precise validation approach is 
outlined in the text. The codes of validation types are explained in Figure 4.4.



predominantly characterized by C>A mutations at TpCpT and C>T mutations at 

TpCpG. At the other extreme, some mutational signatures exhibit a more-or-less 

equal representation of all 96 mutations. Examples of such mutational signatures are 

Signatures 3 and 8. A large proportion of the validated consensus mutational 

signatures are characterized predominantly by C>T substitutions at different 

trinucleotide sequence contexts: Signatures 1A, 1B, 6, 7, 11, 15, and 19. Signatures 4, 

8, and 18 have a prevalence for C>A mutations, while Signatures 5, 12, 16, and 21 

exhibit a preference for T>C substitutions. Signatures 9 and 17 exhibit a preference of 

T>G mutations at specific sequence contexts. Lastly, no mutational signatures in this 

series are dominated by T>A substitutions.  

Figure 4.5: Consensus validated mutational signatures in human cancer. Each signature is displayed according 
to the 96 substitution classification defined by the substitution class and sequence context immediately 3’ and 5’ to 
the mutated base. The probability bars for the six types of substitutions are displayed in different colours. The 
mutation types are on the horizontal axes, whereas vertical axes depict the percentage of mutations attributed to a 
specific mutation type. All mutational signatures are displayed on the basis of the trinucleotide frequency of the 
human genome. A higher resolution of each panel is found Appendix III. Asterisk indicates mutation type exceeding 
20%. 



Signatures 1A and 1B are observed in 25 of the 30 cancer classes (Figure 4.9). 

Both are characterized by a prominence of C>T substitutions at NpCpG 

trinucleotides. Since they are almost mutually exclusive among tumour types (Figure 

4.9) they probably represent the 

same underlying process, with 

Signature 1B representing a 

less efficient separation from 

other signatures in some cancer 

types. Signature 1A/B is most 

likely related to the relatively 

elevated rate of spontaneous 

deamination of 5-methyl-

cytosine which results in C>T 

transitions and which 

predominantly occurs at 

NpCpG trinucleotides (Pfeifer, 

2006). This mutational process 

operates in the germline, where 

it has resulted in substantial depletion of NpCpG sequences, as well as in normal 

somatic cells (Welch et al., 2012). 

 In addition to the 22 

consensus mutational signatures 

that validated (Table 4.1), three 

signatures failed validation, and 

thus most likely reflect 

technology specific sequencing 

artefacts (Figure 4.6). Signature 

R1 is previously described in 

chapter 3 and is predominantly 

characterized by T>G mutations 

at GpGpTpGpG. Signature R2 

exhibits a C>A pattern of 

Figure 4.6: Consensus mutational signatures that failed 
validation. Each signature is displayed according to the 96 
substitution classification defined by the substitution class 
and sequence context immediately 3’ and 5’ to the mutated 
base. The probability bars for the six types of substitutions 
are displayed in different colours. The mutation types are 
on the horizontal axes, whereas vertical axes depict the 
percentage of mutations attributed to a specific mutation 
type. All mutational signatures are displayed on the basis 
of the trinucleotide frequency of the human genome. A 
higher resolution of each panel is found Appendix III. 
Asterisk indicates mutation type exceeding 40%. 

Figure 4.7: Consensus mutational signatures for which 
it is not possible to perform validation. Each signature is 
displayed according to the 96 substitution classification 
defined by the substitution class and sequence context 
immediately 3’ and 5’ to the mutated base. The probability 
bars for the six types of substitutions are displayed in 
different colours. The mutation types are on the horizontal 
axes, whereas vertical axes depict the percentage of 
mutations attributed to a specific mutation type. All 
mutational signatures are displayed on the basis of the 
trinucleotide frequency of the human genome. A higher 
resolution of each panel is found Appendix III. 



mutations with a preference for CpC and TpC dinucleotides. Finally, Signature R3 is 

predominantly composed of T>C mutations with a specific trinucleotide pattern 

(Figure 4.6). Interestingly, these mutational signatures are confined to samples from 

specific sequencing centres. Signature R1 is found in samples analysed by the Sanger 

Institute, Signature R2 in samples sequenced at the Broad Institute, and Signature R3 

is found only in data generated by the Baylor College of Medicine. This observation 

further confirms the suspicion that these three mutational processes reflect 

technical/analysis artefacts rather than real biological processes.  

