'Superbugs' study reveals complex picture of E. coli bloodstream infections
The first large-scale genetic study of Escherichia coli (E. coli) cultured from patients with bloodstream infections in England showed that drug resistant ‘superbugs’ are not always out-competing other strains.
Research by the Wellcome Trust Sanger Institute and their collaborators showed that new types of E. coli occur frequently, but unlike in some other infections, drug-resistant strains do not become a dominant cause of infection.
Published today (18 July 2017) in Genome Research, the study examined a large collection of E. coli isolated from patients with bloodstream infection over more than a decade, some of which were resistant to numerous antibiotics while others were not. The researchers found that infection was caused by more than 200 different types of E. coli. New strains including multidrug resistant E. coli were seen to emerge within the collection over time, but these quickly reached a balance with other strains in the population rather than increasing over time.
Despite being a very common bacterium that is carried naturally in the human digestive tract, E. coli are also the leading cause of bloodstream infections. There were 35,676 cases in England in 2014, which often result from spread of infection from the urinary or gastrointestinal tract.
Certain strains of E. coli have been extensively studied, like the ‘superbug’ strain ST131 which is resistant to multiple antibiotics. But this study took a different approach – rather than just focusing on antibiotic-resistant strains, the study tapped into an unbiased collection of 1509 E. coli, the majority of which were from the British Society of Antimicrobial Chemotherapy Bacteraemia Surveillance programme collected over 11 years from across England. Using whole genome sequencing, the researchers discovered 228 different strains of E. coli in this collection.
The study captured the year (2002) in which ST131 emerged in England. Within a short space of time, the number of ST131 isolates reached an equilibrium with other types. Around the same time, another type (ST69, not a multidrug resistant strain) also emerged, and again quickly reached an equilibrium within the overall population.
“These findings suggest that the emergence of new types of E. coli is not uncommon, and is necessarily followed by successful competition with other types to become a dominant cause of infection in humans. The reason for this equilibrium may relate to the fact that all bacteria are constantly competing with others to survive in places where they are carried, such as the gut.”
Professor Sharon Peacockfrom the London School of Hygiene & Tropical Medicine* and Honorary Faculty at the Wellcome Trust Sanger Institute
The study found that five strains made up over half of the isolate collection. The ‘superbug’ ST131 was the second most common strain With the antibiotic-susceptible strain ST73 the most frequently found. The researchers found that the different strains carried different sets of genes that could underlie their success. Many of these were virulence genes that enabled them to survive in the gut or urinary tract, but some were genes that allowed them to compete better with other bacteria, either by scavenging nutrients, or by directly killing their competitors.
“Our study indicates that there are many reasons for the success of different strains of E. coli, and these include competition between bacteria, as well as interaction with the human host and antibiotic resistance. This suggests that the ultimate source of E. coli causing bloodstream infections is the diverse bacterial population in the wider community.”
Dr Julian Parkhill, head of Infection Genomics at the Sanger Institute
The diversity of E. coli contrasts with another bacterium causing common hospital infection, methicillin-resistant Staphylococcus aureus (MRSA). This is a multidrug resistant bacterium, with one strain of MRSA dominating at any one time. This organism is transmitted from patient to patient within the hospital setting, and reducing hospital transmission has been shown to help prevent MRSA infection. Further research is needed but this study suggests that a different strategy may be needed to help reduce E. coli blood infections.
“E. coli are the leading cause of bloodstream infections and this study helps illustrate the incredible complexity of the spread of multidrug resistant strains. Finding new effective treatments against multidrug resistant strains remains an important priority.”
Tim Jinks Head of Drug-Resistant Infections at Wellcome
More information
*Prof Sharon Peacock’s full affiliations are: Wellcome Trust Sanger Institute; University of Cambridge; London School of Hygiene & Tropical Medicine; and University College Hospital, London.
Funding:
This work was supported by the Health Innovation Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership between the UK Department of Health and Wellcome Trust.
Participating Centres:
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Public Health England, Clinical Microbiology and Public Health Laboratory, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- British Society of Antimicrobial Chemotherapy, Birmingham, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
Publications:
Selected websites
The London School of Hygiene & Tropical
The London School of Hygiene & Tropical Medicine is a world-leading centre for research and postgraduate education in public and global health, with more than 4,000 students and 1,000 staff working in over 100 countries. The School is one of the highest-rated research institutions in the UK, is among the world’s leading schools in public and global health, and was named University of the Year in the Times Higher Education Awards 2016. Our mission is to improve health and health equity in the UK and worldwide; working in partnership to achieve excellence in public and global health research, education and translation of knowledge into policy and practice.
The Wellcome Trust Sanger Institute
The Wellcome Trust Sanger Institute is one of the world’s leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
The Health Innovation Challenge Fund
The Health Innovation Challenge Fund is a parallel funding partnership between the Wellcome Trust and the Department of Health to stimulate the creation of innovative healthcare products, technologies and interventions and to facilitate their development for the benefit of patients in the NHS and beyond.
The Department of Health
The Department of Health (DH) helps people to live better for longer. The Department leads, shapes and funds health and care in England, making sure people have the support, care and treatment they need, with the compassion, respect and dignity they deserve.
The Department encourages health research and use of new technologies because it’s important to the development of new, more effective treatments for NHS patients. Innovation is needed so that decisions about health and care are based on the best and latest evidence.
Wellcome
Wellcome exists to improve health for everyone by helping great ideas to thrive. We’re a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate.