
Chapter 3

Disease mutations in interaction

interfaces

3.1 Introduction

In the previous chapter, I described how iPfam and protein interaction data can be

combined to investigate the conservation of interaction interfaces within and between

species. Now I will focus on the effects of mutations in interaction interfaces, extending

the previously applied methods to the investigation of human disease.

I have mentioned in Chapter 1.2.2 that human genetic diseases with mendelian in-

heritance have been extensively studied since the 1980s. As a result, databases such as

the “Online Mendelian Inheritance In Man database” (OMIM) (Hamosh et al., 2005)

and UniProt (Wu et al., 2006) together contain almost 30000 experimentally verified

mutations in over 3000 genes. Nevertheless, the exact mechanisms by which muta-

tions alter a protein’s function are in many cases poorly understood. Collins et al.

(1997) estimated that 90% of the variation between individuals can be attributed to

single-nucleotide polymorphisms (SNPs). While recent studies (Lu et al., 2007; Redon

et al., 2006) have pointed out the importance of large-scale chromosomal structural
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3.1 Introduction

variations, most of the known disease-related mutations are non-synonymous single nu-

cleotide polymorphisms in the coding regions of a gene (nsSNPs). It has been suggested

that up to 80% of disease-associated nsSNPs destabilize the protein through steric or

electrostatic effects (Wang and Moult, 2001; Yue et al., 2005), while a small subset

of disease-associated SNPs affect splicing and post-translational modifications (Buratti

et al., 2006) or cause stop or nonsense mutations (Savas et al., 2006).

Here, I focus on those diseases that are caused by mutations in protein interaction

interfaces. Ferrer-Costa et al. (2002) compared disease-associated and neutral nsSNPs

in 73 proteins and estimated that 10% of disease-associated nsSNPs may affect the

quaternary structure of the protein, thereby changing protein interactions. However,

compared to the over 3000 genes for which a mutation is known, 73 proteins reflect

only a very limited sample. In recent years, some interaction-related diseases such

as Alzheimer’s and Creutzfeldt-Jacob disease have received much attention (Chiti and

Dobson, 2006; Giorgini and Muchowski, 2005; Ross et al., 2005). These conditions

feature an induced aggregation of proteins, often called amyloidoses. Figure 3.1 outlines

the process of amyloid fibril formation from a native monomer.

Diseases can also be caused by the disruption of protein binding. A typical exam-

ple is Charcot-Marie-Tooth disease, which can be triggered by the loss of interaction

between myelin protein zero monomers which link adjacent membranes of the myelin

sheath (Shy et al., 2004). In other cases, protein binding is a means of allosteric regu-

lation. To give an example, mutations in the binding interface of pantothenate kinase

lead to inherited pantothenate kinase associated neurodegeneration (PKAN): Enzy-

matic function critically relies on dimerisation (Hong et al., 2007). Finally, there is also

the possibility for mutations to change the binding specificity of a protein and thus lead

to new and potentially disruptive interactions. For mutations in the family of human

crystallin genes it has been shown that they alter the affinity for the binding partners

(Fu, 2003). These erroneous interactions lead to congenital cataract.
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3.2 Materials and Methods

While there are numerous topical reports of such interaction related disease, there

is to my knowledge no systematic study which investigates the impact of mutations in

protein interactions on human disease. Extending the approach outlined in Chapter 2,

I describe a method that combines protein structure with experimental protein inter-

action data in order to computationally identify residues which form part of a binding

interface. I apply this algorithm to mutations from OMIM and UniProt, identifying

1428 mutations that are likely to affect protein interactions. Subsequently, I collected

numerous topical reports of changes in protein interaction that result in disease. I

present a list of 119 interaction-related mutations causing 65 different diseases that

was derived manually from the scientific literature. On the basis of these sets I discuss

general properties of interaction-related mutations.

3.2 Materials and Methods

3.2.1 Disease Mutations

Mutation data was collected from UniProt (Wu et al., 2006) and OMIM (Hamosh et al.,

2005). For UniProt, human sequences with variation information were acquired using

SRS (Zdobnov et al., 2002). The analysis was restricted to disease-related single residue

mutations by regular expression matching on the variant description line in UniProt

entries. Only lines in the form of the following example were parsed:

FT VARIANT 264 264 N -> Y (in CPX).

FT /FTId=VAR_021830.

OMIM (omim.txt.Z, genemap) and Entrez gene mappings (mim2gene, gene2refseq.gz)

were downloaded from the NCBI FTP server (ftp://ftp.ncbi.nih.gov/) as flat files.

