UnMASCing diseases of the brain
Scientists at the Wellcome Trust Sanger Institute have discovered a set of brain proteins responsible for some of the most common and devastating brain diseases. The proteins underlie epilepsy, depression, schizophrenia, bipolar disease, mental retardation and neurodegenerative diseases including Alzheimer’s and Huntington’s diseases.
“The reason such a remarkable number of diseases are relevant to this set of proteins is that these proteins are at the heart of how brain cells function.”
Professor Seth Grant Director of the Genes to Cognition Programme at the Wellcome Trust Sanger Institute
Rather than taking traditional methods for studying just one protein at a time, the researchers developed a method that finds whole sets of proteins that bind to each other and form microscopic molecular machines. They were hunting for the ‘engine room’ of nerve cells, which is known to be inside the connections between nerve cells called synapses.
Synapses join the billions of nerve cells together in the brain and they are the location where learning and memory and many other behaviours are controlled.
“We developed a new method, which led to this discovery, and it should be equally useful in finding the basis of many other diseases in other cells and tissues of the body.”
Dr Jyoti Choudhary Leader of the Proteomic Mass Spectrometry team at the Sanger Institute, which collaborated with Professor Grant’s team on the study
To find this key set of proteins – called MASCs (a scientific acronym for MAGUK Associated Signaling Complexes and pronounced ‘mask’) – the researchers adapted a method that had previously been used in yeast cells.
“These approaches have enabled the most specific interrogation of the synapse, in terms of its constituent complexes and have revealed that genes associated with brain diseases such as schizophrenia are highly over-represented within this molecular machine. This is a landmark in terms of characterisation of truly endogenous protein complexes or ‘molecular machines’, as this is the first time it has been conducted in a higher organism in this way.”
Dr Mark Collins Author on the study from the Sanger Institute
The method involved making a ‘molecular hook’ and attaching it to one protein inside brain cells of mice. They then caught the hook and pulled it out and found it brought along another 100 proteins. The set contained dozens of disease-causing proteins.
“This points to the new concept that the molecular machines are defective in the diseases and that they present new ways to approach therapy.”
Dr Jyoti Choudhary Sanger Institute
Not only were there many disease proteins within the molecular machines but also proteins that control the communication between nerve cells and the mechanisms of learning and memory.
“This research is an important convergence of basic and clinical science. Our findings are exciting because they suggest that the molecular machine itself is at the root of many important brain diseases. This was a blue-skies research project seeking the basic mechanisms of learning and memory and it has led us into some of the inner workings of the brain.
“This is a key step toward new ways to fight mental illness.”
Professor Seth Grant Sanger Institute
More information
Funding
This work was supported by a Federation of European Societies postdoctoral fellowship, the Wellcome Trust, Marie Curie Actions: Research Training Network programs and the EPSRC/MRC Doctoral Training Centre in Neuroinformatics and Computational Neuroscience.
Participating Centres
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Cambridge, UK
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Cambridge, UK
- School of Informatics, Edinburgh University, Edinburgh, UK
Publications:
Selected websites
Genes to Cognition Programme
This research was part of the Genes to Cognition Programme, that is an international research consortium based in the UK and directed by Professor Grant. The research programme also has an education and public understanding of science website called G2COnline.
The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease.
The Wellcome Trust
The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.