Chapter 2

Methods

2.1 Principles of subclonal reconstruction

Reconstruction of the subclonal architecture of a tumour involves three main components:
Estimating copy number, adjusting SNV VAFs for copy number alterations to obtain CCF
values and inferring the subclonal architecture from the CCF data. This section contains a
description of all methods that I use for subclonal inference. These methods form the basis
of all results reported on in this thesis, sometimes as part of a much larger procedure as is
detailed in Chapter 6. This chapter also contains a description of avenues that have been
explored, but were deemed not an improvement. An earlier version of the text in this section

has appeared in Dentro et al. (2017).

2.2 The Battenberg algorithm

Battenberg was originally developed to study the unique PD4120 sample and was briefly
described in the supplement of Nik-Zainal et al. (2012a). Since then it has been adapted and
extended to run with whole genome sequencing and SNP 6.0 data from 1000s of genomes and
has become a standard part of the cancer genome analysis pipelines at the Sanger. This section
contains a complete description of the whole genome sequencing pipeline and algorithm.
In brief: Battenberg uses the 1000 Genomes SNP locations with B-allele frequency (BAF)
and relative amounts of DNA (logR) as input from either whole genome sequencing or SNP
6.0 arrays. Heterozygous SNPs are identified from the matched normal sample, after which
the SNPs are phased into haplotype blocks to obtain accurate BAF values. Battenberg then
performs segmentation, finds an initial purity and ploidy combination before fitting a global
copy number profile. Finally, it identifies segments for which the underlying BAF cannot be
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explained by clonal copy number and it will fit subclonal copy number as a mixture of two

separate major and minor allele states.

2.2.1 Pre-processing

Battenberg starts by reading in allele counts for all 1000 genomes SNPs, which are directly
obtained from the tumour and matched normal BAM. SNPs are removed from the pool if they
appear on the list of unreliable SNPs (identified in a panel of 200 normal genome sequences)
or when they are covered by fewer than 10 reads in the normal or 1 read in the tumour. The
normal is used to identify SNPs that are heterozygous in the germline of the patient and
therefore requires that the normal is from the same individual as the tumour. All SNPs then
go into haplotype reconstruction, after which the germline heteroygous SNPs are used for

segmentation and fitting.

2.2.2 Reconstructing haplotype blocks

Battenberg primarily uses allelic imbalances to estimate copy number. To observe these
imbalances, it is helpful to look at the B-allele frequency (BAF) of a germline heterozygous
SNP. For sequencing data the BAF can be calculated as:

rBi

BAF, = —21
YA T 7B,

(2.1)

where r ; and rp; represent the total reads reporting allele A and B respectively. Alterna-
tively, the BAF can be expressed as a function of the number of chromosome copies of allele
A and B (n4 and np respectively):

np.i

BAF, = —
nai+np;

(2.2)

A germline heterozygous SNP will have a BAF of approximately 0.5 in the absence
of any copy number changes. Deviations from 0.5 therefore can be used to detect somatic
aberrations. As tumours are often admixed with normal cells, establishing the copy number
state of an aberration based on the deviation of BAF requires estimating the fraction of
tumour cells in the sample (the tumour purity). The number of chromosome copies in the
formula above should therefore be split into a contribution of p tumour cells and (1-p) normal

cells:
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png;+(1—p)ng,

BAF, —
p(nas+npy)+(1—p)(nan+npn)

(2.3)

where p represents the tumour purity, n4 ; and ng, the number of chromosome copies in
tumour cells and ny , and np , the number of chromosome copies in normal cells. Several
methods have been developed to co-estimate clonal copy number states and tumour purity
based on these allele-specific signals (Carter et al., 2012; Ha et al., 2014; Van Loo et al.,
2010).

Tumours that exhibit much clonal genomic instability will show deviation of the BAF
for large proportions of the genome. In such tumours, the BAF values show clear levels
corresponding to different clonal states, which translates into more usable signal for methods
that co-estimate copy number states and tumour purity. However, genomes that show large
amounts of subclonal genomic instability will show a range of different BAF values and will
be more difficult to fit.

Fig. 2.1 shows allele frequency values for a number of example cases that are affected by
copy number changes and different normal cell admixtures. Panel A shows a region with no
copy number alterations in a tumour that has no normal cell infiltration. One expects both
alleles to be present in equal proportions, resulting in allele frequencies of 0.5. Panel B shows
aregion with a clonal gain. The bands representing allele A and B are clearly separated, with
allele A representing two thirds of the total chromosome copies and allele B one third. Panel
C contains a similar gain, but in a sample with 75% tumour purity, resulting in a smaller
difference between the bands. Panel D shows the gain, again with 75% tumour cells, but now
the coverage is reduced from 100X (as in panels A, B and C) to 40X. The bands appear to be
overlapping as lowering the depth increases the noise and widens the bands. Panel E shows
an example where the gain is subclonal in 60% of tumour cells resulting in further overlap of
both bands. And finally panel F shows a subclonal loss in 40% of tumour cells.

Fig. 2.1 illustrates that the allele frequencies of individual SNPs are subject to statistical
variation and this noise increases with lower coverage. Combining SNPs into haplotype
blocks through phasing can mitigate this effect (Carter et al., 2012; Nik-Zainal et al., 2012b).
Through haplotype phasing, information can be combined across multiple SNPs within a
region of copy number change, by matching alleles across SNPs. For example, for SNP 7,
allele A may correspond to the maternal allele, while for SNP i+ 1, allele B may correspond
to the maternal allele. If these are combined appropriately, smaller deviations of the BAF
from the normal state can be detected, and higher precision copy number changes, including

subclonal copy number changes, can be inferred.
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2.2.3 Fitting a global copy number profile

Two main components must be taken into account when fitting a copy number profile:
Infiltration of normal cells (tumour purity) and tumour cell aneuploidy (tumour ploidy).
Battenberg takes a similar approach as ASCAT (Van Loo et al., 2010) by considering a range
of purity and ploidy combinations to pick a solution. After a combination is established, each
segment is then assigned allele specific copy number states.