For three of the 27 consensus mutational signatures, I was unable to identify 

available samples that could be used to validate these signatures (Figure 4.7). Both 

Signatures U1 and U2 exhibit a rather uniform pattern of mutations across the six 

types of substitutions without any mutation type exceeding 10%. It should be noted 

that the patterns of these two mutational signatures are different from the previously 

identified and validated uniform mutational signatures: Signature 3 and Signature 8 

(Figure 4.5). 

 Lastly, all of the previously identified breast cancer mutational signatures are 

found by this pan-cancer analysis. Breast cancer Signature BC-1 (chapter 3) has the 

same pattern of mutations as the global consensus Signature 1B, Signature BC-2 

corresponds to Signature 2, Signature BC-3 corresponds to Signature 13, Signature 

BC-4 corresponds to Signature 3, Signature BC-5 corresponds Signature 8, and 

Signature BC-6 corresponds to Signature R1. 

 

4.5.1 Consensus mutational signatures with transcriptional strand-bias 

The efficiency of DNA damage and DNA maintenance processes can differ 

between the transcribed and untranscribed strands of genes. The most celebrated 

cause of this phenomenon is transcription-coupled nucleotide excision repair (NER) 

that operates exclusively on the transcribed strand of genes and is recruited by RNA 

polymerase II when it encounters bulky DNA helix-distorting lesions (Hanawalt and 

Spivak, 2008). Evaluation of the efficiency of transcription-coupled DNA repair is 

done analogously to the analysis performed for breast cancer (chapter 3). Briefly, 



mutational signatures are re-extracted incorporating the transcriptional strand on 

which each mutation has taken place.  

Nine consensus signatures showed substantial differences in mutation 

prevalence between transcribed and untranscribed strands, known as transcriptional 

strand-bias (Figure 4.8; an individual figure for each signature can be found in 

Appendix IV). This strand-bias is observed only for validated mutational signatures 

(Figure 4.5) and it is absent in the signatures that failed validation (Figure 4.6) or for 

Figure 4.8: Consensus mutational signatures with strand-bias. Mutations are shown according to 
the 192 mutation classification incorporating the substitution type, the sequence context 
immediately 5’ and 3’ to the mutated base and whether the mutated pyrimidine is on the transcribed 
or untranscribed strand. The mutation types are displayed on the horizontal axis, whereas the 
vertical axis depicts the percentage of mutations attributed to a specific mutation type. A higher 
resolution version of all mutational signatures with transcriptional strand-bias is found in Appendix 
IV. 



which validation is not possible (Figure 4.7). In eight of these nine signatures the 

strand-bias is observed across the complete footprints of transcribed protein coding 

genes. In contrast, the strand-bias in Signature 2 is observed only in exons and it is 

lacking in intronic regions. 

Two of the nine mutational signatures likely implicate activity of 

transcription-coupled nucleotide excision repair. Signature 4 shows transcriptional 

strand-bias for C>A mutations (Figure 4.8). Signature 4 is observed in lung 

adenocarcinoma, squamous and small cell carcinomas, head and neck squamous, and 

liver cancers (Figure 4.9), most of which are caused by tobacco smoking. Therefore, 

Signature 4 is probably an imprint of the bulky DNA adducts generated by polycyclic 

hydrocarbons found in tobacco smoke and their removal by transcription-coupled 

NER (Pfeifer et al., 2002). The higher prevalence of C>A mutations on transcribed 

compared to untranscribed strands is consistent with the propensity of many tobacco 

carcinogens to form adducts on guanine. 

