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Abstract

The first generation of genome-wide association studies (GWAS) uncovered thou-
sands of genetic risk factors for hundreds of complex human diseases. However,
over the past five years new high-throughput techniques, including next-generation
sequencing and low-cost custom genotyping, have allowed us to expand disease as-
sociation studies into larger sample sizes and across the entire spectrum of human
variation. This thesis will explore the potential of these new technologies, and
in particular their application to the study of Inflammatory Bowel Disease (IBD)
genetics. After reviewing the historical context of complex disease genetics, I in-
troduce the statistical methods and models used in this thesis, and demonstrate
how they can be placed into a unified framework of genetic risk models. 1 then
detail three analysis projects that focus on identifying risk variants that the first
generation of GWAS was unable to study. The first investigates how genotype
imputation, coupled with high-density sequencing reference sets, can aid locus dis-
covery in both European and African populations. The second discusses the use
of a custom genotyping chip (the Immunochip) to discover risk variants with low
effect sizes, by allowing low-cost genotyping of a very large number of samples.
The third investigates the use of next-generation sequencing of multiply affected
(or “multiplex”) families in order to identify low-frequency, high penetrance risk
alleles. Throughout these three projects I describe the discovery of a large number
of novel IBD risk loci, and discuss how statistical and biological interrogation of

these risk loci can help us to develop and expand biological hypotheses.
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Chapter 1

Introduction and Background

1.1 Justifications of phenotype and approach

Since Man first climbed down from the trees and stared out at the world
around him, he has wondered why both he and his sister suffer from acute
inflammation of their digestive tracts. This thesis describes a series of sta-
tistical analyses designed to uncover and understand the genetics of complex
disease, with particular application to the discovery of loci associated with

inflammatory bowel disease (IBD).

Why should we dedicate time and effort to the study of IBD? And, given

this, why should we study it through the medium of complex disease genetics?

1



2 Chapter 1. Introduction and Background

1.1.1  Why study inflammatory bowel disease?

Much of this thesis will be concerned with inflammatory bowel disease (IBD),
and in particular its two major forms: Crohn’s disease (CD) and ulcerative
colitis (UC). IBD is characterised by an inappropriate inflammatory response
in the gastrointestinal tract, and symptoms include abdominal pain, diar-
rhoea, weight loss and damage to the intestinal wall (often requiring surgery
to correct). Its incidence varies geographically, with a mean of around 7 new
cases per 100,000 people per year in Europe, and has been increasing for at
least the last 30 years throughout the world (Vatn, 2011).

IBD, and CD in particular, has been a “model” disease in complex disease
genetics, with many linkage, candidate gene and genome-wide association
studies carried out over the last 20 years. There are two aspects of IBD that

make it an ideal complex trait to study.

It is a poorly understood disease with a high burden

While IBD is not a fatal disease, it does lead to a significant decrease in
life expectancy. The standardised mortality ratio for Crohn’s disease is 1.39
(95% CI 1.30 - 1.49) (Duricova et al., 2010), corresponding to a decreased life
expectancy of approximately 5 years (95% CI 3.8-6.1, using the method of
Tsai et al. (1992)). Ulcerative colitis does not show the same decrease in life
expectancy, though approximately 17% of UC patients die from UC-related
complications (Jess et al., 2007). Most deaths occur due to gastrointestinal
disease, though a significant minority of deaths come from respiratory and
genitourinary complications (Duricova et al., 2010).

As well as increased mortality, IBD is a life-long disease that is diagnosed
early in life (mean age of diagnosis is 27). 40-50% of patients will require

surgery within 10 years of diagnosis, and most will require drug therapy
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throughout their lives (Bernstein, 2011). As well as the costs in human
suffering, it is estimated that in Europe each patient with Crohn’s disease
costs €2898-6960 in direct health costs, and a total of up to €16.7 billion
per year in economic costs (Yu et al., 2008).

The aetiology of IBD is still poorly understood (Zhang et al., 2008), with
treatment focusing mostly on dietary changes to maintain remission, and
interventions to reduce acute inflammation. The most effective treatment of
acute inflammation is anti-TNF therapy (Bernstein, 2011), which is widely
used in a range of inflammatory diseases, but often has negative side effects
(Keane et al., 2001). Studies into environmental risk factors have had mixed
results (Vatn, 2011), making genetics a good candidate to shed light on the
biology of the disease. A better understanding of the aetiology of IBD could
lead to treatments that target the underlying disease pathways, significantly

lowering the costs of the disease.

It is highly heritable, and well characterised via twin studies

IBD is a highly heritable and genetically complex trait. Brant (2011) re-
viewed data from 6 twin studies of inflammatory bowel disease over the past
14 years, consisting of 657 sets of twins. Given these data, and the liability
threshold methods described in Chapter 2, we can make inferences about the
genetic architecture of disease. I analysed these data using two different lia-
bility models: one where siblings have some degree of shared environmental
risk (C) but where genetic risk is purely additive (the ACE model), and one
where genetic risk has additive and dominant components (A and D), but no
shared environmental risk (Table 1.1). Both of these models are approxima-
tions, and should be viewed as such, but both can shed light on the genetic

basis of IBD.
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Phenotype | h? (=A) C D H? (=A+D)

95% CI) | (95% CI) | (95% CI) | (95% CI)
CD (ACE) | 0.77 0 0 0.77

(0.70 - 0.84) | (0- 0.06) | (NA) (0.70 - 0.84)
CD (ADE) | 0.48 0 0.31 0.78

(0.41 - 0.54) | (NA) (0.24 - 0.38) | (0.69 - 0.88)
UC (ACE) | 0.53 0.11 0 0.53

(0.46 - 0.61) | (0.05 - 0.18) | (NA) (0.46 - 0.61)
UC (ADE) | 0.66 0 0 0.66

(0.58 - 0.74) | (NA) (0-0.08) | (0.58 - 0.77)

Table 1.1: The inferred liability components of CD and UC, using two different
liability threshold models.

We can draw a number of conclusions from the twin study data. Firstly,
both CD and UC are highly heritable: 70-85% and 45-70% respectively. Sec-
ondly, Crohn’s disease has a significantly higher heritability than ulcerative
colitis (p = 1.04 x 107°). Thirdly, there is strong evidence of shared envi-
ronment in UC, and strong evidence of non-additivity in CD, showing that
IBD is both environmentally and genetically complex. The high heritability
makes IBD a good candidate for genetic study.

It has been well studied by linkage and GWAS

Since the rise of genome-wide genetic studies IBD has been at the forefront of
locus discovery. The discovery of the NOD2 locus via genome-wide linkage
(Hampe et al., 1999), and its subsequent fine-mapping to multiple causal
variants (Hugot et al., 2001), was a notable success of linkage studies. The
discovery of the IL23R locus was one of the first successes during the early
days of GWAS (Duerr et al., 2006).