The grid search procedure is performed twice, first with large steps to find an initial
optimum and then with small steps to refine the solution. The grid search procedure takes
a range of purity (p) and ploidy (y;) values and calculates the proportion of the genome
fit with clonal copy number with each combination, through the steps described in the next
section. It then picks the p and y; pair that maximises the proportion of the genome with
clonally altered copy number.

Finally, the copy number states of both alleles of a segment s are established through:

—_1—(1— I _
- 1—(1-05)252(1=p)+pw) 2.4)

p

_ ls(2(] —
n37s:p 1+b2502(1—p) +py;) 2.5)

P

where ny4  is the copy number call for allele A of segment s, by and [; are the BAF and logR
of the segment and y; is the average ploidy of all tumour cells in the sequencing sample.

2.2.4 Testing whether a segment is clonal

After fitting clonal major and minor allele copy number states, we can test whether these
states accurately explain the observed BAF. If the BAF is not well explained by the best
clonal states, then the segment is subclonal. This section explains the details of the test, the
next section explains how the test is applied. The obtained n4 and np (through eqs. 2.4 and
2.5) can be non-integer values and therefore have to be rounded to obtain clonal copy number
states. This can be achieved by rounding either allele up or down, yielding four possible
options (explained further in the next section). For each option the expected BAF, given
rounded alleles 714 s and 71p 4, is calculated using:
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> l-p—phag
Y 242p+p(Ras+7Bs)

(2.6)

A choice is made between the four options by taking the combination of alleles that
minimises the distance between the observed BAF b, and the expected BAF Zs.

Finally, the Es value corresponding to the chosen allele combination is tested against the
observed BAF through a t-test and accepted as clonal if the p-value is not significant _using

0.05 as the significance cutoff.

2.2.5 Fitting subclonal copy number

Once exact allele frequencies of segments have been calculated and a clonal copy number
profile has been fit, subclonal copy number changes can be detected. As a first step, for each
segment, one can determine whether the BAF value of this segment can be explained by a
clonal copy number change (as detailed in the previous section). Deviation of the observed
exact allele frequency from the theoretical allele frequency can be used to identify a segment
having a subclonal copy number state, i.e. a combination of two or more populations of
tumour cells with different copy number states, in addition to a population of normal cells.

When such a segment is fit with a clonal copy number state, the multiple subclonal states
are combined into a single (integer) representation. For example, if the real copy number
state of the segment is 2+1 (2 copies of one parental allele and 1 copy of the other allele) in
80% and 1+1 in 20% of tumour cells (i.e. on average 1.8+1), its clonal fit will likely be 2+1
in 100% of tumour cells (1.8+1 rounded up). The observed allele frequency will therefore
deviate from the frequency expected under the clonal copy number fit, allowing us to infer
that the segment cannot be explained by a clonal copy number state.

The type of subclonal copy number depends on the different copy number states at the
locus and their respective fractions of tumour cells. This problem has multiple solutions, as
there can be any number of subclones with distinct subclonal copy number states. However,
for any given segment, the most parsimonious assumption is that there are only two distinct
copy number states, and that those copy number states differ at most by one chromosome
copy (i.e. are separated by only one copy number event). Battenberg therefore assumes two
distinct major and minor allele states, which are separated by one copy number event.

Under this assumption, given allele-specific copy number values ny4 and np (integer
if clonal, non-integer if subclonal), there are four options for the theoretical clonal allele
frequency Ef (assuming diploid copy number in the normal cell population):
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Allele A and B are both rounded down:

P plng]+1-p 2.7)

77 p([nal + [ne)) +2(1—p)

Allele A is rounded down and B is rounded up:

~ plngl+1-p
hf= (2.8)
" plnal + Tnp]) +2(1 = p)
Allele A is rounded up and B is rounded down:
~ plng]+1-p
hy= (2.9)
77 p([nal+ ns]) +2(1—p)
Allele A and B are both rounded up:
By = plng|+1—p 2.10)

~ p([nal+[ng])+2(1-p)

Subclonal segments can be identified by testing the observed allele frequency /¢ against
the theoretical ﬁf of all four scenarios and accepting a segment as subclonal if the observed
hy is significantly different from Zf in all. If the segment is deemed to be subclonal we
choose one of the above four scenarios as the most likely explanation of how subclonal copy
number was rounded into clonal. The scenario that explains the observed & best is picked,
providing two combinations of major and minor allele copy number states.

Finally, having obtained the states, we estimate the proportions of tumour cells that
contain each of the two major and minor allele combinations. Formally, if a fraction of
tumour cells 7 shows copy number state n4 1 + ng,1 and a fraction of tumour cells 1-7 shows

copy number state n4 > + ngp, T can be calculated as:

T 1—p—l—pn3,2+2hf(l—p)—hfp(nA72+nB72)
hep(nay+np1) —hpp(naz+npo)—pnp1+pnpp

(2.11)

2.2.6 Extensions to segmentation

Segmentation of the phased BAF data is performed by piecewise constant fitting (PCF) in
Battenberg. PCF models the data as a step-function to explain the observed data by a number
of discrete copy number segments as described in (Nilsen et al., 2012). PCF is provided with
BAF data for heterozygous SNPs and requires two parameters: the penalty for starting a new
segment and a minimum segment length defined by the number of supporting SNPs. That
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means a new segment always starts with a heterozygous SNP and the startpoint may not be
precise as the parameters require sufficient evidence of a step in the BAF signal before a
new breakpoint is added. Finally, Battenberg does not use the logR for segmentation, which
means a region in which both alleles are gained are difficult to detect as the BAF does not
change.

