Lessons from Ebola: Better disease surveillance needed
The Ebola crisis has highlighted a need to bolster global surveillance and enhance the capability to react appropriately to further outbreaks. Recent developments in technology could enable a swifter, more effective response to potentially deadly outbreaks of disease, a study has found. Disease detection, information sharing and pathogen genome data analysis could all be improved with the coordinated use of existing technology.
A team of infectious disease experts from the University of Edinburgh and the Wellcome Trust Sanger Institute reviewed the global response to recent virus infection outbreaks, including Ebola, swine flu and Middle East Respiratory Syndrome Coronavirus (MERS CoV). They found that shortcomings in the response to Ebola highlighted the need to now adopt state-of-the-art techniques to detect, monitor and respond to such outbreaks.
Technological advances such as rapid testing of patients, modelling of infection dynamics and fast genetic analysis of virus genomes could help experts detect, monitor and respond to emergency situations as they unfold. The authors conclude these methods should be brought into public health planning around the world in order to help combat future disease outbreaks.
“Real-time sequence analysis of virus genomes such as Ebola virus is one of the most important additions to our arsenal of tools for investigating disease outbreaks, especially when such virus genome data is rapidly and openly shared. Virus genomes, when combined with the date the sample was obtained and its geographical location, allow us to determine how the virus spreads through space and time. These technologies can augment traditional surveillance and epidemiological methods, especially in the analysis of transmission chains, improving the management of an outbreak and thereby saving lives.”
Professor Paul Kellam Group Leader of Virus Genomics at the Wellcome Trust Sanger Institute
Most infectious disease outbreaks are detected first by frontline health care workers. Clinical surveillance can be unreliable however, leading to delays in detection and significant under reporting. For acute virus infections, improving detection times, even by only 24 hours, can make a critical difference in the ability to control an outbreak.
“We cannot afford to wait for the next outbreak of infectious disease before putting effective systems in place to safeguard public health. Global surveillance would be costly, but in our highly connected world, early detection and rapid action against outbreaks are to everyone’s benefit.”
Professor Mark Woolhouse University of Edinburgh’s School of Biological Sciences
More information
Funding
This research was supported by the Wellcome Trust and the EU Horizon 2020 programme (COMPARE).
Selected websites
The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute is one of the world’s leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
The Wellcome Trust
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.