The genetic basis of IBD has also been well studied through large, col-
laborative meta-analyses. The largest linkage meta-analyses in IBD, though

unsuccessful in mapping new loci, were successful in bringing together nearly



1.1. Justifications of phenotype and approach 5

2000 families (van Heel et al., 2004). The largest international GWAS meta-
analyses of Crohn’s disease (Franke et al., 2010) and ulcerative colitis (An-
derson et al., 2011) discovered nearly a hundred IBD loci in total. Notably,
they also collected together over 13,000 total cases with genome-wide data,
and over 25,000 other cases for the purposes of replication.

As a result of these studies, the IBD genetics community has a great
deal of experience in successful genetic research, a series of long-standing
collaborations with a history of data sharing, and a very large shared pool of
patient samples for study. Together, these contribute to the highly productive

research community that makes IBD a model disease for genetic studies.

1.1.2 Why study complex disease genetics?

I justified the study of inflammatory bowel disease by saying that the disease
was costly to society, not well understood, and a heritable and genetically
complex trait. However, the discovery of genetic risk factors is not in itself
of use to society. To justify the approach, one must show how the discovery
of these risk factors will positively impact science or medicine.

In this section I will discuss some of the ways risk loci can be used to the
benefit of scientists and patients. I will start with two uncontroversial uses
(helping to understand disease biology, and aiding further studies of disease),

and move on to the more hotly debated topic of genetic risk prediction.

To directly understand biology

The dominant reason for discovering loci associated with disease is to allow
us to understand disease biology. A better understanding of the aetiology
of human diseases can allow the development of improved options for treat-

ment, diagnosis and prevention, and ultimately reduce the incidence of, and



6 Chapter 1. Introduction and Background

suffering from, disease.

The identification of loci has improved the understanding of many com-
plex diseases. GWAS of type 2 diabetes have played an important role in
shifting focus away from insulin resistance and towards insulin production
(McCarthy and Zeggini, 2009), in particular towards defects in S-cell de-
velopment, and have identified many new drug targets (Wolfs et al., 2009).
New disease loci have uncovered previously unexpected pathways in inflam-
matory bowel disease including, notably, the role of autophagy in Crohn’s
disease (Zhang et al., 2008), and barrier defence in ulcerative colitis (Lees
et al., 2011). Another notable success for GWAS was the discovery of the
BCL11A locus as a major modifier of disease severity in haemoglobinopathies
(Akinsheye et al., 2011), which has “reinvigorated the field of globin gene reg-
ulation” and is leading to the development of new treatment options for sickle

cell disease and beta-thalassemia (Bauer and Orkin, 2011).

Locus identification can also give us information about biological factors
that are shared across diseases. GWAS of different diseases will often impli-
cate overlapping loci (Hindorff et al., 2009), and these loci can be informative
about the shared aetiologies of these diseases. For instance, cross-phenotype
comparisons of disease loci allow us to understand the relationships between
Crohn’s disease and both autoimmune and infectious disease (Lees et al.,
2011). More generally, GWAS have highlighted the remarkable degree of ge-
netic overlap between immune-mediated diseases (Cotsapas et al., 2011), and
is starting to drive the creation of new classifications of immune disease based

on shared pathways rather than affected tissue (McGonagle et al., 2009).
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Figure 1.1: Improvement in power curves gained by prioritising samples based
on genetic risk scores with different predictive powers. The colour of the line
represents the proportion of total variance captured by the risk score, with the
red line representing a random (i.e. non-prioritised) selection of samples. A) A
case-control scenario for a disease with 1% prevalence. The total cohort size for
prioritisation is 10,000 cases and an equal number of controls, and we measured
power to detect a risk allele with an odds ratio of 2 and a frequency of 1% at
genome-wide significance. B) A quantitative trait scenario. The total cohort size
is 100,000, and we measured power to detect an allele with 1% frequency that
increased a normally-distributed quantitative trait by 0.2 standard deviations.

To facilitate further research

Beyond the direct biological information that they can give us, disease loci
can also be used as tools to aid future experiments. One obvious example is
the use of genes in disease loci as candidates for functional studies, such as
gene knock-out studies in mice (Kitsios et al., 2010), in much the same way
as any candidate gene would be studied. However, there are also a number

of uses of disease loci that utilise the unique properties of risk loci.
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One such property of risk alleles is that an affected patient who carries a
large number of protective alleles is more likely to have been subject to an-
other, non-observed risk factor. We can therefore use known disease loci to
select cases that have a low risk allele count (or low genetic prediction score),
and test these for the presence of other risk factors. This is particularly rel-
evant to the detection of low-frequency causal variants by sequencing, where
often only a small subset of a larger cohort can be sequenced cost effectively.
Figure 1.1 shows how this approach can increase the power of sequencing
experiments for an example disease trait and an example quantitative trait.
This approach is particularly well powered when selecting from large popu-
lation cohorts of healthy individuals.

Another property of risk alleles is that they are acquired from birth
(through Mendelian segregation), and remain constant through an individ-
ual’s lifetime. As a result they cannot be caused by other risk factors, helping
to resolve epidemiological problems of causality (this is called “ Mendelian
randomisation”). This approach has allowed some previously difficult-to-
answer questions to be settled. For example high LDL cholesterol has been
shown to be causally related to heart disease (Linsel-Nitschke et al., 2008),
but high HDL is not (Voight et al., 2012). The same approach can be used to
perform “retrospective” drug trials, for instance using Mendelian randomi-

sation to establish IL6R as a drug target for heart disease (Hingorani et al.,

2012).

To predict disease genetically

In his 1999 Shattuck lecture on the impact of the Human Genome Project
(Collins, 1999), Francis Collins predicted the GWAS era, the rise of pharma-

cogenomics and the revolution in Mendelian disease genetics. However, the
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Figure 1.2: The predictive accuracy of variants discovered by genome-wide as-
sociation studies, as a function of the effective sample size (=
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adjusted for the number of stages in the study (three stage studies have a smaller

fraction of samples with GWAS data, and thus have lower power). Risk predic-
tion is performed using logistic regression evaluated on datasets simulated from
allele frequencies and odds ratios taken from replication data. PD: Parkinson’s
Disease (International Parkinson’s Disease Genomics Consortium and Wellcome
Trust Case Control Consortium 2, 2011; Nalls et al., 2011), AMD: Age-related
Macular Degeneration (Chen et al., 2010), T1D: Type 1 Diabetes (Clayton, 2009),
T2D: Type 2 Diabetes (Voight et al., 2010), UC: Ulcerative Colitis (Anderson
et al., 2011), CD: Crohn’s Disease (Franke et al., 2010; Yazdanyar et al., 2009),
RA: Rheumatoid Arthritis (Stahl et al., 2010), CAD: Coronary Artery Disease
(Schunkert et al., 2011), BRCA: Breast Cancer (Turnbull et al., 2010), LOAD:
Late-Onset Alzheimer’s Disease (Harold et al., 2009; Corneveaux et al., 2010),
MS: Multiple Sclerosis (De Jager et al., 2009), MDD: Major Depressive Disorder
(Shyn et al., 2009), BP: Bipolar Disorder (Scott et al., 2009), SLE: Systemic Lu-
pus Erythematosus (Harley et al., 2008), SZ: Schizophrenia (Purcell et al., 2009),
CRCA: Colorectal Cancer (Houlston et al., 2008), PRCA: Prostate Cancer (Eeles
et al., 2009), OVCA: Ovarian Cancer (Goode et al., 2010; Song et al., 2009).
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most controversial forecast was about the advent of prediction for complex
disease, and its role in medical practice. He told a hypothetical story about

a patient (named John), visiting his doctor in 2010:

After working through an interactive computer program that
explains the benefits and risks of such tests, John agrees (and
signs informed consent) to undergo 15 genetic tests that provide
risk information for illnesses for which preventive strategies are
available. [...]