I have therefore added the option to incorporate pre-defined breakpoints into the segmen-
tation procedure (see Fig. 2.2 for an example). This allows for inclusion of breakpoints with
base-pair resolution from SV calling. The approach starts with pre-segmenting the genome
with the supplied breakpoints. It assumes the breakpoints are clean and therefore performs
no further filtering. Then PCF is performed in each pre-segment to detect further breakpoints
not covered by a SV, such as a chromosome arm event. However, not every structural variant
constitutes a copy number change (inversions for example) and the SVs can therefore lead
to spurious segments. A segment merging step is therefore added that formally tests the
BAF and logR of each adjacent pair of segments through a t-test and merges the pair if the
BAF and logR are not significantly different or when the major and minor allele of both
segments have the same clonal values. An exception is made for segments between which
there is a gap of 3Mb or larger. The assumption is made that there is either missing data or a

centromere between the segments and as there is no data we make no call.

2.2.7 GC content correction

Coverage of sequencing data can be affected by artefacts that manifest themselves as a wave
pattern across the genome (Diskin et al., 2008). These artefacts are correlated with local
GC content and can be corrected for by a regression approach (Benjamini and Speed, 2012;
Diskin et al., 2008). I observed that a substantial set of tumours reported on in this thesis are
affected by this problem. Fitting an initial copy number profile was impossible as it yielded
whole chromosome homozygous deletions where the profile looked generally correct for
other chromosomes (Fig. 2.3, with details of chromosome 8 in Fig. 2.4). These deletions
would be surprising given that about 10% of genes are thought to be essential for cell function
(Wang et al., 2015), which makes it likely that every chromosome contains at least one gene
required for cell survival. I have therefore implemented an approach for Battenberg that
corrects the relative tumour coverage (logR) for wave patterns.

Similarly to the method implemented in ASCAT, the GC content correction function
considers each SNP given in the input as the centre-point of a window. The GC content for
window-sizes varying from 25kb to 10Mb have been pre-calculated. Similarly to ASCAT, we
consider two window sizes to correct for high and low frequency waves. After calculating
correlations the data with the GC content of the logR data we select a window < 1Mb
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Fig. 2.2 The above figures show the segmented data with a copy number fit on a chromosome
that consists of many small segments. The top plot in both figures contains the GC corrected
raw logR data (grey dots) with the segment boundaries overlayed (vertical lines). The bottom
plot contains the BAF with fit segments overlayed (green represents clonal copy number,
while red represents subclonal). a) The fit without inclusion of SV breakpoints misses a series
of consecutive breakpoints around 200Mb. b) After inclusion of the SV breakpoints (green
vertical lines) Battenberg is able to call all visible segments on this complex chromosome.

(denoted as w < 1) and one >= 1Mb (w >= 1) and perform regression on a model that

allows for both a linear and a non-linear effect of GC content:

l=Gye1 +Gyoci +G5_ + G2, (2.12)

where G is the precalculated GC content data. The residuals (expected logR) are then
taken as the corrected logR value and saved for use further down the pipeline.

This approach corrects for the majority of the wave effect and has allowed a substantial
number of tumours to be included in the analysis described further into this thesis. It does
however not completely remove the artefacts (see Fig. 2.4b), which suggest that there are
additional factors that have not yet been accounted for.



30 Methods
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Fig. 2.3 Whole copy number profile for sample SA514993, with in orange the total copy
number and in dark grey the minor allele. (a) A copy number profile with homozygous
deletions on chromosomes 4, 6, 8, 19 and 22. (b) The homozygous deletions disappear after
correction for GC content. The purity estimate also increases, which reduces the gains on
chromosomes 2 and 12 by one copy and on chromosome 7 by three copies.

2.3 Subclonal architecture inference with DPClust

A subclone is a population of tumour cells that carry a unique subset of mutations (SNVs,
indels or copy number). These mutations will appear in a similar fraction of tumour cells in
the sequenced sample and can therefore be used as a marker of the population. By clustering
the mutations, one can infer the existence of a subpopulation and therefore the subclonal
architecture contained within the sequencing sample.

For such an approach to work one must assume that mutations occur only once during
the life time of the tumour, which is referred to as the infinite sites assumption (Jiao et al.,
2014). For SNVs and indels that assumption holds true in general given the size of the human
genome, but for copy number alterations there is accumulating evidence that the same locus
can be mutated on multiple occasions (Jamal-Hanjani et al., 2017).

This section describes the approach implemented in the DPClust software package.

2.3.1 Estimating cancer cell fractions

To infer the subclonal architecture of a tumour one must first obtain an estimate of the fraction
of tumour cells (cancer cell fraction, CCF) for each mutation, which can be inferred from
VAFs of SNVs. Massively parallel sequencing results in short reads, which can then be
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Fig. 2.4 LogR data of chromosome 8 from sample SA514993. Smoothing was performed
by applying a running median with a window-size of 101 SNPs to make the signal more
visible at this scale. (a) Raw logR before GC correction shows a long wave pattern with
a varying frequency. The homozygous deletion visible in Fig. 2.3a is situated at about
140Mb where the logR is clearly sloping downwards. (b) The big steps in logR are removed
after correcting for GC content. The sloping at around 140Mb is reduced dramatically, now
stopping Battenberg from calling a homozygous deletion (Fig. 2.3b). A light wave pattern is
still visible, suggesting further improvements can be made.

aligned to a reference genome, followed by SNV calling. Both the variant and reference
alleles of an SNV are supported by a number of reads, 7, and r, ¢ respectively. The VAF
of SNV i, f;, can straightforwardly be calculated as:

fi= i (2.13)
Tmut,i + Tref.i

However, mutation clustering to identify (sub)clonal populations cannot be performed
directly using VAFs, as copy number changes impact allele frequencies. Fig. 2.5 shows
four SN'Vs in a sample that consists of 80% tumour cells and 20% normal cells. SNV 1
is clonal and occurs in a region with a normal diploid copy number state. This mutation
is therefore carried by approximately half the reads that represent tumour DNA. SNV 2 is
subclonal and also occurs in a region of normal diploid copy number. As both copy number
and normal cell contamination are equal for both SNV 1 and 2, their allele frequencies are
directly comparable and proportional to the fraction of tumour cells by which they are carried.
SNV 3 falls into an area that was subclonally lost. As the subclonal loss has occurred on the
other allele, this SNV’s VAF is increased compared to SNV 1. SNV 4 is clonal, falls into an
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Fig. 2.5 Allele frequencies of SN'Vs must be transformed to Cancer Cell Fractions, accounting
for copy number changes, before they can be clustered to identify subclonal populations.
This illustration shows 4 SNVs in different (sub)clonal populations and in regions with
different copy number states, to illustrate this principle. SNVs 1 and 2 are clonal and
subclonal respectively and appear in a non-aberrated copy number state. SNV 3 coincides
with a subclonal deletion, with the SNV falling on the retained allele (i.e. the other allele
is subclonally deleted). SNV 4 has occurred before a gain and is therefore carried by two
chromosome copies. Even though SNV 1, 3 and 4 are clonal, their allele frequencies differ
due to copy number alterations.

