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Siarhei Manakou

“The role of microRNAs in neurons”

Abstract

Many individual functional microRNA (miRNA) targets have been identified in neurons,

and their importance for neuronal differentiation is well established. However, with over

50% of genes in a mammalian genome being computationally predicted as miRNA tar-

gets, the global significance of the role of miRNAs in neurons is not yet fully understood.

Using chemical transfection, I artificially overexpressed ten miRNAs in primary neuronal

cultures. For six of them I identified hundreds of putative direct targets through analysis

of the differential gene expression associated with the transfection experiments. Among

these six miRNAs, there were two that are naturally enriched in the adult mouse brain

(miR-124 and miR-434-3p), three miRNAs that were depleted from neurites (miR-143,

miR-145 and miR-25) and one non-mouse miRNA (cel-miR-67). Analysis of the miRNA

mediated effects on gene expression revealed that upon overexpression both miR-124 and

miR-434-3p destabilised mRNA transcripts that are seen to be induced in stress condi-

tions. The effect of overexpression of the other four miRNAs was found to be similar to

that of miR-124 and miR-434-3p, although it was less significant. The ability of miR-

NAs to downregulate the inducibly expressed genes, and a widespread upregulation of

these genes in stress conditions, implies that miRNAs normally act to prevent changes

to equilibrium in the transcriptome. The results of this thesis also demonstrate that a

repertoire of miRNA targets, including that of the neuron specific miR-124, is context-

dependent. Given that the context can be influenced by a stress associated with experi-

mental treatments, this work bears direct implications for future experiments aiming to

ascribe particular functions to miRNAs.
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Abbreviations and comments

Abbreviations:

Cat. no. catalogue number
DIV days of in vitro development
miRNA microRNA
n-mer an oligomer of a length n
nt nucleotides
ref. reference
RT-PCR real-time PCR
qRT-PCR quantitative real-time PCR
P P-value
UTR Untranslated region

Comments:

• Very small numbers are presented using “E notation” as an alternative to the stan-

dard decimal notation. In this notation a letter e is used to represent times ten

risen to the power of. For example, 0.000000012 in “E notation” is presented as

1.2e− 8 or 1.2e− 08.

• DNA is a polymer consisting predominantly of four types of units (nucleotides) con-

taining the following four bases: adenine (the corresponding nucleotide is commonly

denoted as A), cytosine (C ), guanine (G) and thymine (T ). RNA is also a polymer,

which predominantly consists of nucleotides containing adenine, cytosine, guanine

and uracil (the corresponding nucleotide is denoted as U ) bases. In conventional

Watson-Crick double stranded forms of RNA, DNA or DNA-RNA heteroduplexes,

Gs form connections with C s, while As pair with both T s and U s. Therefore, U is

RNA’s equivalent of DNA’s T. For purposes of consistency, sequences of DNA and

RNA are frequently stored in databases as a sequence of the four letters A, G, C

and T, where T is understood to be U in case of RNA sequences. In this thesis, I
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preserved this notation, and both DNA and RNA nucleotide words are represented

as sequences of A, T, G and C.

• The research of miRNA function that is presented in this system was conducted in

an in vitro cell culture system derived from mice (Mus musculus). Conventionally,

names of genes that encode miRNAs and names of miRNAs themselves are preceded

by a three letter prefix, which uniquely corresponds to the species of the origin.

Mouse miRNAs are preceded by three letters “mmu” (as in mmu-miR-124 or mmu-

let-7c), while, human miRNAs (Homo sapiens) are preceded by “hsa” (as in hsa-

miR-124 or hsa-let-7c). For convenience the three letter prefix of mouse miRNAs

is frequently omitted, therefore names miR-124 and let-7c mean mmu-miR-124 and

mmu-let-7c. Prefixes for other species are not omitted.
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