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ABSTRACT

Genetic variants that influence expression levels of genes have a key role in shaping
phenotypes. From cell type definition during development, to sculpting higher level
traits, within and across populations, in health and disease, the importance of
regulatory variation is emerging rapidly. The goal of this thesis was to identify genetic
variants that shape gene expression levels (expression quantitative trait loci or eQTLs)
across different human populations and cell types. Three general aspects of regulatory
variation were addressed: a) impact of interactions between regulatory (eQTLs) and
protein-coding variants (non-synonymous SNPs or nsSNPs) on gene expression in cis
and trans, b) fine-scale architecture of the cis regulatory landscape, c) cell type
specificity of eQTLs. To do this, I performed association of transcript levels (as a proxy
to gene expression) with SNP genotypes and identified eQTLs using two resources: a)
the HapMap Project for which expression was quantified in lymphoblastoid cell lines
(LCLs) of geographically diverse populations and b) the GenCord Project for which
expression was quantified in fibroblasts, LCLs and T-cells of a single population of

European descent.

HapMap was used to explore a specific model of epistasis between eQTLs and
nsSNPs, in which the functional impact of nsSNPs is modulated by regulatory variants
nearby. From a total of 8,233 nsSNPs interrogated, 1,502 (18.2%) were found to be
differentially expressed (DE), with important implications for protein diversity in the
cell. Modification in cis also had an impact on gene expression in trans with a subset of

DE nsSNPs being associated with expression variation of other genes in the genome.

To explore the architecture of the cis regulatory landscape and given the need to

identify functional variants, I designed a framework to dissect and fine-map regulatory



variation. Using HapMap, and upon correction for the correlated structure of variants
in the genome, it was found that over 19% of genes have multiple cis eQTLs, but also
that single eQTLs can regulate the expression of multiple genes. The
multidimensionality and complex architecture of cis regulation was further highlighted
by showing that interactions between genetic variants in cis influence gene expression

levels.

Cell type specificity of regulatory variation was addressed using GenCord and it
was found that over 83% of independent cis eQTLs were unique to a single cell type.
Importantly, LCL eQTLs replicated well across studies with over 80% of HapMap
eQTLs replicating in GenCord, an observation that demonstrates the usefulness and
stability of large collections of LCLs. GenCord cell type-specific cis eQTLs were found
to span a wide range of distances from the transcription start site (TSS) of genes
mirroring the distribution of known enhancer elements. Furthermore, a correlation
between number of cis eQTLs identified for a given gene and number of transcripts was

detected.

Given the role of gene expression in shaping phenotypic variation in health and
disease, elucidating the nature of regulatory variation is crucial. Especially in the case of
disease, integrating regulatory information with the results of genome-wide disease
association studies is a promising way forward and will help unravel mechanisms

leading to disease pathogenesis.
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the sea is taking its bath.

The exam is History of Mankind.
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One monkey stares and listens with mocking disdain,
the other seems to be dreaming away-

but when it’s clear I don’t know what to say

he prompts me with a gentle

clinking of his chain.

Wistawa Szymborska

Translation by Stanistaw Baranczak & Clare Cavanagh
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