area that is clonally gained and is on the gained allele. Its VAF is therefore higher than that
of SNV 1. If these SN'Vs were clustered in VAF space, SN'Vs 3 and 4 would be mistaken for
evidence of additional mutation clusters, while they in fact belong to the clonal cluster.
This example illustrates that the copy number state of an SNV, also called its multiplicity,
is key to understanding VAF distributions of mutations. Estimating the multiplicity of an
SNV is challenging, as it requires establishing the copy number state of a single base. Copy
number callers often estimate copy number states for large stretches of DNA, which might
not accurately represent the copy number state exactly at the base of the SNV. To assist with
resolving this issue, it is helpful to consider the product of mutation multiplicity m; of a

mutation i and its cancer cell fraction CCF;:
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u; = CCFm; (2.14)

Let us consider the properties of u;. A clonal SNV will have a CCF of 1.0 (i.e. 100% of
tumour cells) and in each cell the number of chromosome copies, m; is an integer. It follows
from the above equation that for clonal mutations u#; > 1. A subclonal mutation has a CCF
less than 1.0 (for example 0.4, or 40% of tumour cells) and can only be carried by a single
chromosome copy (unless also affected by a subclonal CNA), therefore m; = 1. It follows

that u; < 1 for subclonal mutations. We can use these observations to obtain m; from u;:

]ui|, ifuiZ 1
m; = (2.15)
I, ifu; <1

Furthermore, u; can be written as a function of the fraction of tumour cells p with a total
number of chromosome copies in tumour cells at locus i, n4; i, and a fraction of normal

cells 1-p with a total number of chromosome copies in normal cells at locus i, nor i

1
U = fiE[P”ltoz,t,i + (1= p)nor il (2.16)

In the formula above, p and 7, ;; can be obtained through copy number analysis, f; can
be calculated from 7, and r,. ¢ using Eq. 2.13, and the 7,4, ; values are considered known
(typically 2). This equation therefore provides us with a way to calculate u; and by extension
to obtain the multiplicity of the SN'V.

SNV 1 in Fig. 2.5 for example is clonal and has 4 reads reporting the variant and 6
reporting the reference allele. The purity is 0.8 (80% of total cells are tumour cells) and the

total copy number of both the tumour and normal cells is 2. Its u; therefore becomes:

4 1
L X[0.8%2402x2] = 1.000 2.17
176 <og < [08x2+02x72 @17)

Which translates into a CCF of 1.0 via Eq. 2.15. While for SNV 4 it yields:

11

— X — . 2x2]=1.92 2.1
11+9X0.8X[08X3+0 x 2] 925 (2.18)
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Which also translates into a CCF of 1. SNV 4 illustrates that u; must be rounded to obtain
the multiplicity of a clonal SNV. It differs slightly from the expected value 2 because of
variability in the number of reads due to limited sequencing depth. A similar mutation with
12 variant reads out of 20 would lead to an estimate of 2.100.

The accuracy of the multiplicity estimate in practice depends on the accuracy of the VAF
and local copy number. Slight deviation in the VAF due to read sampling can result in minor
deviation of the multiplicity estimates, as illustrated in the example above. Incorrect copy
number profiles may also result in large errors if, for example, the CNA profile has been
called diploid instead of tetraploid. Ambiguity in estimating whole genome duplications is a
difficult problem in copy number analysis. If a copy number profile is erroneously called as
diploid then SN'Vs carried by two chromosome copies will be estimated to have a multiplicity
of 1, while SN'Vs on 1 chromosome copy will become subclonal as they appear to be on 0.5
copies (e.g. exactly half of tumour cells). The CCF space will therefore show an SNV cluster
at exactly 0.5, while the copy number profile may also contain subclonal CNAs at exactly
50% of tumour cells. The uncertainty may be mitigated through the application of a key
assumption: a CNA profile is thought to be in its normal state (diploid) unless substantial
evidence of a whole genome duplication is available (i.e. the most parsimonious diploid state
is assumed unless there is evidence otherwise). However in rare cases, when whole genome
duplications occur late and are not followed by other copy number alterations, they leave no
traces in the data and it is mathematically impossible to infer from the data available that
they occurred.

We now have obtained a series of formulas to calculate CCF from a VAF and copy
number profile. First, we obtain u; through Eq. 2.16 and then calculate the multiplicity and
CCF using Eqgs. 2.15 and 2.14 respectively.

Finally, we adjust the multiplicity to address SN'Vs that may appear subclonal due to a
subclonal deletion. In these cases it is unknown whether the SNV occurred first and was
then deleted in a fraction of cells, or the SNV occurred after the deletion. It is important to
account for such subclonal deletions (e.g. by appropriately adjusting multiplicity estimates),
and ensure that these subclonal deletions do not result in the inference of spurious subclonal
populations.

2.3.2 Filtering

Not all mutations that are provided as input are clustered. Mutations for which there is no
copy number are removed because it is not possible to estimate their CCF value. Mutations
in regions with fewer than 4 reads total coverage are also removed. Mutations in regions

identified with localised somatic hypermutation (kataegis) are also filtered out. Short read
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alignment in regions with kataegis can be difficult because of the many reads carrying one or
multiple variant alleles and the fact that kataegis is often observed close to a SV breakpoint.