Confronted with the reality of his own genetic data, he ar-
rives at that crucial “teachable moment” when a lifelong change
in health-related behaviour, focused on reducing specific risks, is
possible. And there is much to offer. By 2010, the field of phar-
macogenomics has blossomed, and a prophylactic drug regimen
based on the knowledge of John’s personal genetic data can be
precisely prescribed to reduce his cholesterol level and the risk of

coronary artery disease to normal levels.

While this exact scenario was not common by 2010, personal genetic test-
ing for disease risk has become available to those who want it (and are willing
to pay). Many companies now carry out such tests, using genome-wide data,
for a range of diseases (Ng et al., 2009). The largest such companies, such as
23andMe and deCODEme, provide testing for tens of thousands of customers
a year (Wright and Gregory-Jones, 2010). The potential utility of such ge-
netic risk prediction has been widely debated (Gulcher and Stefansson, 2010;
Kraft and Hunter, 2009; Hall et al., 2010).

Hundreds of GWAS and ever-larger meta-analyses have discovered a

lengthening list of variants associated with complex disease, which can in
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turn be used to construct disease predictors. Figure 1.2 shows the Area
Under the ROC Curve (AUC) of predictors based on the current genetic
knowledge of 18 diseases. In this context, the AUC can be interpreted as the
probability that a genetic test could correctly identify the affected individual
in a pair of individuals of which exactly one is affected. Many diseases cannot
be well predicted (including virtually all psychiatric diseases and cancers),
but others have relatively good predictive power (including type 1 diabetes,
Crohn’s disease and age-related macular degeneration). Note that, while the
AUC is a useful indicator of predictive power, it needs to be considered in
the context of the prevalence of the disease. For example, the low prevalence
of Crohn’s disease makes prediction difficult, even given the high predictive

power of Crohn’s GWAS loci.

The range of genetic AUCs for these diseases is very similar to the range
found in classical (non-genetic) risk prediction based on epidemiological pre-
dictors (Lloyd-Jones et al., 2006; Cassidy et al., 2008; Seddon et al., 2009;
Wacholder et al., 2010; Buijsse et al., 2011). There are additional advantages
to genetic risk prediction compared to classical risk prediction, due to the
fact that genetics do not change over an individual’s lifetime. This means
that risk models can be fitted with retrospective genotype data without fear
of confounding, and that risk prediction can be carried out much further in
advance. For instance, genetics is better than classical risk factors in pre-
dicting type 2 diabetes more than 30 years in the future (Lyssenko et al.,
2008). This may be important for cases where prevention is most effective if
started long before disease onset, or carried out over a long period. However,
when both genetic and non-genetic predictors are available, prospective stud-
ies are required to determine how much power genetic testing adds: common

variants increase the AUC of risk prediction from 0.76 to 0.83 in age-related
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macular degeneration (Seddon et al., 2009), but add negligible improvement
for prediction of metabolic diseases (Companioni et al., 2011; Buijsse et al.,
2011).

Of course, these numbers only tell part of the story. To properly assess
the utility of genetic risk prediction, it must be considered in the context
of the cost of testing, the actionability of the results, and the framework in
which these results will be used. Deciding the optimal way to use genetic
risk prediction, and its potential utility in such an optimal framework, will

be a significant challenge for medical practice in the future.
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1.2 A brief history of human disease genetics

1.2.1 The age of molecular disease: 1940 to 1980

The concept of disease as influenced by hereditary factors originates at the
turn of the 19th century, with the rise of family studies (discussed in Chapter
5). However, the modern formulation of disease genetics, characterised by the
search for inherited polymorphisms in disease loci that increase or decrease
disease risk, is a product of the mid-20th century.

The adoption of Mendelian laws of inheritance (Mendel, 1866) in the early
20th century led to the discovery that many diseases follow a Mendelian
pattern of inheritance within families (Garrod, 1902; Punnett, 1908). While
these early studies were before the discovery of DNA, and were thus unable
to establish the genetic cause of these diseases, they nonetheless established
that they were caused by the presence (or absence) of a specific molecular
factor. It was the search for these molecular factors that led to rise of the
molecular disease paradigm, and the discoveries of the first true disease loci.

In the 1940s a series of landmark experiments established the central
dogma of heredity (Beadle and Tatum, 1941; Avery et al., 1944): DNA is
the agent of heredity, and it acts via the production of proteins. The coming
decades would see the structure of DNA solved (Watson and Crick, 1953) and
the genetic code for proteins described (Crick et al., 1961). These discoveries
gave us the modern framework of disease genetics: mutations in DNA lead
to changes in the functioning of proteins, which in turn lead to defects in
body function that cause disease.

The age of molecular disease lasted from the establishment of the central
dogma to the rise of recombinant DNA techniques in the 1970s. It was

characterised by an increasing understanding of the action of proteins in
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disease, and the resulting discovery of inherited functional polymorphisms
that underlie them. The first disease to be explained in molecular terms
was sickle cell disease, which in 1949 Linus Pauling and colleagues showed to
be caused by differences in the activity and amino acid composition of the
haemoglobin protein (Pauling et al., 1949). Remarkably, a single amino acid
sequence difference underlying this disease was discovered only 8 years later
(Ingram, 1957), though the gene itself was not cloned and mapped until the
late 1970s (Lawn et al., 1978; Deisseroth et al., 1978). Other successes rapidly
followed, such as the discovery of the enzymatic cause of phenylketonuria in

1953 (Jervis, 1953).

One group of proteins that were first understood in this period were the
proteins of human leukocyte antigen (HLA) system. First identified as im-
portant in matching donor and host tissue for transplant, in the course of
the 1960s and 70s the HLA came to be recognised as having a centrally
important role in diseases of immunity (Dick, 1978). Many associations be-
tween HLA alleles and immune-mediated diseases were discovered at this
time, including relatively simple associations with a single HLA allele, and
more complex associations with multiple HLA alleles (such as those in type
1 diabetes (Cudworth and Festenstein, 1978)). The HLA has been under

almost constant study as a source of risk alleles for the last 50 years.