Similarly, Signature 7, mainly found in malignant melanoma, shows a higher 

prevalence of C>T mutations on the untranscribed compared to the transcribed strands 

consistent with the formation, through ultraviolet light exposure, of pyrimidine dimers 

and other lesions which are known to be repaired by transcription-coupled NER 

(Pfeifer et al., 2005). 

Beyond these known examples of DNA damage processed by transcription-

coupled NER, other signatures show strong transcriptional strand-bias: Signatures 1B, 

2, 5, 8, 10, 12, and 16. Notably, Signature 16, which is characterized by T>C 

mutations at ApTpA, ApTpG, and ApTpT trinucleotides and is observed in 

hepatocellular carcinomas, shows the strongest transcriptional strand-bias of any 

signature, with T>C mutations occurring almost exclusively on the transcribed strand 

(Figure 4.8). Similarly, Signature 12, which features T>C mutations at NpTpN 

trinucleotides, also found in hepatocellular carcinomas, shows strong transcriptional 

strand-bias with more T>C mutations on the transcribed than untranscribed strands 

(Figure 4.8). Based on the assumption that the transcriptional strand-biases in 

Signatures 12 and 16 are introduced by transcription-coupled NER, these currently 

unexplained signatures might be the result of bulky DNA helix distorting adducts on 

adenine. However, there is no prior basis for invoking transcription-coupled NER in 



the genesis of these signatures (or any of the other mutational signatures) and other 

causes of transcriptional strand-bias may exist. 

 

4.5.2 Mutational signatures with dinucleotide substitutions and indels 

Mutational signatures are re-extracted including, in addition to the 96 

substitution types, three further classes of mutation: dinucleotide substitutions, indels 

at short nucleotide repeats, and indels with overlapping microhomology at breakpoint 

junctions. This analysis also revealed 27 consensus mutational signatures (annotated 

on Figure 4.5). No indels or dinucleotide substitutions are found in the signatures that 

are not validated. Six of the validated mutational signatures are associated with indels, 

while five of the validated mutational signatures are associated with double nucleotide 

substitutions. 

Signature 1A and Signature 1B both associate with indels at repetitive 

elements. Interestingly, these mutational signatures do not contribute large amounts of 

indels (or substitutions) in any given sample but, rather, these mutational signatures 

are present at low background levels in almost all samples in which they are found. 

Four of the 22 base substitution signatures associated with large numbers of 

indels. Signature 6, which is characterized predominantly by C>T at NpCpG 

mutations, but is distinct from Signature 1A/B, contributes very large numbers of 

substitutions and small indels (mostly of 1bp) at nucleotide repeats to subsets of 

colorectal, uterine, liver, kidney, prostate, oesophageal and pancreatic cancers.  

Signature 15 and Signature 20 also contribute very large numbers of 

substitutions and small indels at nucleotide repeats but, compared to Signature 6, 

Signature 15 exhibits greater prominence of C>T at GpCpN trinucleotides, whereas 

Signature 20 contains C>A and T>C mutations. Signature 15 is found in several 

samples of lung and stomach cancer, whereas Signature 20 is found only in few 

gastric carcinomas (Figure 4.9). The origin of both mutational signatures is currently 

unknown. 

By contrast, substantial numbers of larger deletions (up to 50 bp) with 

overlapping microhomology at breakpoint junctions are found in breast, ovarian and 



pancreatic cancer cases with major contributions from Signature 3. In the chapter 3, I 

associated this particular mutational signature with inactivating mutations in BRCA1

and/or BRCA2 in breast cancer. This association will be further elaborated upon in the 

next chapter for ovarian and pancreatic cancers.  

Signatures 1B, 5, 4, 7, and 8 are associated with double nucleotide 

substitutions. Samples with Signature 1B, 5, or 8 have low numbers of dinucleotide 

substitutions. In contrast, overwhelming numbers of dinucleotide substitutions are

present in samples in which Signature 4 or Signature 7 is found. CC>AA/GG>TT or 

TC>AA/GA>TT are the predominant types of dinucleotide substitutions caused by 

Signatures 1B and 5. Signature 4 and 8 generate mostly CC>AA/GG>TT mutations, 

while Signature 7 is characterized by CC>TT/GG>AA mutations occurring 

predominantly at dipyrimidines.  

4.5.3 Mutational signatures with additional sequence context 

Mutational signatures are further extracted using mutational catalogues based 

on the  alphabet. Unfortunately, the majority of the examined cancer types are

Figure 4.9: Signatures of mutational processes and the cancer types in which they are found. 
Cancer types are ordered alphabetically as columns, whereas mutational signatures are displayed 
numerically as rows. ‘Other’ indicates mutational signatures for which validation was not performed 
or for which validation failed. 



derived from exome sequencing data and, as such, they harbour too few somatic 

mutations for this analysis. The examination of low numbers of somatic mutations 

based on a classification system that contains 1,536 types of mutations resulted in 

predominantly binary matrix data and, for the majority of cancer types, the analysis 

either fails or it does not reveal any further elaborations of the consensus mutational 

signatures. 

Nevertheless, there are four mutational signatures that are refined by this 

analysis. As previously demonstrated for breast cancer, Signature 2 and Signature 13 

exhibit a preference for a pyrimidine prior to the mutated TpC dinucleotide while the 

majority of Signature R1’s T>G substitutions occur at T>G at GpGpTpGpG 

pentanucleotides (chapter 3). Further, this analysis demonstrated that the T>X peaks 

at CpT dinucleotides characteristic for Signature 17 are, in fact, dependent on the 

presence of an adenine located 5’ prior to the dinucleotide; thus these peaks occur at 

ApCpTpN tetranucleotides (Q = 1.3 × 10−11; in all cases Q refers to a q-value, see 

chapter 7). Lastly, Signature 10 also displays a pentanucleotide pattern different than 

the one expected purely by chance (Q = 4.5 × 10−42). The three large peaks of 

Signature 10 are highly dependent on either an adenine or thymine two bases 5’ to the 

somatic mutation. 

4.6 Prevalence of consensus mutational signatures in human cancer  

The previous sections of this chapter discussed the identified consensus 

mutational signatures. In 

this section, I will 

examine and summarize 

their prevalence across the 

analysed 30 human cancer 

types. In most cancer 

classes at least two 

mutational signatures are 

observed, with a 

maximum of six in 

cancers of the liver, 

Figure 4.10: Prevalence of validated mutational signatures 
across all cancer types. The X-axis depicts the mutational 
signatures. The right Y-axis reflects the number of cancer types 
in which the validated consensus signature has been identified, 
while the left Y-axis indicates the percentage of samples from the 
data set of 7,042 cancers in which the signature contributed a 
significant number of somatic mutations. 



uterus, and stomach (Figure 4.9 and Figure 4.10). Although these differences may, in 

part, be due to the available data in each cancer type, it seems likely that some cancers 

have a more complex repertoire of mutational processes than others. Signature 1A/B 

is found in the majority of the samples (Figure 4.10), while Signatures 2, 3, 4, 5, and 7 

are present in at least ~5% of the samples. Notably Signature 2 is found in 16 of the 

30 cancer types and in ~14% of all samples.  

Most individual cancer genomes exhibit more than one mutational signature 

and many different combinations of signatures are observed (Figure 4.11). An 

individual figure for each cancer type depicting the contributions of the mutational 

signatures in each sample of that cancer type can be found in Appendix V. Further, an 

individual figure for each cancer type depicting the summary of the signatures’ 

contributions in that cancer type can be found in Appendix VI.  Liver cancers have 

the richest mutational landscape since the average liver cancer sample has at least 5 

signatures imprinted by different mutational processes (Appendix V).   

The patterns of contribution to individual cancer samples vary markedly 

between signatures. Signature 1A/B contributes relatively similar numbers of 

mutations to most cancer cases whereas most other signatures contribute 

overwhelming numbers of mutations to some cancer samples but very few to others of 

the same cancer class. Examples of such mutational signatures are Signatures 2, 3, 4, 

6, 7, 9, 10, 11, and 13 (Figure 4.11).  