These mutations are removed to reduce the opportunity for a spurious cluster to be inferred.

2.3.3 Algorithm

DPClust clusters SNVs with a similar CCF, derived from VAF values as described in the last
section. However, the VAF of a SNV - and therefore also its CCF - can be a relatively coarse
measure and is a function of local sequencing depth, which should be taken into account
when clustering SN'Vs. For example, if the SNV falls in a region of diploid copy number
with a depth of 20 reads in a sample with 50% tumour cells, its CCF changes by 0.2 when a
variant read is added or removed (e.g. 3 mutant reads correspond to a CCF of 0.6, while 4
mutant reads correspond to a CCF of 0.8). If the same SNV is sequenced to 80X depth, one
additional variant read would change the CCF by only 0.05. Tumours are often sequenced at
30X average coverage or higher, but this coverage is not constant across the genome. Due to
this discrete sampling of mutant and non-mutant reads, and the variability of the sequencing
depth, CCF estimates of mutations from specific (sub)clones will show a distribution of
values. For example, clonal mutations will display a range of CCF values around 1.0 (Fig.
1.10).

A suitable error model can account for this variability. The number of variant reads can
be seen as the number of successes of n independent coin tosses, where # is the total read
depth. The number of successes (variant reads) can therefore be modelled through a binomial
distribution with r; the number of reads reporting the variant at location i, . ; the total depth
at location i and ry,, ; the probability of observing a mutant read:

ri ~ Bin(rior i, pi) (2.19)

Both r; and ;4 ; are observed in the data. p; can be considered the product of two factors:
the proportion of reads one expects to see if the mutation is fully clonal, {;, and the true

fraction of tumour cells carrying the mutation 7;:

pi=Cim; (2.20)

{; can be calculated from the tumour purity and the copy number state of the locus, as

detailed above. Take for example a clonal SNV in a balanced diploid copy number region in
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a sequencing sample consisting of 80% tumour cells. The SNV is heterozygous and therefore
expected to be carried by half the reads that represent tumour DNA. The expected proportion
of reads is therefore 0.5 * 0.8, i.e. 0.4. If the region has three copies and the SNV is carried
by two copies, one expects two thirds of the reads representing tumour DNA to be carrying
the variant allele, making the expected fraction 2 * 0.8 / (3 * 0.8 + 2 * 0.2), 1.e. 0.57.

The key estimate in subclonal reconstruction is the true fraction of tumour cells that are
carrying mutation i, 77;. Many methods (Deshwar et al., 2015; Jiao et al., 2014; Landau et al.,
2013; Roth et al., 2014) use a Dirichlet Process, which models subclonal fractions as:

m; ~ DP(aPy) (2.21)

where DP(P) is a Dirichlet Process with a given probability distribution Py and a
dispersion parameter . A realisation of a Dirichlet Process (DP) can be seen as a distribution
over a (possibly) infinite sample space, or alternatively as a sampling from an unknown
number of unknown distributions (Dunson, 2010). This approach allows for co-estimating
both the number of contributing distributions K (the number of cellular populations) and their
properties (fraction of tumour cells and number of mutations they contain). The observed
sampling represents of the (possibly) infinite number of distributions and can be used to
estimate K (i.e. cellular populations) through the stick-breaking representation (Sethuraman,
1994). Stick-breaking implies that the real probability distribution P can be expressed as
follows:

P= Wy Ty, , 6, ~ Py (2.22)
h=1

where 7, is a location in CCF space and @), represents the probability weight of cluster

oy =Va [J(1=Va) (2.23)
I<h

with

Vi ~ Beta(l, o) (2.24)
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Fig. 2.6 The stick-breaking property of the Dirichlet Process is used to estimate the number
of mutation clusters in the data. For each mutation, a stick of arbitrary length is broken
into randomly sized bits that represent a cluster. At point A, breaks have been introduced,
corresponding to clusters c1-c4. B shows the stick after introducing break 5, while C shows
the completed stick-breaking procedure. The size of each broken part represents the weight
associated with a cluster and influences the mutation assignments, where a high weight makes
it more likely that a mutation is assigned to that cluster. These weights are updated after
probabilities for each cluster have been obtained for each mutation, eventually converging on
a solution.

The V}, represent parts of a unit length stick that are iteratively broken off from the
remaining stick. The V), get increasingly smaller as more parts are broken off, providing a
discrete representation of an infinite space.

Fig. 2.6 symbolizes the stick at various iterations of the stick-breaking procedure. Fig.
2.6A and 2.6B show the stick after 4 and 5 breaks respectively, while Fig. 2.6C shows it after
completion. Each substick represents a fraction of the total weight (number of SN'Vs) of a
cluster and can be assigned a CCF through resampling using the assigned SN'Vs. Then for
each SNV and for each substick, a likelihood can be calculated representing the probability
that that SNV is generated by that substick, taking the characteristics of the SNV, the stick
location and its associated weight into account. After assigning all SN'Vs, the weights are
updated such that they reflect the overall likelihood across SNVs.

The DP models an appropriate number of clusters because the assigned SNVs (influenced
by the cluster weight) are used to resample the cluster CCF and the weight represents the
fraction of total SNVs assigned to the cluster. By repeating this process over many iterations,
the weight and SNV assignments will accumulate in certain locations that correspond to the
estimated clusters. Therefore, the DP has the advantage that the number of clusters does not
have to be specified a priori, making it ideally suited to this problem.
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Fig. 2.7 Main output figure from a DPClust run. The grey histogram represents the input
SNV data. In front of the histogram is a density line in purple with a turqoise 95% confidence
interval. The density line is built up by carefully recording where each SNV is assigned
throughout the MCMC iterations. The number of clusters is obtained by obtaining all
peaks in the density (vertical black lines). To assign mutations to clusters, first the local
minimum density between each pair of cluster locations is obtained. Mutation assignment
probabilities are then obtained by going back to the MCMC iterations to record how often
each mutation would have been assigned to the final clusters if those were the clusters
available at that iteration. The mutation is finally assigned to the cluster with the highest
number of assigments.