The above disease loci were identified in an essentially “backward” man-
ner. The disease biology led to the investigation of a candidate protein, which
in turn led to the discovery of pathogenic variation and, eventually, mapping
of disease genes. While this process was “molecular”, it was not truly “ge-
netic” in the modern sense, in that it did not proceed from DNA. The first
truly genetic programme for the study of disease came with the develop-

ment of recombinant DNA technology, and the sequential rises of linkage,
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candidate gene and genome-wide association studies.

For a whirlwind tour of the 40 years I am about to describe, one only
needs to look at the study of the HLA regions in type 1 diabetes. The HLA
association with diabetes was first identified via HLA typing in the 1970s
(Cudworth and Festenstein, 1978). The strongest signal was localised to the
HLA-D region in the early 1980s via linkage to restriction fragment length
polymorphisms (RFLPs). Fine-mapping of this signal to the gene HLA-D@B,
however, had to wait until the late 1980s and the rise of the polymerase chain
reaction (PCR) (Todd et al., 1987). Even then, a full characterisation of all
the different HLA associations in diabetes had to wait for the development
of microarray genotyping at the turn of the 20th century (Nejentsev et al.,
2007), forty years after the association was first reported. The same locus
identified during the early days of molecular disease studies has taken four

decades of technological advance to crack.

1.2.2 The age of linkage for Mendelian traits: 1980-1994

The concept of linkage is an old one. In essence, linkage involves discovering
the relative positions of different genetic markers by measuring their coin-
heritance within families. Markers that are present on the same chromosome
are more likely to be coinherited than would be expected by chance, and
markers that are closer together on the genome are even more likely to be
coinherited, as recombination is less likely to separate them. For a fully pen-
etrant Mendelian disease, presence of a mutation is synonymous with disease
status, and thus linkage can be used to determine the location of the mutated
gene on a genetic map.

Linkage studies have a sophisticated statistical heritage. In the 1930s
both Haldane (1934) and Fisher (1935) described statistical methods for
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detecting genetic linkage between dominant traits. Linkage has undergone
constant statistical refinement for over half a century, with the development
of the parametric LOD score (Morton, 1955), pedigree likelihood modelling
(Elston and Stewart, 1971), the multipoint Lander-Green algorithm (Lan-
der and Green, 1987), Non-Parametric Linkage (Kruglyak et al., 1996) and
the development of sparse gene flow trees (Abecasis et al., 2002). FEach
of these statistical developments has been in response to the development
of linkage from small-scale breeding experiments to massive whole-genome

meta-analyses with hundreds of markers and thousands of individuals.

The original linkage maps were based on physical characteristics, and were
almost exclusively generated for model organisms via breeding experiments.
For instance, in 1940 the chicken linkage map consisted of 6 chromosomes
with a total of 21 genes, each defined by mutant phenotype (Hutt et al., 1940).
This specified that, for instance, there were 10 centimorgans between the
genes that produce the Silkie and Flightless phenotypes. While these maps
allowed the first real understandings of genome structure, they were of limited
use for human disease. Firstly, without selective breeding, multiple obviously
Mendelian traits rarely segregated in the same family, so the maps were
difficult to produce. Secondly, the information provided was of little direct
relevance, since there existed no method of turning location on a linkage map

into biological insight.

Technological revolutions during the 1970s provided a platform for linkage
studies of human disease to come of age. This began with the development
of amplification in DNA within viral or bacterial vectors (Jackson et al.,
1972), and developed rapidly to sequencing of entire genes by dye termina-
tion (Sanger) sequencing (Sanger et al., 1977). These developments meant

that, if the location of a gene could be identified, it could theoretically lead to
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the gene being cloned and sequenced, its protein sequence determined and its
tissue expression distribution characterised. The development of the South-
ern blot during the same period (Southern, 1975) allowed easy genotyping of
RFLPs (variants in the DNA that interfered with the action of restriction en-
zymes). This was the first time that genotypes could be efficiently measured
from DNA itself, and led to the development of human linkage maps without
the need for mutation phenotypes (Botstein et al., 1980). Suddenly, discov-
ering disease loci by linkage became both possible, and potentially highly

biologically informative.

It did not take long for linkage results to arrive in multiple Mendelian
diseases. The first disease locus to be identified purely by linkage was Hunt-
ington’s disease (via a very fortuitous study of only 12 RFLPs), followed
soon by a flurry of papers reporting linkage to chromosome 7 in cystic fibro-
sis (Tsui et al., 1985; Knowlton et al., 1985; Wainwright et al., 1985; White
et al., 1985). However, while these loci were rapidly identified, the journey
from linkage to a mapped, cloned gene was often difficult. For instance, a
large international collaboration was required to discover the CF'TR gene
and AF508 mutation that underlies cystic fibrosis, using a laborious posi-
tional cloning approach (Rommens et al., 1989; Riordan et al., 1989; Kerem
et al., 1989). For Huntington’s, discovering the responsible mutations took
10 years from when linkage was first detected (The Huntington’s Disease

Collaborative Research Group, 1993).

The number of samples and variants typed in these early studies were
counted in double digits, and the researchers only managed to discover mu-
tations with extremely high penetrance in diseases with simple genetic archi-
tecture. The methods used to solve these diseases required monumental effort

to use, and seem primitive and laborious by modern standards. However, in
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other ways they contained many of the essential principles of modern genet-
ics. They used direct typing of DNA, without requiring any prior knowledge
of the disease biology, to uncover disease loci. They utilised state-of-the-art
technology, combined with rigorous statistical analysis, and in many cases
shared data, samples and expertise across large, international consortia.
The success of this approach in solving these diseases inspired similar
projects aimed at solving more challenging diseases. These early forays into
the genetics of common complex diseases were less immediately successful. It
would require a series of technological revolutions, combined with a number

of false starts, before complex disease genetics would come of age.

1.2.3 The beginning of complex disease genetics: 1994-
2005

The diseases described in the previous section are all Mendelian diseases.
These diseases are caused by a mutation in a single gene, and this muta-
tion (and thus the disease itself) is passed on to offspring in a Mendelian
fashion. However, many diseases, including virtually all diseases with preva-
lence greater than around 1 in 500, are complex diseases. These include
most immune-mediated diseases, such as type 1 diabetes, Crohn’s disease and
rheumatoid arthritis, most metabolic diseases such as cardiovascular disease
and type 2 diabetes, and most cancers. They do not appear to have a sin-
gle cause (genetic or otherwise), but most have been known from families to
have a genetic component since the early 20th century (see Chapter 5). In the
1990s, many geneticists turned their attention to the genetic underpinnings
of these complex diseases.

The RFLP linkage approach had some ability to detect common alleles

of unusually large effect in complex diseases, including the discoveries of
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Figure 1.3: A timeline of complex disease genetics. Candidate gene studies (prior
to 2007) are taken from reviews by Bosker et al. (2011) and Morgan et al. (2007).
Linkage studies (prior to 2007) are taken from reviews by Guan et al. (2008) and
Baumgart and Carding (2007). GWAS taken form the NHGRI GWAS catalogue
(Hindorff et al., 2009).

the INS locus in type 1 diabetes (Bell et al., 1984) and the ApoFE locus in
early onset Alzheimer’s disease (St George-Hyslop et al., 1987; Goate et al.,
1991). However, these discoveries were the exception, not the rule, and the
high genetic heterogeneity and low effect sizes in complex disease made it
ill suited to study using the old techniques. Another wave of technological
innovation in the late 1980s and early 1990s fundamentally changed the way
complex disease genetics was done.