All files were acquired in December 2006. Mapping OMIM entries to a reference se-

quence is not trivial. Historically, OMIM does not use a well-defined reference database

for protein sequences. The curators of OMIM rather refer to the co-ordinates provided
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3.2 Materials and Methods

in the original publication for each mutation. Especially old publications frequently

refer to the processed protein product rather than the translated gene, which leads

to difficulties in assigning the correct locations to the annotated mutations. To ac-

complish this, protein sequences for every gene id reference in the OMIM entry were

acquired from NCBI and UniProt through SRS. To identify the correct co-ordinate

system that fits an OMIM entry, removal of combinations of signal peptide and other

post-translationally cleaved regions were considered. If the amino-acid annotations in

the OMIM entries for a gene matched the residues at the respective position in the ref-

erence sequence, that co-ordinate system was used. Figure 3.2 outlines the combination

of scripts and data involved in this process.

3.2.2 iPfam

iPfam version 20 was employed, containing 3020 interacting domain pairs composed of

2147 individual domains (Finn et al., 2005). A detailed description of iPfam can be

found in the introduction (Section 1.3.1).

3.2.3 Predicting crystal contacts

As described in detail in the Methods for Chapter 2, the NOXclass classifier (Zhu et al.,

2006) was applied to the structures from which iPfam was derived. NOXclass requires

ConSurf conservation scores. The last release of pre-calculated ConSurf data (ConSurf-

HSSP, see Glaser et al. (2005)) has not been updated since March 2005. Hence, only

7588 out of the 9263 structures with two distinct protein chains in iPfam v20 could be

passed through NOXclass. 2592 structures contained a putative crystal contact with

greater than 90% probability.
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Figure 3.2: Workflow for generation the mutation database from OMIM and UniProt.
Several Perl scripts merge and format the data to be imported into a relational database.
The post-processing scripts then identify the sequence/post-translational modification
combination that best matches the observed mutations.
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3.2.4 Homology Detection and Alignment

Protein sequences were screened for iPfam families using hidden Markov models with

the pfam scan.pl script which can be downloaded from ftp://ftp.sanger.ac.uk/

pub/databases/Pfam/Tools/. This script searches a collection of sequences in a

FASTA file against Pfam family definitions in the form of HMM files. It uses the

hmmpfam program which is part of the HMMer package (Eddy, 2001). It automat-

ically applies significance thresholds and clan overlap definitions before returning a

tab-delimited output of significant matches of families per sequence in the input file.

Here, a custom HMM library was employed which only contained iPfam HMMs.

For each identified family, matching regions in query protein were aligned to the se-

quences for which an interacting structure is known. Alignments were performed using

hmmalign from the HMMER package. The percentage sequence identity between all

pairs of aligned regions was calculated using the exact (non-heuristic) implementation

in the Bio::SimpleAlign BioPerl module. A flow-chart outlining the steps involved is

shown in Figure 3.3.

3.2.5 Residue prevalence

Residue prevalence denotes the frequency with which a certain amino-acid occurs at

a given position in a domain when numerous homologous sequence regions are com-

pared. Residue prevalence was extracted directly from the Pfam HMM that matched

a sequence region. Each emitting state in an HMM, i.e. Match and Insert states, con-

tain a distribution of observation probabilities (usually called emission probabilities)

for each amino-acid. This distribution is learned from the training files, involving the

application of elaborate prior models to account for possible biases due to small train-

ing sets. In addition to that, the HMM file also contains a background distribution

(the null-model) which is fixed and represents the global frequency of amino-acids.

Columns in the alignment were mapped back to states in the HMM via the RF line
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Figure 3.3: Outline of the computational steps leading to the mapping of interacting
residues to known disease mutations. The central script is called identify int-res.pl
and takes an HMM library file and two sets of fasta files corresponding to domain re-
gions, one containing the structural seeds and another the target sequences, in this
case disease genes. It then aligns the target sequences to the structural template re-
gions using hmmalign which is part of the HMMER package. For each column in the
resulting multiple sequence alignment, the script then outputs all predicted interact-
ing residues and the originating template residues, as well as the percentage sequence
identity between the target and query sequences.
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3.2 Materials and Methods

in the Stockholm-format output of hmmalign. The HMM Perl library (Schuster-Böckler

et al., 2004) was employed to extract all data from the HMM file. For every column in

the alignment, the log-odds scores log2(Pemission/Pnull−model) were calculated and used

as prevalence scores.

3.2.6 Alanine Scanning Database

The ASEdb database (Thorn and Bogan, 2001) containes data from 101 alanine scan-

ning experiments extracted from 74 publications (http://www.asedb.org). 81 mu-

tations extracted from five recent publications were added manually for this analysis

(Grace et al., 2007; James et al., 2007; Logsdon et al., 2004; Walsh and Kossiakoff, 2006;

Williams et al., 2006). In such an alanine scan, residues in the binding interface of a

protein are mutated to alanine by site-directed mutagenesis (Cunningham and Wells,

1989). The difference in binding free energy (∆∆G) between wild-type (∆G0) and

mutated protein (∆GA) describes the contribution of a particular residue at position

i to the total binding free energy: ∆∆Gi = ∆GO − ∆GA,i. 3010 residue mutations

are recorded in ASEdb. Mutations leading to incorrectly folded proteins or premature

degradation were excluded from ASEdb if this information was available in the source

publication. In order to use hidden Markov models to search for iPfam domains, pro-

tein sequences corresponding to the gene name annotated in ASEdb were retrieved

from UniProt. Only proteins for which all amino acid annotations in ASEdb matched

the sequence were included. For 858 residue mutations, a UniProt sequence could be

identified.