2.3.4 Post-processing

After completing the MCMC iterations we aim to obtain three estimates: (1) An estimate of
the finite number of distributions (cell populations), K, that are present in the input data, (2)
the proportion of tumour cells that each population consists of (CCFy) and (3) likelihoods of
each SNV belonging to each population. The number of cell populations K is determined by
finding peaks in the posterior weight density Fig. 2.7. In each iteration j the stick-breaking
procedure assigns a weight @y ; to each cluster that represents its size and the cluster has a
CCFy ;. Over many iterations weight accumulates in the CCF space, where a large amount of
weight corresponds to a high likelihood of the existence of a mutation cluster. We then obtain
an estimate of the number of clusters K (cell populations) by obtaining all local maxima in

the weight density.
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With the K clusters and their locations (CCF;) established, SNVs can be assigned to
clusters. We first establish the CCF area covered by each k € K by finding the CCF location
between each pair of neighbouring clusters that corresponds to the minimum density. The
minimum density on either side of a cluster represents its upper and lower CCF bound.
Probabilities of a mutation belonging to a cluster are then established by accounting how
often a SNV would have been assigned to each k throughout the MCMC iterations. Finally,
small clusters smaller than 30 SN'Vs are removed.

2.3.5 Extension to multi-sample cases

Obtaining multiple samples from the same donor allows for extraction of more detailed
subclonal reconstructions. These datasets can consist of multiple tumours taken from different
sites (e.g. multiple primary sites, primary and metastasis), multiple samples from the same
tumour or multiple samples from the same cancer that represent different time points (e.g.
primary and relapse).

Multiple sampling strategies provide a series of advantages. Consider a tumour that has
two subclones that each comprise 20% of tumour cells. A single sample analysis will not be
able to separate the two groups of mutations as both occur in 20% of tumour cells. But if
in another sample the cellular prevalence of the two subclones does vary, one can separate
the two groups of mutations. In addition, having multiple samples may help resolve tree
topologies. In single sample cases it is often not possible to resolve phylogeny, as more
rare subclones may be placed in multiple positions in the tree. By applying the pigeonhole
principle across the samples for each subclone, one can often rule out various configurations
where a subclone may fit in multiple places in one sample, but not the other. Finally, with
multiple sampling strategies, mutations with low allele fractions in one sample can be
confirmed (or detected) in another sample where they have higher allele fractions due to
higher tumour purity or higher CCF.

Approaches based on a DP can be extended into multiple dimensions (Bolli et al., 2014).
The read counts across samples can be modelled as independent draws from n Binomial

distributions.

ri1 ~ Bin(rpr i1, pi1) (2.25)

Tin ~ Bm(rtot,i,m pi,l’l)

The stick-breaking procedure is performed across the samples where a cluster has a single

weight (representing the number of mutations), but a separate location in each of the samples.
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Posteriors are obtained across samples by calculating the total probability for each mutation
for each cluster under consideration. Finally, the DP can be used to jointly perform clustering
and infer phylogenetic relationships between the clusters by interleaving two stick-breaking
procedures (Ghahramani et al., 2010).

Several methods for single sample analysis, including PyClone (Roth et al., 2014), Sci-
Clone (Miller et al., 2014) and CloneHD (Fischer et al., 2014), can be used to analyse multiple
samples. Furthermore, automated tree inference has been implemented in PhyloSub (Jiao
et al., 2014) and extended to include SN'Vs in copy number aberrant regions in PhyloWGS
(Deshwar et al., 2015).

2.3.6 Co-clustering of indels and CNAs

Up until now CNAs have only been used to adjust the allele frequency of point mutations.
CNAs can also be used to identify cellular populations. The Battenberg algorithm estimates
CCEF values for each subclonal alteration and it is therefore possible in principle to reconstruct
the subclonal architecture through CNAs only, or jointly with SN'Vs. However, unlike SN'Vs,
there are often far fewer subclonal CNAs measured, which leads to a sparser CCF space and

therefore to a reconstruction with less detail. Jointly clustering SNVs and CNAs is preferred
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Fig. 2.8 Subclonal reconstruction on tumour SA6164 (also known as PD4120 and 097a7d36-
905b-72be-e050-11ac0d482c9a) using (a) only SNVs and (b) SNVs, indels and CNAs.
There are relatively few indels (blue bars) measured in this tumour, but those available are
automatically assigned to mutation clusters. The addition of CNAs (red bars) has a more
profound effect, but it does not alter the inferred subclonal architecture substantially. The
CNAs provide additional support for clusters 1, 2 and 4 (counted from the left edge of the
figure).
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as the SNVs will anchor the cluster locations, while CNAs are then assigned to their most
likely cluster.

To include CNAs in the clustering process they must be encoded with properties that
the DPClust algorithm can understand. The CNA is therefore encoded as an artificial SNV,
termed pseudo-SNV. But with a single pseudo-SNV representation it is not immediately
clear how many reads should support the pseudo-variant and pseudo-wild-type alleles. A
very high coverage could represent a large CNA event, but it would create an artificially high
amount of confidence in the VAF, while low read counts do not reflect the size of the CNA
events accurately. It is also not directly clear how to balance the evidence between SNVs and
CNAs such that one does not dominate the other.

To resolve this issue I encode the CNAs as groups of pseudo-SNVs. First the mutation
rate of the tumour is calculated using the measured SNVs. Each CNA covers a certain area
of the genome and the equivalent number of mutations that a stretch of DNA would contain
given the mutation rate is calculated. Each pseudo-SNV is then assigned a number of mutant
and wild-type reads such that the CCF of the SNV corresponds to the CCF of the subclonal
CNA.

To mimick read sampling variability the total number of reads are drawn from a Poisson
distribution that takes as input the exact depth and the mutant reads are drawn from a binomial
that takes the inexact depth and the exact probability of success mandated by the CCF of
the CNA. By introducing read sampling variability we transform the pseudo-SNVs into an
independent estimate of the CCF of the CNA. The exact total depth is set to either the median
depth of all measured SNVs or, if the CNAs cannot be represented by pseudo-SNVs due to
insufficient reads per chromosome copy, by 90 reads.