Some mutational signatures are found in significant proportions of samples in 

some cancer types, while contributing only to a subset of samples in other cancer 

types. Notably, Signature 2 is identified in the majority of cervical (79%), thyroid 

(52%), and bladder (51%) samples but it is found only in a limited set of multiple 

myelomas (6%), B-cell lymphomas (11%), and breast cancers (18%) (Appendix V). 

Other examples include: Signature 6, identified in 20% of colorectal samples but only 

present in 0.6% of prostate cancer samples; Signature 13, identified in 67% of bladder 

samples but only present in 7% of breast cancer samples; Signature 17, found in 44% 

of oesophageal cancers but only in 14% of stomach cancers; Signature 3, found in 

30% of breast cancers but only in 12% of pancreatic cancers (Appendix V). The 

reasoning behind the tissue specificity of the identified mutational signatures remains 

elusive. However, it is possible that some (or even most) mutational signatures are not 

as variable by cancer type as currently appears to be the case and examination of more 



genomics data will reveal the presence of these mutational signatures in the majority 

of cancer types (albeit with low prevalence). Nevertheless, there are at least some 

mutational signatures that are most likely specific to a set of cancer types. For 

example, one would not expect to find the mutational signature of ultraviolet light in a 

primary colorectal cancer. 

4.7 Discussion 

In this chapter, I presented and discussed mutational signatures analysis 

encompassing 7,042 samples derived from 30 human cancers. The results revealed 

more than 20 consensus mutational signatures with a complex landscape across the 

different cancer types and, even, across individual cancer samples.  

It should be noted that as in any computational analysis, the extraction of 

mutational signatures is not a perfect process. In chapter 2, I described in detail the 

Figure 4.11: Contributions of mutational signatures in a selected set of cancer types. 25 samples 
are displayed for each cancer type. Each sample is displayed as a column with a height corresponding 
to the number of somatic mutations per megabase found in this sample. Every column is 
proportionately coloured to reflect the percentage of mutations attributed to different mutational 
signatures. ‘Other’ indicates mutational signatures for which validation is not performed or for which 
validation failed. 



factors that influence the extraction of mutational signatures. These included the 

number of available samples, the mutation prevalence in samples, the number of 

mutations contributed by different mutational signatures, the similarity between the 

signatures of mutational processes operative in cancer samples, as well as the 

limitations of the developed computational approach. 

In this chapter, I examined datasets with varying sizes from 30 different 

cancer types and great care has been taken to report only validated mutational 

signatures. However, the developed approach identified two similar patterns most 

likely representing the same biological process, viz., Signature 1A and 1B. The 

reasons for this is, for some cancer types, sufficient numbers of samples and/or 

mutations are available (i.e., statistical power) to decipher the cleaner version (i.e., 

Signature 1A) while for other cancer types there are not sufficient data and the 

approach extracts a version of the signature which is more contaminated by other, 

likely partially correlated, signatures present in that cancer type (i.e., Signature 1B). 

Nevertheless, the two signatures are visually very similar and they have been named 

1A and 1B. Being almost mutually exclusive amongst cancer types (i.e., finding either 

Signature 1A or Signature 1B in each cancer type but not usually both) is supportive 

of the notion that they represent the same underlying process as is the fact that 

Signatures 1A and 1B have the same overall pattern of contributions to individual 

cancer genomes. Indeed, it is likely that if there were sufficient data, Signature 1B 

would disappear and the algorithm would extract only Signature 1A. 

In summary, through examination of the mutational patterns buried within 

cancer genomes, this analysis revealed the diversity and complexity of somatic 

mutational processes underlying carcinogenesis in human beings. It is likely that more 

mutational signatures will be extracted, together with more precise definition of their 

features, as the number of whole-genome sequenced cancers increases and analytic 

methods are further refined.  

 