In 1986, Kary Mullis and colleagues published the polymerase chain re-
action (PCR), a method for rapidly amplifying specific DNA sequences in
vivo (Mullis et al., 1986). This revolutionised the study of DNA. In 1989,
Variable Number Tandem Repeats (VNTRs) were described as a class of
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variant easily genotyped by PCR (Weber and May, 1989), and linkage maps
based on VNTRs appeared soon after. Additionally, by 1993 the TaqMan
system was being used to genotype SNPs and small indels using PCR (Lee
et al., 1993). These new techniques allowed genotyping of denser maps, in
many more samples, at much lower cost than the old techniques. As well
as making studies into many more Mendelian diseases affordable, this new
technology also drove an explosion of studies into the genetics of complex
disease, including both genome-wide linkage studies and association studies

of candidate genes (see Figure 1.3).

The first success of the new linkage technology was the discovery in 1990
of strong linkage in early onset breast cancer (Miki et al., 1994) (soon gener-
alised to all breast cancer (Margaritte et al., 1992)). The new techniques also
allowed relatively rapid mapping of the causal gene (BRCA1) in less than
four years (Miki et al., 1994). There were also notable early successes in type
1 diabetes, including replication of the INS association using linkage (Bain
et al., 1992), along with the discovery that it was driven by VNTR variation
in the gene itself (Bennett et al., 1995), and confirmation of a third linkage
driven by a mutation in CTLA4 (Nistico et al., 1996). Later successes in-
clude the discovery of linkage (Jawaheer et al., 2003) and then association
(Begovich et al., 2004) to PTPN22 in rheumatoid arthritis, and the detection
of linkage (Hampe et al., 1999) and then causal variants (Hugot et al., 2001)
in the gene NOD2 in Crohn’s disease.

Despite these successes, however, many of the linkage peaks discovered
were sporadic, and could not be consistently replicated. Even more dis-
appointing was the failure of linkage meta-analysis. The Genome Search
Meta-analysis (GSMA) method (Wise et al., 1999) was introduced in 1999

to allow the results of linkage scans to be combined without sharing genotyp-



1.2. A brief history of human disease genetics 21

ing data, and theory created the possibility of very highly powered linkage
studies. However, when the large linkage meta-analyses arrived, including
thousands of affected families and representing millions of dollars of total in-
vestment, they produced almost no significant, novel results (van Heel et al.,

2004; Guan et al., 2008; Concannon et al., 2009).

In retrospect, the relative failure of later linkage studies was a result
of the high genetic heterogeneity and low effect sizes of complex disease
associations (a fact later uncovered by GWAS). It has long been known that
the power of across-family linkage falls off very rapidly with effect size and
allele frequency (Risch and Merikangas, 1996), meaning that even the large

linkage meta-analyses would not be well powered to detect true associations.

The history of candidate gene studies is an even more chequered. The
advent of relatively inexpensive genotyping, combined with gene mapping
and variant discovery efforts, made it possible to select at least one SNP in
a candidate gene and test it for association to a disease of interest. A large
number of associations were identified in this manner. There were some
notable successes that have stood the test of time, such as the discovery of
the PPARG association in type 2 diabetes (Altshuler et al., 2000)). However,
in general less than 5% of associations identified in candidate gene studies
were replicated in larger GWAS (Ioannidis et al., 2011), suggesting that, on
the whole, candidate gene studies failed to reliably identify true associations.
This failure is especially worrying given the fact that many candidate gene

studies are still carried out today.

The reasons for this failure have been widely debated. The use of post-hoc
adjustment to push p-values into nominal significance has been suggested (as
has been demonstrated in other fields (Masicampo and Lalande, 2012)), often

with an implication that this is a result of “hypothesis driven” investigators
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pushing their pet gene. However, I believe that most of the failure of candi-
date gene studies follows naturally from the sample size, p-value thresholds

and the (then unknown) distribution of effect sizes in truly associated loci.

Examining the candidate gene studies for major depression reviewed by
Bosker et al. (2011), we find that half of the positive studies reported a
p-value between 0.01 and 0.05, and that the median effective sample size
was 170 cases and 170 controls. Even under optimistic assumptions that
odds ratios are large (>2) and the SNP selection criteria is good (one in
20 is truly associated), this will produce false positives 49% of the time.
However, from GWAS we now know that the typical odds ratio is closer to
1.25, which increases the rate of false positives to over 80%. In practice, a
more appropriate set of criteria for candidate gene studies would be to use
p < 0.005 and N > 1500, which would give a 60% true positive rate even
given a 1 in 100 success rate in candidate SNP selection and an odds ratio of
1.25. These are approximately the criteria used by Altshuler et al. (2000) to
successfully establish the true PPARG association in type 2 diabetes. The
majority of candidate gene studies, however, fell well short of these criteria,

and were thus doomed to failure from the start.

By 2005, a small number of important new disease associations had been
identified. Many of these triggered new scientific investigations, such as the
role of innate immunity in Crohn’s disease inspired by the discovery of NOD2.
Others led to new developments in patient care, such as the (soon routine)
testing of BRCA1 mutations in individuals with a family history of breast
cancer. Others still generated significant social debate, notably the strong
ApoFE association in Alzheimer’s disease. However, while the genes identified
were important, they were not many of them, with no diseases having more

than two or three loci identified. Ultimately, it would take the technological
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developments accompanying the Human Genome Project to increase the pace

of locus discovery.

1.2.4 The technological build-up to genome-wide associa-
tion studies: 1986-2005

The idea of a genome-wide association study (GWAS) was established even
in 1996, when Risch and Merikangas (1996) noted the greater power of as-
sociation testing compared to linkage in almost all scenarios, but especially
for lower effect sizes (OR < 2). They suggested that by mapping polymor-
phisms genome-wide, the Human Genome Project would allow the creation
of high-density polymorphism maps that, when combined with advances in
genotyping technology, would allow well-powered association testing across
all genes. In this design, a large number of cases (probably the cases al-
ready collected as part of linkage studies) would be genotyped throughout
the genome, along with a set of controls, and each variant could be tested for
differences in frequency between cases and controls. Again, the concept and
the statistics were well established, and waiting for the technology to catch
up. In this case, the technology consisted of advances in DNA sequencing
and SNP discovery, and the development of DNA microarrays for large-scale
genotyping.