The Battenberg algorithm also provides a measure of confidence in the CCF of each
subclonal CNA in the form of a standard deviation on the CCF obtained through bootstrapping.
The tighter the standard deviation, the more confident we are in the accuracy of the CCF
estimate. The binomial can be used to take this certainty into account by increasing or
decreasing the number of trials undertaken. If the number of trials is lower the number of
successes given the same probability of success will be more coarse, giving rise to a wider
distribution. The total depth is therefore scaled down by the amount of uncertainty, which is
represented by the standard deviation. As the standard deviation for the most certain cases is
close to 0 we add 1 to it before scaling down the total depth. Finally, the copy number status
of each pseudo-SNV is irrelevant and is set to 1 chromosome copy out of 2.

It is important to balance the evidence obtained from SN'Vs and CNAs such that one does
not dominate the other. I have implemented the balancing using the following observation:

tumours often have more SNVs than CNAs and each subclonal SNV or CNA is an indepen-
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dent measure of the CCF of a subpopulation of cells. With more samples the estimate of the
sampled value becomes more accurate, which gives SNVs an advantage. CNAs however
stretch much larger regions of the genome. The evidence is therefore balanced such that
the CNAs can provide support for an (extra) cluster, but not dominate the CCF space. For
this reason clonal CNAs are represented by a single pseudo-SNV and assigned to the cluster
to which the pseudo-SNV is assigned afterwards. Fig. 2.8 shows an example run on the
PD4120 tumour that was first described in Nik-Zainal et al. (2012a).

Co-clustering of indels is performed by including the indels as pseudo-SNVs into the
input to DPClust. CCF estimates are obtained from the number of reads carrying the variant
and wild-type using the procedure described for SNVs. That approach assumes the VAF
estimates of the indels are recalibrated by local assembly. Due to alignment difficulties
around indels the raw VAF values are often an underestimate. By assembling the local
sequence and local realignment of the reads a less biased VAF estimate can be obtained that

1s useful for subclonal architecture inference.
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Fig. 2.9 The MPEAR cluster finding approach often finds many small mutation clusters. In
this randomly generated example the truth (top left) contains three clusters: A small clone in
grey (behind the blue density), a large subclone in blue and a large subclone in orange that
falls below the detection limit given this tumours’ purity, ploidy and coverage combination.
The default density (top right) and binomial assigment (bottom right) approaches find a
single cluster in between the major subclone and the clone, effectively merging the two
clusters. The size of the clone and its close proximity to the subclone makes it impossible to
disentangle the two clusters. MPEAR (bottom left) returns two small additional superclonal
clusters in an incorrect position and therefore often requires an additional merging step, more
often than the default density approach.
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2.3.7 Alternative post-processing steps

In search for increased sensitivity to real clusters I have implemented alternative strategies
for obtaining the number of clusters and their contents from the MCMC chain and developed
additional procedures for assigning mutations to clusters. The current assignment approach
is prone to find small clusters that need to be filtered from the output. It is not easy to come
up with a list of criteria that capture these clusters without removing real results. The current
implementation of the filtering step removes all clusters below 30 mutations. Often these
clusters appear at the end of the data histogram, in the far tail of a large mutation distribution.
As the MCMC chain progresses it places a cluster where the large mutation distribution
belongs, but depending on its exact placement it leaves the need to explain the far tail with
an extra cluster in some iterations. This process is part of the mixing required by a clustering
method and it allows the chain to find evidence for extra clusters, but it has the side effect
of yielding spurious small clusters. I have therefore attempted to find alternative methods
for obtaining clusters that do not have this property. However, none of these new strategies
yielded an improvement in performance from evaluation on real and simulated data and have
therefore not been used in production.

A new method for obtaining clusters is using hierarchical clustering of mutations followed
by a cut of the tree using the MPEAR (maximal posterior expected Rand index) criterion
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Fig. 2.10 The approach that assigns mutations using the most likely cluster based on the
cluster that yields the maximum binomial probability often has the effect of assigning a
mutation to its closest cluster. In this example there are three mutation clusters (top left) and
all approaches find only two. Both the default density and MPEAR approaches underestimate
the size of the subclone slightly (top right and bottom left), while the binomial approach
estimates it to be nearly twice the actual size (bottom right).
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(Fritsch and Ickstadt, 2009), also used by PyClone (Roth et al., 2014) and BitPhylogeny
(Yuan et al., 2015). For this approach I first build a mutation similarity matrix through co-
assignment probabilities. Each cell contains the probability that a pair of mutations belong to
the same cluster. This matrix is build from the MCMC chain by counting how often the pair
is assigned to the same cluster and dividing by the total number of iterations, after excluding
the burn-in. After performing hierarchical clustering the MPEAR criterion is applied to k
cuts of the tree, with k < (| mutations/8 |). The cut that yields the maximum score is chosen
as the optimum solution. This approach however yields more spurious clusters, it often splits
clear existing clusters found by the DPClust default approach into multiple (Fig. 2.9), and
the co-assignment matrix cannot easily be constructed for large numbers of mutations.

I have also experimented with an alternative mutation assignment approach. The DPClust
default approach is to calculate likelihoods of a mutation belonging to a cluster by counting
how often the mutation would have been assigned to that cluster if it had been available
in each MCMC iteration. That tends to yield very high probabilities of one cluster, which
may not reflect the uncertainty correctly. I therefore wondered if calculating the binomial

likelihood would provide a more accurate reflection:

Ei,c = rmut,ilogE(fi,c> + rref,iIOg(l - E(fref,c)) (2.26)

Equation 2.26 contains the total number of reads supporting the variant and reference
alleles (7mu,; and rp.r ;) and the expected allele frequency (E(f.r,.) if the mutation belongs
to cluster ¢, calculated using Eq. 2.16. The binomial likelihood however effectively works
as assigning the mutation to its closest cluster and therefore tends to overestimate the size
of small clusters (Fig. 2.10). It is also a point estimate and does not take into account the
cluster size, which the default DPClust assignment approach does. The mutation assignment
approach used by Gerstung et al. (2017) calculates beta-binomial probabilities with the

inclusion of the cluster size and may be an interesting option in the future.