109 mutations came from experiments that involved an antibody as the binding

partner. In this investigation, I am interested in evolutionarily conserved interactions

between molecules in living cells. Conversely, the interactions between antibodies and

antigens are not representative for normal biological interactions and were therefore

removed from ASEdb.
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3.2.7 Compiling the curated set of interaction-related mutations

In order to identify known interaction-related mutations, all OMIM “Description” fields

were searched for keywords such as “interaction”, “binding” or “complex”. For all

matching mutations, the available literature was manually evaluated. Subsequently,

PubMed was searched for the same keywords. Lastly, cases that were identified by

the prediction method were added if they were found to be known in the literature.

If a mutation was shown to be causative and described to directly affect a protein

interaction, it was added to the list. Mutations that lead to folding errors were excluded

from the data set. The complete list can be found in Table F in the Appendix.

3.2.8 Statistical Analysis

All statistical calculations were performed in R (R Development Core Team, 2006).

In particular, the test of difference in proportions was performed via the R function

prop.test with default settings.

3.2.9 Graphics

Three-dimensional protein images were prepared using VMD (Humphrey et al., 1996)

and rendered with PovRay (http://www.povray.org/).

3.3 Results

3.3.1 Prediction algorithm

In order to identify residues in a protein that are involved in a protein interaction, I

devised a method that combines structural and experimental information. Using the

iPfam (Finn et al., 2005) database of known interacting domains, I first select domain

regions on all target proteins that have a homologous structure including interaction

partners in the PDB (Kouranov et al., 2006) (see Section 3.2.4). I then select positions
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3.3 Results

which form residue-to-residue contacts between distinct polypeptide chains in these

structural templates and record the corresponding positions in the target proteins as

potentially interacting residues, see Figure 3.4.

3.3.2 Prediction accuracy

To estimate the accuracy of my prediction approach, I undertook two independent

benchmarking experiments. First, I performed a cross validation experiment where

for each iPfam family, I attempted to identify the correct interacting residues in a

PDB structure not used for prediction. This process was repeated 5 times for different

combinations of training and target sequences. In a second experiment, I used the

ASEdb database of alanine scanning energetics experiments in protein binding (Thorn

and Bogan, 2001) as a “gold-standard” test set (see Section 3.2.6).

In order to apply an accuracy threshold, I needed to choose a scoring function that

discriminates between residues that are really involved and crucial for an interaction

and those that are not. For this purpose, I tested the effect of two different variables

on prediction accuracy:

3.3.2.1 Percent sequence identity with structural template

There is a well known correlation between sequence similarity and structural similarity

(Chothia and Lesk, 1986) which also extends to interacting domains (Aloy et al., 2003).

An interaction is more likely to be conserved and to display similar topology when

sequence similarity is high. For many target proteins, there are several structural

templates that could be applied to predict the interacting residues. I hypothesised that

the sequence similarity as measured by percentage sequence identity could discriminate

between trustworthy and less convincing predictions. Accordingly, percentage sequence

identity was tested as a threshold parameter in the following benchmark experiments.
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3.3 Results

3.3.2.2 Prevalence of mutated residues

For all predicted interaction-related residues, I calculated a prevalence score (see Sec-

tion 3.2.5). This score reflects the frequency with which an amino-acid occurs at a

given position in a protein family, relative to a universal background distribution. If I

look at the frequency of prevalence scores over all wild type compared to all mutated

alleles (Figure 3.5), I find that the scores for both wild-type as well as mutated alleles

seem to follow a normal distribution, see Figure 3.5). The exceptionally large number

of original residues with log-odds scores around 3 can be attributed to the fact that

mutations are more likely to be severe in functionally important residues, which in turn

are more likely to be conserved. The mutated residues exhibit markedly smaller average

prevalence scores (2.4 vs. −2.2 than the original residues. Thus, a residue that is found

in the wild type of a protein will usually be more conserved than the residue found

in the mutated version (Ng and Henikoff, 2003). I therefore tested whether residue

prevalence could be used as an indicator of the functional importance of a residue, even

for surface exposed residues like the ones under investigation here.

3.3.2.3 Cross validation results

I performed a random sub-sampling cross validation experiment to determine if my

algorithm is capable of identifying interacting residues in proteins for which a similar

interacting structure is known. The cross-validation procedure included the following

steps:

1. Collect all structures with an interaction containing iPfam family P.

2. If there are less than 5 distinct sequences amongst all structures, skip the family.

3. If possible, check for each distinct chain pair in the structure if it is a potential

crystal contact by applying the NOXclass classifier (see Methods).
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Figure 3.5: Histogram of prevalence of wild-type and mutated residues. The prevalence
score distributions of mutated and wild-type residues are clearly separated. They in-
tersect around 0, suggesting that residues whose frequency is similar to the background
distribution are as common in mutations as in wild-type alleles. Trendlines are added
to delineate that both distributions are approximating a normal distribution.
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4. Select one target sequence at random out of the set of all sequences with at least

one interacting structure including family P

5. Apply the interacting residue prediction as described above, using all structures

except the ones including the target sequence.