In 1986, a description of the first automated DNA sequencing machine
was published (Smith et al.; 1986). This machine used 4-colour dye ter-
mination, separated fragments through gel electrophoresis and imaged them
digitally. It was commercialised as the ABI 370-series, and at its peak a single
machine could produce 7200 bp (base pairs) of sequence per hour (Dovichi,
1997). In 1996 ABI released its first capillary sequencing machine, the ABI
310, followed two years later by the 96-capillary ABI 3700-series, capable of
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producing approximately 80kbp of sequence per hour (Dovichi, 1997). This
was the technology that drove the sequencing of the human genome, the first
full drafts of which were published in 2001 (Lander et al., 2001; Venter et al.,
2001).

Simultaneously with the sequencing of the reference genome, many groups
were discovering and cataloguing human genetic variation. dbSNP was
founded in 1998, and by 1999 held 4713 unique variants (Sherry et al., 1999).
This number did not stay this small for long: in 2001 the SNP Consortium
published its list of 1.42M SNPs discovered during and alongside the Hu-
man Genome Project (Sachidanandam et al., 2001). In the same year, Mark
Daly and colleagues published a study of linkage disequilibrium structure on
chromosome 5 (Daly et al., 2001), and noted that SNPs tended to form LD
blocks. This was soon confirmed independently on chromosome 21 (Patil
et al., 2001). The importance of these LD blocks were reinforced by the
discovery that a large proportion of recombination occurs in recombination
hotspots (McVean et al., 2004). These observation made association studies
based on a limited number of SNPs (so-called “tag SNPs”) more plausi-
ble, and led to the founding of the HapMap project in 2002 (International
HapMap Consortium, 2003). The HapMap Project set out to discover and
characterise genetic variation within and across human populations, and by
2005 had brought the number of known SNPs up to 9.2M, 1M of which were
genotyped in a reference panel of 270 individuals on a range of technologies
(International HapMap Consortium, 2005). The project went on to genotype
far more SNPs (3.1M) in the same samples using Perlegen technology (Hinds
et al., 2005), and genotype 1.6M SNPs on an extended panel of 1184 indi-
viduals using Affymetrix and Illumina technology (Altshuler et al., 2010).
The dataset generated by the HapMap project provided a backbone for
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genome-wide association studies, locating hotspots and providing a resource

for designing tag SNP sets across different populations.

Meanwhile, technology was advancing to allow these newly discovered
variants to be genotyped efficiently. During the 1980s, many groups were
working on parallelising Southern blotting. While a Southern blot allows the
detection of a specific DNA sequence via binding to an oligonucleotide, it
could only be performed one oligo at a time, making it costly and slow. A
better solution would be a system where binding to a large number of oligos
could be tested simultaneously. The publication of massively parallel light-
directed synthesis in 1991 (Fodor et al., 1991) allowed sequences of DNA
to be “printed” onto a chip, which could in turn be hybridised to a sample
of DNA and digitally imaged. This technology was commercialised as the
Affymetrix microarrays, with the first chip containing 64 kbp of sequence
to assay the HIV genome for mutations (Lipshutz et al., 1995). The same
approach was soon applied to human SNP variation, with a prototype chip

being used to genotype 500 SNPs simultaneously in 1998 (Wang et al., 1998).

Throughout the early 2000s, a flurry of companies commercialised meth-
ods for genome-wide SNP genotyping, using a variety of methods and tech-
nologies (Syvanen, 2005). In retrospect, the most significant were Affymetrix
and Illumina, whose chips went on to underlie most of the GWAS to date.
Each used a slightly different form of microarray, but they also differed in
their selection of SNPs: Affymetrix used a random selection of SNPs, whereas
[lumina used a set of tag SNPs designed to maximise coverage in Europeans
(Barrett and Cardon, 2006). Affymetrix released its 10K Mapping Array in
2003 (Matsuzaki et al., 2004b), which it quickly expanded to 100K SNPs in
2004 (Matsuzaki et al., 2004a) and 500K in 2006. Illumina released its Gold-
enGate BeadChip system for genotyping approximately 1200 SNPs in 2002
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(Fan et al., 2003), followed by the Infinium chips, which in 2005 could geno-
type 100K SNPs, moving rapidly up to 650K SNPs in 2006. Higher density
chips, capable of genotyping a million SNPs, followed from both companies,
with the Illumina Human1M chip in 2007 and the Affymetrix SNP 6.0 array
in 2008.

1.2.5 The age of genome-wide association studies: 2005-

Present

By 2005, the technology for GWAS was in place. Genome-wide SNP sets that
tagged the majority of common variation were on the market, with the pos-
sibility of performing statistical imputation (see Chapter 3) via the HapMap
data to assay millions of SNPs. DNA microarrays were commercially avail-
able to genotype these SNPs in thousands of individuals. Additionally, many
sample collections, originally collected for large linkage analyses, were already
sitting in freezers ready for study.

The first published GWAS, a study of age-related macular degeneration
(AMD), involved only 96 cases and 50 controls genotyped on the Affymetrix
100K chip. Despite the small sample size, they identified a strong, common
association with a coding variant in the CFH gene (Klein et al., 2005). Other
early successes include the discovery of the important Crohn’s disease gene
IL23R in 2006 (Duerr et al., 2006), and a second association for AMD in the
same year (Dewan et al., 2006).

However, while the early days of GWAS were characterised by dramatic
successes, they also suffered some teething troubles, driven mostly by a lack of
a standardised GWAS protocol. For instance, in 2006 a genome-wide study of
649 individuals reported an association between a variant in the gene INSIG2

(Herbert et al., 2006) and childhood obesity. This association did not meet
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the modern definition of “genome-wide significant” (GWS) (p < 5 x 107%),
and reports soon came in that the association did not replicate in indepen-
dent cohorts (Dina et al., 2007; Loos et al., 2007; Rosskopf et al., 2007).
Another early GWAS reported an association between memory performance
and a variant in the gene KIBRA that did not meet genome-wide significance
(Papassotiropoulos et al., 2006), which itself spawned a series of contradic-
tory and inconclusive candidate gene studies (Schaper et al., 2008; Need
et al., 2008; Bates et al., 2009) (exactly the situation GWAS was designed to
prevent). Other early genome-wide association studies employed statistical
techniques that seem somewhat unusual by modern standards (e.g. Liu et al.

(2006)).

The watershed moment in genome-wide association studies was the pub-
lication of the first study from the Wellcome Trust Case Control Consortium
(WTCCC) in 2007 (Wellcome Trust Case Control Consortium, 2007). The
WTCCC was the largest set of GWAS of its time by a wide margin, including
3000 shared controls and 7 different phenotypes, each with 2000 samples. It
cost a total of £9 million. The study identified 21 loci, of which 14 were novel.

All but one of these associations have been confirmed in later meta-analyses.

The first WTCCC study applied a number of techniques and protocols for
the first time, many of which became standards in genome-wide association
studies. The study gave a detailed treatment to population stratification,
ensuring that associations were not driven by systematic differences between
cases and controls. It was the first GWAS to use the HapMap data to per-
form genotype imputation (using the newly developed IMPUTE algorithm
(Marchini et al., 2007)), allowing testing of variants that hadn’t been directly
genotyped. It also gave significant attention to genotype calling, developing a

new calling algorithm, and ensuring that all associated SNPs were manually
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inspected. Not all of these were novel techniques, but the WTCCC cemented
these steps into a protocol that later GWAS followed.