2.3.8 A downsampling strategy

Clustering a large number of mutations can take a very long time with MCMC based
approaches. DPClust uses Gibbs sampling, which means it has to execute a routine for all
mutations in every iteration. To improve on runtime and resource usage I have implemented
a downsampling strategy that samples mutations and is capable of assigning the mutations
not used for clustering afterwards. The routine performs uniform sampling of a specified

number of mutations. Large clusters therefore have a higher chance of being sampled from
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over small clusters, keeping their relative sizes intact. For every mutation not used during
clustering I find the mutation with the most similar allele frequency (referred to as its mate)
that is clustered. By using the allele frequency the selection process is biased towards finding
a mate in a similar copy number configuration. After clustering the mutation is assigned to
the same cluster as its mate.

I have considered alternative strategies. Selecting copy number segments and using
only the mutations in those genomic regions for clustering, but that does not leave fine-
grained control over the number of sampled mutations. A biased sampling approach was also
considered. It operated by first creating bins across the CCF space and then sampling equally
from each bin. That approach changes the shape of the cluster distributions, which detriments
the ability to correctly identify clusters. The idea was to perform the biased sampling a
number of times and then combine the results from multiple MCMC runs. But preference
was given to the unbiased selection due to its simplicity.

Downsampling initially started with 5,000 mutations, which affects nearly half of the
tumours reported in this thesis. Later the number of sampled mutations was scaled up to
50,000 after various performance improvements had been implemented, which only affects
134 tumours reported on in this thesis.

2.4 Automated post-hoc tree building

For practical applications it is useful to have an overview of the possible trees that can be
built from a given subclonal reconstruction. Nearly all data that I’'ve worked with consists of
single sample cases where the tree is difficult to derive, often multiple options are possible
and multiple, disjoint, low CCF clusters cannot be disentangled. But for multi-sample cases
it is informative and the tree represents the evolutionary story that links the multiple samples
together.

I have therefore developed a procedure that builds all possible trees using the DPClust
output, which operates regardless of the number of samples. First it classifies each pair of
mutation clusters into categories that denote the possible pair-wise relationships. Then the
classification is used to iterate over all possible trees, which are provided as a tree structured
figure.

2.4.1 Cluster-pair classification

Clusters a and b can have the following relationships: (1) The CCF of a can be strictly greater
than b, (2) it can be greater or equal than b, (3) it can be equal, (4) smaller or equal, (5)
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strictly smaller or (6) it can be unknown. Pairs of clusters are classified into these categories
by first establishing the support for each cluster from the MCMC iterations and then sampling
pairs of mutations to establish per category.

The classification procedure starts by recording a mutation preferences matrix after
mutations are assigned to clusters (Fig. 2.11a and b). This matrix contains a row for each
mutation and a column for each cluster and cell (i,j) contains the proportion of MCMC
iterations mutation i would have been assigned to cluster j if the final clusters were available.

The approach then iterates over all cluster pairs (Fig. 2.11c). When considering clusters
a and b we first sample 1000 mutations from a and b separately to create 1000 mutation pairs.
The sampling is performed with replacement to reduce the effect of the different sizes of
clusters a and b. Probabilities are calculated by, for each mutation pair (k,1), obtaining how
often mutation k is assigned to a lower CCF than mutation 1 and then aggregating the counts

across pairs. The same procedure holds for the greater-than and equals relationships.
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Fig. 2.11 Before trees are constructed all pairs of clusters are classified into pre-defined
relationships. (a) The procedure starts with the cluster locations and the mutation assignments
during MCMC. (b) For each mutation it is recorded how often it would have been assigned to
each cluster during the MCMC iterations if that the final cluster locations had been available,
yielding a probability per cluster per mutation. (¢) Then for each pair of clusters 1000
mutation pairs are sampled with replacement and it is counted how often the pair are assigned
to the same cluster or to a different cluster, providing support for five different scenarios.
(d) Finally, the scenario that yields support from greater than 95% of sampled SNV pairs is

chosen as the final classification. If no scenario yields a 95% support the pair of clusters is
classified as unknown.
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Having obtained a probability that clusters (a,b) have a greater-than, lesser-than or equal
CCF we can classify the pair into a category with a threshold at 0.95 (Fig. 2.11d). If a pair
does not pass the threshold for any category, or for multiple categories, it is assigned the

label unknown.

2.4.2 Tree building

The tree building process begins with creating a full inventory of all possible edges by
obtaining all possible parents for each mutation cluster. The trees are then built in two phases:
In the first phase all clusters that fit into a single location are placed on the tree, starting
with the cluster that has the highest CCF. The pigeonhole principle is not enforced in this
phase, so the phase is followed by a screening that yields an error if a the combined CCF of
daughter nodes exceeds the CCF of the parent.

Then in the second phase, all clusters that fit in multiple places are considered. For each
cluster, we iterate over all the possible edges involving that cluster from the inventory and
over all trees obtained so far. Clusters are added to the tree in a greedy fashion on first-come
first-serve basis. The pigeonhole principle is strictly enforced during this process. Some
clusters may therefore not fit on the tree, which results in warnings which point to clusters
that cannot coexist and warrant further investigation. If a cluster can fit in multiple places,
then new trees are recorded for each configuration. This process yields a list of possible trees
after all iterations are complete.

Single sample cases do not yield any warnings, because it is always possible to construct
a linear tree. Multi-sample cases are more complicated however. In such cases there are two
possible options to be considered: (1) The data is not clean enough and an artefact cluster
is prohibiting the tree building and (2) the number of whole genome duplications is not
correctly accounted for and clonal mutations have become subclonal. The output of the tree
builder is useful for automated checking for violations and it will point to the clusters that
are problematic.