6. Compare the predicted interacting residues to the residues actually observed in

any structure of domain P in the target sequence.

7. repeat for all iPfam families. Then concatenate results and calculate performance.

Figure 3.6 shows the resulting receiver operator characteristic (ROC) curves (Fawcett,

2006), a plot of the frequency of true positive over the frequency of false positive predic-

tions for a given algorithm. From left to right, points mark decreasing score thresholds,

until no thresholds are applied any more and both true positive as well as false positive

rates reach 100% in the upper right corner. The different plots reflect combinations of

different thresholds and testing data. Notably, percentage sequence identity between

seed and target sequence is a good discriminator between true and false positive predic-

tions, as seen in Figure 3.6a. Removing crystal contacts and excluding residues involved

in intra-chain interactions also slightly improves prediction accuracy. Residue preva-

lence (Figure 3.6b) performs very similarily. In comparison, a combination of prevalence

and percentage identity where all predictions from seeds with ≤ 30% sequence identity

were removed (Figure 3.6c) performs significantly worse. This indicates that the most

important step in the prediction algorithm is the assignment of interacting residues

itself, whereas the subsequent filtering of residue according to percentage identity or

residue prevalence has only a small effect on accuracy.

3.3.2.4 ASEdb results

The cross validation experiments verify that the algorithm can retrieve residues which

are involved in interaction interfaces from homologous sequences. In order to determine
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Figure 3.6: Receiver Operator Characteristic (ROC) curves calculated on cross-
validation results. Each curve is the combined classification result of all predictions
made on the sum of all the individual iPfam families. Bars reflecting standard devia-
tion between repetitions with different training/target sets are shown. Red lines denote
benchmarks on all structures for all iPfam families (red). Green lines were calculated
on data excluding chain pairs with ≥ 90% probability of being a crystal contact. For
blue lines, all interacting residues derived from intra-chain interactions were excluded
from the training data in addition to the crystal contacts. (a) Percentage sequence
identity between seed and target sequence as a threshold. (b) Only residue prevalence
as a threshold. (c) Mixture of percentage identity and residue prevalence as threshold:
Residues with ≤ 30% identity to the seed sequence were set to minimum prevalence.
ROC curves were computed using the ROCr package for R (Sing et al., 2005).
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the impact of a mutation in a protein interaction interface, I also want to assess how

well I can predict the functional importance of individual interacting residues.

I assessed how well my method could predict residues with a large change in ∆G

upon mutation as recorded in the ASEdb database (see Methods). Randles et al. (2006)

showed that for two model proteins, ∆∆G was correlated with the severity of disease.

They show that even changes < 2 kcal/mol could cause disruption of protein binding.

Here, I defined a residue as correctly identified (true positive) if ∆∆G > 2.5kcal/mol.

This threshold is also used in another recent publication (Ofran and Rost, 2007).

Residues below this threshold were considered neutral (false positive). This criterion

might in itself cause some “false-negatives”, i.e. some residues might be crucial for the

function of the protein despite a measured ∆∆G less than 2.5kcal/mol, but I considered

a conservative threshold to be preferable.

Figure 3.7 shows ROC curves for the ASEdb benchmark. The green and red lines

represent the performance of my algorithm using either percentage sequence identity

(green) or residue prevalence (red) to score the predictions. With both scoring methods,

my method retrieves more true positives than would be expected by chance. The

prevalence threshold however is far superior in distinguishing true from false positives.

At a false positive rate of ≈ 20%, I can achieve a true positive rate of almost 60%.

These benchmark results underline that the algorithm is able to identify interaction

disruptive mutations with reasonable confidence.

I again tested a combination of the two measures, represented by a blue line in

Figure 3.7. In this case, only structural templates with at lease 30% sequence of

the interacting domain were selected before applying the prevalence threshold. The

performance improves slightly in the low false-positive region, yielding a true positive

rate of 40% at a false positive rate of only 7%. More importantly, a minimum sequence

identity threshold increases the confidence in the structural similarity between seed

and target proteins. Hence, I decided on a residue prevalence threshold of > 2 in
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Figure 3.7: Receiver Operator Characteristic (ROC) curves calculated on a set of ala-
nine scanning experiments. The red line represents the performance of my algorithm
when changing only the residue prevalence threshold, applying no percentage iden-
tity cutoff. The green line shows the performance using only percentage identity as a
threshold. The blue line reflects performance using prevalence as threshold after ap-
plying a 30% sequence identity cutoff. Confidence intervals where calculated using the
Statistics::ROC Perl module (Kestler, 2001).
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combination with a 30% sequence identity cutoff for all subsequent analyses.