Another aspect of the WTCCC was the extensive replication efforts that
followed it. Both SNPs that passed genome-wide significance, and (impor-
tantly) SNPs that showed suggestive but not conclusive evidence in the orig-
inal scan, were taken forward for replication in extensive cohorts. These
studies, which included type 2 diabetes (Zeggini et al., 2007), rheumatoid
arthritis (Thomson et al., 2007; Barton et al., 2008), Crohn’s disease (Parkes
et al., 2007) and type 1 diabetes (Todd et al., 2007), led to the establish-
ment of many new associations. It also established the importance of per-
forming replication in independent samples, using independent technologies,
in order to provide additional robustness to existing associations, and to
cost-effectively identify new loci. This replication paradigm has become an

important part of modern GWAS.

Over the last five years the number of GWAS per year has increased
linearly (Figure 1.3). As the number of association studies increased, the
next logical step was to combine studies together into meta-analyses (as was
done during the linkage era). Early GWAS meta-analyses often consisted
of pairwise collaborations, such as Samani et al. (2007), and often did not
produce many more significant hits than the original GWAS. However, meta-
analyses soon started producing startling results. The first Crohn’s disease
meta-analysis, consisting of three studies, discovered 21 new loci, bringing
the total to 30 (Barrett et al., 2008) (more than the entire WT'CCC), and
the type 2 diabetes meta-analysis discovered six new loci for the previously
very hard to crack disease (Zeggini et al., 2008). In 2009 the type 1 diabetes
meta-analysis broke the record for the disease with the largest number of

associations, with 40 loci (Barrett et al., 2009a), topped by the 71 Crohn’s
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disease loci in 2010 (Franke et al., 2010). For almost all diseases studies, the

majority of associations now came from large consortium meta-analyses.

1.2.6 Technological advances post-GWAS: 2004-Present

Technological development did not halt with the advent of GWAS, and many
new experimental techniques have been introduced in the last 5 years that
are again dramatically altering the landscape of complex disease genetics.

The greatest leaps forwards have come in sequencing, with the advent
of “next-generation” (sometimes called “second generation”) sequencing. In
2004 the 454 pyrosequencing method was introduced, which allowed hundreds
of thousands of sequencing reactions to be carried out in parallel (Langaee
and Ronaghi, 2005). In 2006 Illumina commercialised the Solexa reversible
termination sequencing method, and in 2007 ABI (now Life Tech) intro-
duced the Sequencing by Oligonucleotide Ligation and Detection (SOLiD)
technology. By the end of 2007 it was possible to sequence over 500Mb a day
on a single machine (Mardis, 2008). In the last few years other sequencing
technologies have been introduced, including the small, low-cost “desktop se-
quencers” such as [llumina’s MiSeq and Life Tech’s Ion Torrent (Quail et al.,
2012), and even more advanced technologies, such as nanopore sequencing
(Eisenstein, 2012), are on the horizon. The rate of improvement in through-
put has continued to climb, and at the time of writing the state of the art
machines (e.g. Illumina’s HiSeq 2500) can produce over 50Gb per day per
machine. The cost of a high-quality fully sequenced human genome is now
less than £5000 (Wetterstrand, 2012).

This technology spawned a new breed of systematic resequencing studies
of human reference populations. In 2007 the 1000 Genomes Project was

founded, to perform low-coverage (2-4X) sequencing on thousands of human
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genomes. The project started with a pilot that detected 16M SNPs, indels
and structural variants in 180 HapMap samples (Project, 2010). The full
project will eventually sequence 2500 individuals from 25 populations, with
the first phase producing calls for nearly 40M variants across 1092 individuals
(Project, 2012). Unlike the HapMap, this dataset is a near-complete map
of genetic variation in these samples, including all common SNPs and indels
genotyped in all individuals, as well as an extensive catalogue of low frequency

variation.

These results also underlie the development of a new generation of high-
density genotyping chips, including the release of the lllumina Omni2.5, with
2.5 million SNPs; in 2010. Another result of this technology was the falling
cost of designing custom genotyping chips, with the introduction of the II-
lumina iSelect high-density custom chips in 2006, and Affymetrix’s Axiom
system in 2010.

Other technological advances in sequencing followed these developments.
In 2007 NimbleGen published their sequence capture technology (Albert
et al., 2007), which used microarrays to pull down a specified subset of the
genome, allowing low cost sequencing of a subset of the genome. This birthed
the field of “whole exome sequencing”, in which only the 1% of the genome
coding that codes for proteins is sequenced. Interestingly, the benefits of this
technology were first seen in the field of Mendelian diseases, where exome
sequencing can identify all coding mutations in an individual’s genome, and
public databases (such as the 1000 Genomes Project) can exclude all poly-
morphic markers, leaving a small number of candidate causal mutations. The
discovery of the causal mutation for Miller syndrome by exome sequencing
(Ng et al., 2010) was rapidly followed by other successes, and this method is

now the dominant method for solving Mendelian diseases (Bamshad et al.,
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2011).

1.2.7 Next-generation GWAS and post-GWAS studies

The advent of GWAS has changed the landscape of complex disease genetics.
In 2005 only a few dozen loci were known to be associated to complex dis-
eases, across a handful of diseases. By the end of 2011, the NHGRI GWAS
catalogue reported that GWAS have discovered over 2000 genome-wide sig-
nificant associations for over 200 complex traits. But GWAS have their limits
as a tool for locus discovery, and new methodologies are appearing the fill
the gaps left by GWAS.

The tag SNP approach, the greatest strength of GWAS, is also its biggest
limitation: a GWAS is only well powered to detect associations that are well
covered by common tag SNPs. Populations with different LD to the HapMap
populations, or meta-analyses across populations with different patterns of
LD, can confound the tag SNP approach (Teo et al., 2010). This is especially
problematic as many important diseases, including many infectious diseases,
are more common in areas of the world with greater genetic diversity (e.g.
Africa) or from areas that have been less well represented in reference panels
(e.g. South Asia). Additionally, low frequency variants are not well tagged
by common SNPs (Altshuler et al., 2010), making first generation GWAS
ill-suited to discovering associations to such variants. This is an important
limitation, as it has long been hypothesised that rare variants are likely to
play an important role in complex disease (Pritchard, 2001). Finally, GWAS
arrays are still relatively expensive, yet to discover loci with low-frequency
or low-effect size risk variants we require tens or even hundreds of thousands
of samples to be genotyped.

One potential method for overcoming problems of poor tagging is to use
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a technique called genotype imputation, which can allow us to infer these
poorly tagged sites statistically using the new sequence reference sets de-
scribed above. As an example, the study of malaria in Africa has generally
suffered from low LD and high diversity (Teo et al., 2010). However, a
MalariaGEN study showed that genotype imputation using a well-matched
reference set could overcome issues of low LD (The MalariaGEN Consor-
tium, 2009). Similarly, imputation may allow us to assay associations at low
frequency variation that is not well tagged by any one common SNP. Geno-
type imputation, combined with datasets such as that generated by the 1000
Genomes Project, may allow us to perform high-powered meta-analyses in
African populations, and uncover new associations with low-frequency vari-

ants, without requiring more experimental genotyping.