3.3.3 Application to Disease Mutations

I applied the prediction algorithm as described above to all single-residue disease mu-

tations extracted from OMIM and UniProt (see Methods). In the case of disease

mutations, the disruptive nature of a residue mutation is already known. It is unclear,

however, whether an interaction is in fact taking place and is likely to be mediated by

the domain in question. Mutations were therefore only reported if the disease asso-

ciated protein has a close homolog which has been proven experimentally to interact

with a protein that contains the same binding partner domain as seen in the PDB

structure the interaction was modelled from: Target proteins had to have a homolo-

gous sequence (BLAST e-value of less than 10−6) in one of five major repositories for

protein interaction information (IntAct (Kerrien et al., 2007), BioGRID (Breitkreutz

et al., 2008), MPact (Guldener et al., 2006) or HPRD (Mishra et al., 2006)) and DIP

(Salwinski et al., 2004) 1. Subsequently, target proteins were excluded if no homolo-

gous experimental interaction involved both interacting iPfam domains that were seen

in the structural template. For example, [OMIM: +264900.0011] is a Ser576Arg muta-

tion of the human coagulation factor IX (PTA). The residue is part of a Trypsin domain

and seen to interact with Ecotin in several structures [e.g. PDB: 1xx9]. However, the

interaction between PTA and Ecotin is not yet recorded in any interaction database,

therefore the mutation cannot be included in my predictions.

Using these criteria, 1428 mutations from 264 proteins were predicted to be interaction-

related (see Figure 3.8). The full list is attached in Appendix G. In total, I collected

25322 mutations from OMIM and UniProt. This means that approximately 5.6% of all

mutations could be linked to a protein interaction.

Amongst these mutations, 454 mapped to a structure that exhibits an interac-
1MINT was temporarily unavailable when the analysis was performed and could thus not be in-

cluded.
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Figure 3.8: Schematic outline of data integration for the prediction of interacting
residues. Mutations from OMIM and UniProt for which a residue in a homologous
structure is involved in an interaction are selected. This set is restricted further by
searching for homologous proteins with known interactions, taken from a range of pro-
tein interaction databases. I require that the the homologous interacting proteins con-
tain the same pair of Pfam domains that was observed in the structural template. This
results in a set of 1428 interaction related mutations.
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tion between different proteins (hetero-interaction), while 1094 mutations mapped to

a structure with an interaction between two identical proteins (homo-interaction).

This means that 120 mutations are found in structures of both homo- and hetero-

interactions. The large proportion of homo-interactions can be explained by the over-

representation of homo-interactions in the structural templates set: 70% of all distinct

protein pairs in iPfam are homo-interactions, which is in accordance with recent find-

ings that homo-interactions are more common than hetero-interactions (Ispolatov et al.,

2005).

Finally, I test if some of the predictions are based on structures which are likely to

be a crystal contact. 309 interacting residues were predicted from a chain pair with

NOXclass P-values > 0.9, slightly reducing the fraction of interaction related mutations

to 4.4%.

3.3.4 Properties of mutations in interaction interfaces

Below, I explore differences between interaction-related mutations and non-interaction-

related mutations. I focus on the mechanism of the mutation, the mode of inheritance

and residue composition. For most of the 1428 mutations from the automatically

generated set, no information about their mode of inheritance or functional mechanism

was instantly available. I therefore randomly sampled 100 mutations out of those 1428

and conducted a manual search of the literature in order to annotate their properties.

3.3.4.1 Curated set of interaction-related mutations

In addition to the automatically derived data, I collected 119 mutations in 65 distinct

diseases from the scientific literature for which there is evidence that they change the

interactions of the protein they occur in (see Methods). I call this the curated set of

interaction-related mutations (see Appendix F). To my knowledge, it represents the

biggest dedicated collection of high confidence interaction-related mutations to date.
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3.3.4.2 Classification according to function

I suggest a classification that groups mutations according to their effects into loss of

function (LOF) and gain of function (GOF). Below this broad distinction, the GOF

mutations can be further divided into two groups: Pathological aggregation and aber-

rant recognition. Similarly, LOF mutations can be split into one class that disrupts

obligate interactions between protein subunits and another class which interferes with

transient interactions.

From the curated set of interaction-related mutations, 95 mutations result in LOF,

17 in GOF, four mutations were reported to change the interaction preference of the

protein and three could not be determined. The class of GOF mutations that result

in protein aggregation contains 12 cases, comprising amyloid diseases like Alzheimer

or Creutzfeldt-Jacob, but also for example sickle cell anaemia [OMIM: +141900.0243].

Five cases result in aberrant recognition, for example a Gly233Val mutation in glyco-

protein Ib that leads to von Willebrand disease [OMIM: *606672.0003] by increasing

the affinity for von Willebrand factor.

Amongst the LOF mutations, 61 affect transient interactions and 34 affect obligate

interactions. The latter usually render proteins dysfunctional, for example in the case

of lipoamide dehydrogenase deficiency caused by impaired dimerization (Shany et al.,

1999). LOF mutations in transient interactions cause changes in localization or trans-

mission of information, exemplified by a mutation in the BRCA2 gene that predisposes

women to early onset breast cancer: a Tyr42Cys mutation in BRCA2 inhibits the inter-

action of BRCA2 with replication protein A (RPA), a protein essential for DNA repair,

replication and recombination (Wong et al., 2003). Lack of this interaction inhibits

the recruitment of double stranded break repair proteins and eventually leads to an

accumulation of carcinogenic DNA changes.
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3.3.4.3 Mode of inheritance

I investigated the mode of inheritance for all mutations in the curated set, if information

was available in the literature. All GOF mutations showed dominant inheritance (the

two hemoglobin mutations exhibit incomplete dominance). Out of 61 LOF mutations

for which inheritance information was available, 24 were autosomal dominant and 37

were recessive. Jimenez-Sanchez et al. (2001) studied the mode of inheritance of human

disease genes. According to them, mutations in enzymes are predominantly recessive,

while mutations in receptors, transcription factors and structural proteins are often

dominant. Overall, they find a ratio of 188 : 335 of dominant to recessive diseases. In

my data set, the ratio of dominant to recessive mutations is 41 : 371. This enrichment

for dominant mutations, compared to Jimenez-Sanchez et al., is statistically significant,

as determined by a two-sided test for equality of proportions (P-value < 0.014). In the

100 randomly chosen mutations from the predicted set, I found a ratio of dominant to

recessive mutations of 38 : 41, which is very similar to the ratio observed in the curated

set (P-value > 0.68, i.e. no significant difference between the predicted and the curated

set).

3.3.4.4 Residue frequency

The residue frequency of the predicted interaction-related mutations was compared to

the frequencies of residues over all mutation in OMIM and UniProt (Vitkup et al.,

2003). I find that the frequency distribution of wild-type residues in interaction-related

mutations is mostly similar to the overall mutational spectrum, with the exceptions of

a significant enrichment in Gly and, to a lesser extent, a higher frequency of Trp and

Gln and a reduced frequency of Ala, Ser and Val (see Figure 3.9). The enrichment in

Gly can not be readily explained by the composition of residues on the protein surface
1Jimenez-Sanchez et al. counted diseases, not individual mutations. In terms of diseases, I observe

a ratio of 31 : 29
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or in interaction interfaces (Chakrabarti and Janin, 2002; Ofran and Rost, 2003) but

might be due to the disruptive nature of the residues Gly is most likely to mutate to,

namely Arg, Ser and Asp (Vitkup et al., 2003).

3.3.5 Examples of putative interaction-related mutations

In the following section I describe four diseases identified by my method which appear

likely to be related to changes in protein interaction.

3.3.6 2-Methyl-3-Hydroxybutyryl-CoA Dehydrogenase Deficiency [OMIM:

#300438]

Ofman et al. (2003) identified a Leu to Val mutation at position 122 in the short-

chain 3-hydroxyacyl-CoA dehydrogenase (HADH2) that causes a defect in isoleucine

metabolism. The clinical effect was psychomotor retardation and non-progressive loss

of mental and motor skills. Ofman et al. investigated the molecular effects of the

Leu122Val mutation. Immunoblotting showed almost no reduction in the amount of

enzyme, but enzyme activity was greatly reduced.

Powell et al. (2000) resolved the crystal structure of the homologous protein for

HADH2 in rat [PDB: 1e3s, 1e3w, 1e6w], see Figure 3.10. The rat protein shares 84%

sequence identity with the human homolog. Like other members of the short-chain

dehydrogenase (SDR) family, HADH2 forms a homotetramer. The mutated Leu122 is

part of the αD helix adjacent to the NAD binding pocket, as shown in Figure 3.10.

NAD binding does not seem to affect the conformation of the αD helix, according to the

three crystal structures of the complex at different stages of the enzymatic reaction.

Kissinger et al. (2004) crystallised the human form of HADH2. Their investigation

focused on the effect of HADH2 on Alzheimer’s disease, specifically on the binding of

HADH2 to amyloid β precursor protein. They did not mention the effect of mutations

in the dimerization domain on protein function. The human structure shows the same
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characteristics as the previously described rat structure.

The Leu122 residue forms part of the obligate interaction interface between the

two monomeric subunits. Each Leu122 forms non-covalent bonds with Phe114, Ile118,

Ala170 and Leu122 from the opposite chain. The amino acids change from leucine

to valine does not change the physico-chemical properties of the residue significantly.

In fact, the conservation scores show that the two amino acids are similarly frequent

at position 122 (Leu: 1.64, Val: 1.54). The likely reason for the severe effect of this

mutation is a steric clash of the valine sidechain with serine at position 171 of the same

chain. Even a small conformational change will affect the residue contacts Leu122 is

involved in.

3.3.6.1 Griscelli syndrome, type 2 [OMIM: #607624]

Griscelli syndrome is a disease which features abnormal skin and hair pigmentation as

well as, in some cases, immunodeficiency due to a lack of gammaglobulin and insuf-

ficient lymphocyte stimulation. Without bone marrow transplantation, the disease is

usually fatal within the first years of life (Klein et al., 1994). The type 2 form of Griscelli

syndrome usually maps to the Rab-27A gene (Menasche et al., 2000). The RAS do-

main of Rab-27A shares 46.8% sequence identity with the same domain in Ras-related

protein Rab-3A from Rattus norvegicus. The crystal structure of Rab-3A interacting

with Rabphilin-3A was solved by Ostermeier and Brunger (1999) [PDB: 1ZBD], see

Figure 3.11. I found that a Trp73Gly mutation in Rab-27A affects a residue that is

both highly conserved (Scores of 5.62 for Trp and −1.84 for Gly) and in the center of the

interaction interface. There is strong evidence that Rab-27A interacts with Myophillin

(Strom et al., 2002). For these reasons the Trp73Gly mutation seems likely to affect

vesicle transport by reducing affinity of Rab-27A to Myophilin.
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Figure 3.10: Structure of Rat brain 3-hydroxyacyl-CoA dehydrogenase with bound
NADH [PDB: 1e3s]. The molecule is composed of 4 monomers, shown as different
coloured ribbons. The Leu122 residue is highlighted in red with its binding partners
shown in green. As Leu122 also interacts with the Leu122 of the other bound monomer,
it is intuitive to assume that a mutation at this residue will affect binding.

89



3.3 Results

Figure 3.11: The small G protein Rab3A with bound GTP interacting with the effector
domain of rabphilin-3A. The residue corresponding to the mutated Trp73 from human
RAB27A, is highlighted in red, while the two residues in contact with it are coloured
green.
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3.3.6.2 ACTH deficiency [OMIM: #201400]

Adrenocorticotropin hormone (ACTH) deficiency is characterized by a marked decrease

of the pituitary hormone ACTH and other steroids. Its symptoms include amongst

others weight loss, anorexia and low blood pressure. Lamolet et al. (2001) identified a

Ser128Phe mutation in the T-box transcription factor TBX19 that leads to a dominant

loss of function phenotype [UniProt: O60806, VAR 018387]. The crystal structure of

the homologous T-Box domain from the Xenopus laevis Brachyury transcription factor

(Müller and Herrmann, 1997) (81% sequence identity to the human TBX19 protein;

[PDB: 1XBR]) shows that this particular residue is at the core of the dimerization

interface, see Figure 3.12. The mutation substitutes a small polar with a large aromatic

side-chain. Accordingly, the residue features strong conservation, while Phe is very rare

at this position (Scores of 3.31 and −1.78 for Ser and Phe respectively). Pulichino et al.

(2003) report that the Ser128Phe mutation shows virtually no DNA binding affinity. I

predict that this loss of affinity is due to a drop in binding free energy between monomer

and DNA, as compared to the dimer.

3.3.6.3 Baller-Gerold Syndrome [OMIM: #218600]

Baller-Gerold syndrome is a rare congenital disease characterized by distinctive mal-

formations of the skull and facial area as well as bones of the forearms and hands. The

disease phenotypically overlaps with other disorders like Rothmund-Thomson syndrome

or Saethre-Chotzen syndrome. Seto et al. (2001) reported a case of Baller-Gerold syn-

drome that also included features of Saethre-Chotzen syndrome. They identified an Ile

to Val substitution at position 156 of the H-Twist protein as the causative mutation.

Experimental studies using yeast-two-hybrid have reported the loss of H-Twist/E12

dimerization ability as a possible cause of Saethre-Chotzen syndrome (El Ghouzzi et al.,

2000).

The basic helix-loop-helix domain of H-Twist shares 45% sequence identity with
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Figure 3.12: The crystal structure of a T-domain from Xenopus laevis bound to DNA.
The residues highlighted in red are the mutated Ser128, with green residues representing
the contact residues in the partner protein. Blue dashed lines show residue contacts.
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the c-Myc transcription factor that was crystalized by Nair and Burley (2003), see

Figure 3.13. The structure shows a dimer of c-Myc and Max bound to DNA. The

c-Myc/Max dimerization is essential for the transcriptional regulation. The Ile156Val

mutation is located at the core of the interaction interface. Although the Ile156Val

mutation constitutes a biochemically similar substitution, reflected by the relatively

high frequency of Val at this position in other helix-loop-helix proteins (prevalence

scores 2.76 for Ile and 1.23 for Val), the change in volume could slightly change the

interaction propensity. Correspondingly, the Ile156Val mutation causes a mild form of

Baller-Gerold Syndrome.

Figure 3.13: Both Myc-c and Max form a basic helix-loop-helix motif. They dimerize
mainly through their extended helix II regions. The residue that corresponds to Ile156
in H-Twist is Ile550, shown in red. The residue sits at a key position of the interface,
forming bonds with seven residues in Max, shown in green.
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3.4 Discussion

3.4.1 Accuracy of interacting residue prediction

The wealth of information provided by protein structures of interacting proteins can

be applied to evolutionary related sequences (Aloy and Russell, 2002). I developed

an algorithm that identifies structurally corresponding residues in sequences that con-

tain a domain which is homologous to a known structural interaction. Two distinct

benchmarks provide evidence that the algorithm can identify interacting residues with

reasonable accuracy. A cross-validation experiment showed that percentage identity

between the predictions source and the target sequence is the best determinant for

prediction quality. This finding fits the relationship between sequence similarity and

similarity of interaction geometry described by Aloy et al. (2003).

A benchmark against a database of alanine scanning energetics experiments (ASEdb)

reveals that the residue prevalence threshold is particularly suitable for identifying

residues with a large change of binding energy upon mutation. The percentage identity

threshold does not perform as favourably in the ASEdb benchmark as in the cross-

validation experiments. It has to be considered in this context that alanine scanning

experiments are often guided by homologous structures in order to restrict the number

of mutated residues. Therefore, the true positive to true negative ratio decreases and

the performance decreases. Conversely, the residue prevalence score improves because

fewer false positives can be detected. As a consequence, I decided to employ a threshold

that combines percentage identity and residue prevalence. In this way, any prediction

should have be sufficiently likely to represent a real interaction, while the results are

also enriched for structurally important residues.
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3.4.2 Disease causing interacting residues occur frequently

Protein interactions can be the root cause of genetic pathologies, yet their significance

for health and disease remained to be quantified. When I apply the prediction algorithm

to all disease causing mutations from OMIM and UniProt, I retrieve a set of 1428

interaction-related mutations. This suggests that approximately 5% of mutations could

have an effect on protein interactions. On the one hand, low structural coverage of

iPfam domains on protein interactions described in Chapter 2 could mean that this

is a large underestimate. On the other hand, there are a number of potentially false

positive predictions due to crystal packing which could result in an overestimation of

the importance of interaction related mutations. Taking into account previous work on

this matter (Ferrer-Costa et al., 2002), I believe that an estimated fraction of 4 to 5%

of interaction related mutations is well justified given the presented observations.

My curated list of interaction-related diseases further underlines that a variety of

proteins are susceptible to mutations that alter protein interaction. The list provides

examples to categorise mutations according to their functional and molecular proper-

ties. Namely, many interaction related mutations can lead to a gain of function, usually

by losing the interface for an inhibitory protein or by aggregating uncontrollably and

causing various forms of amyloidosis. Analysis of the amino-acid spectrum of residues in

interaction-related diseases reveals marginal deviations from the distribution of amino-

acids in all mutations. These properties could in the future be combined with other

features to improve the accuracy of prediction algorithms.

Further mutagenesis and protein interaction experiments on selected examples from

my predicted set could shed new light on the molecular mechanisms behind human

genetic diseases. In turn, knowledge of more cases of interaction-related disease will

help to improve the accuracy of prediction algorithms.
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3.4.3 Enrichment for dominant mutations

In comparison to non-interaction related mutations, I observed an enrichment for dom-

inant or co-dominant mutations in both the curated as well as in the predicted set. In

GOF mutations, dominant inheritance is not surprising, but the high proportion (39%)

of dominant LOF mutations is noteworthy. Dominant inheritance in LOF mutations

can be explained by either haploinsufficency or dominant negative effects (Veitia, 2002).

Inhibiting one of the two alleles of a gene is likely to reduce the overall dosage level

of functional protein. If this leads to a visible phenotype, the effect would be labelled

as haploinsufficiency, i.e. a phenotype is caused by a shortage of functional protein.

Conversely, “dominant negative” refers to cases where a mutated allele actively

inhibits other proteins which are otherwise functional. This effect is also often referred

to as interallelic complementation in cases were the combination of two slightly differing

alleles of a gene causes a change in the overall function of the protein.

For example, mutations of phenylalanine hydroxylase can lead to phenylketonuria

(Leandro et al., 2006) by inhibiting necessary conformational changes between monomers.

In such cases where the protein function relies on the dynamic interactions between sub-

units, a mutation in one of the binding interfaces can actively inhibit the function of

the other bound members of the complex. From my results, it is not clear whether

hapoinsufficiency or interallelic complementation are the driving force behind the en-

richment for dominant mutations amongst mutations in interaction interfaces. Detailed

experimental analysis of dominant LOF mutations could reveal the relative importance

of dominant negative effects compared to haploinsufficency.

In summary, however, the observation remains that interaction related mutations

are more often dominant than expected by chance. Previous results also confirm that

there is a relationship between dosage sensitivity and the protein interactions (Papp

et al., 2003). In the next chapter, I will further investigate this issue using a more

global, genome-wide approach.
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