The advent of low cost, high-density custom genotyping has allowed a
many-fold expansion of genetic datasets of complex disease. By joining to-
gether in large meta-consortia, disease genetics consortia can club together to
design genotyping chips. Because orders are large (>100,000 samples), chips
can be purchased at very low cost, allowing very large sample sizes. The first
example of such a chip was the Metabochip, designed to genotype 200,000
variants for deep replication and fine-mapping of metabolic and anthropomet-
ric traits (Cortes and Brown, 2011). The Metabochip has already expanded
the number of known loci for both type 2 diabetes (Cortes and Brown, 2011)
and glycemic traits (Scott et al., 2012). Other consortia have constructed
similar platforms, including the Immunochip (for immune-mediated disease)

and the Exome chip (to study coding variation).

The falling cost of sequencing has allowed the direct assaying of low-
frequency variants via resequencing studies. FEarly studies involve the se-

quencing of sets of candidate regions using capture technology. A striking
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early success came with the discovery of multiple rare variants in the gene
IFIH1 that protect again type 1 diabetes (Nejentsev et al., 2009). This study
used 454 sequencing to sequence the exons of 10 candidate genes in 480 in-
dividuals, and marked the first major success of next-generation sequencing
in complex disease genetics. A similar sequencing project in Crohn’s dis-
ease identified a number of low frequency associated variants within existing
GWAS loci, including a highly significant splice variant in the gene CARDY
(Rivas et al., 2011).

Newer sequencing projects in complex diseases are focusing on whole-
exome or whole-genome sequencing of case and control collections. Exome
sequencing is relatively low cost, and can allow large sample sizes to be
collected, but only allows us to study coding variation. A notable alternative
approach is low-coverage, whole-genome sequencing, which is made plausible
using the imputation-based genotype refinement techniques developed for the
1000 Genomes Project (Li et al., 2011). These techniques can allow us to infer
genotypes in enough samples to test low-frequency variants genome-wide, at

approximately the same cost of exome sequencing.

The success of whole-exome sequencing in solving Mendelian diseases has
led people to ask whether family-based sequencing studies of complex dis-
ease may be able to identify low-frequency coding mutations that contribute
to complex disease (Bamshad et al., 2011). While GWAS (and, indeed, the
failure of linkage meta-analyses) ruled out the existence of high-frequency,
high penetrance mutations (i.e. mutations likely to be shared between fam-
ilies), they do not rule out the possibility of rare variants of intermediate
penetrance segregating with disease in a single family. The sequencing of
multiply affected (or “multiplex”) families, combined with new functional

and genetic reference datasets, may allow us to identify such rare variants.
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1.2.8 Conclusions

The history of locus discovery in human disease genetics has largely been
a history of technology. The Southern blot and Sanger sequencing allowed
the first disease genes to be mapped and cloned. PCR sparked the age of
complex disease linkage and candidate gene studies, and microarrays and
capillary sequencing led to GWAS. In each case, the general form of the
studies were anticipated decades in advance, and the concepts underlying
them were thus decades old by the time they came to be applied.

This is not a general property of genetics. For instance, sequence anal-
ysis has undergone a statistical renaissance in response to next-generation
sequencing, with methodological advances in short read alignment (Ruffalo
et al., 2011), de-novo assembly (Pop, 2009) and variant calling (Nielsen et al.,
2011). It also has clear exceptions around chip design and processing, such
as the development of tag SNP approaches (Li and Wang, 2010), of genotype
calling algorithms (Shah et al., 2012) and of genotype imputation and meth-
ods to handle the resulting uncertainty (Marchini and Howie, 2010). But
when it comes to locus discovery per-se, this conceptual preempting is the
rule. Likewise, we are all aware that the ultimate locus discovery experiments
will come within a few decades, via low-cost, high-quality whole-genome se-
quencing of hundreds of thousands of samples.

One effect of this technological drive is a tendency for statistical argu-
ments to be raised, settled and often forgotten decades before the technology
catches up. This can lead to a certain amount of historical blindness. Dis-
cussions of rare variants and genetic heterogeneity, for instance, seem to wax
and then wane away every 10 years or so (with early family studies, with
RFLP studies, with the failure of complex disease linkage, and in the GWAS

era). Another effect is that methods can become ingrained, and used without
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proper thought to what they mean. This was one of the reasons behind the
failure of candidate gene studies, where a rule-of-thumb (a p-value thresh-
old of 0.05) became a blindly applied law even in cases where it was not
appropriate.

A more positive result of the established statistical methodologies is that
far more attention is paid to downstream analysis of results. A good example
of this is the development of gene prioritisation techniques, such as GRAIL
(Raychaudhuri et al., 2009a) and DAPPLE (Rossin et al., 2011). A solid
statistical framework is a platform that can easily be built upon to go beyond
simple locus identification (e.g. see Chapter 4). This is especially important
given that one of the main challenges of the next decade will be to turn the
windfall of loci discovered by GWAS into detailed biological knowledge of

disease.
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1.3 OQOutline of this thesis

In this chapter, I have laid out the reasons for studying complex disease
genetics in general, and the genetics of IBD in particular. I have shown how
the process of locus discovery has proceeded over the last 70 years, and in
particular how new technologies have continually opened up new avenues of
research. We have seen that the greatest successes have come with the rise of
genome-wide association studies, and in particular with large, collaborative
GWAS meta-analyses. However, we have seen that there are still many loci
to discover, as there are many classes of allele that the first generation of
GWAS were unable to effectively study. I discussed how new technological
advances are expanding our ability to study the gaps that GWAS left, and
some of the strategies we can use to utilise these technologies to discover
associations to rare and low-frequency variants, variants of small effect size
and variants in diverse populations. The following chapters will lay out
a series of investigations into the methods required, challenges faced and
results generated by this next generation of studies.

However, before I describe these specific experiments, I will start by laying
down a statistical framework to understand the methods and models that I
am going to use. The twin studies used to infer heritability, the case-control
studies used to discover risk variants, and the epidemiological studies that
construct predictive models all use a related but distinct series of statistical
methods. Likewise, many statements about genetic risk, such as the amount
of heritability explained by GWAS, or the power of genetic risk prediction,
are themselves built upon models of genetic risk. Throughout this thesis I
make use of many of these different methods and models in the analysis of
various datasets, and so before I report these analyses it is necessary to review

this range of techniques, and unify them into a single rational framework.
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To this end, Chapter 2 describes a family of models of genetic risk, built
upon a normally distributed genetic risk score, with different models specified
by different link functions connecting this risk score to disease probability. I
show how the assumptions of most major statistical techniques correspond
to a choice of one out of three link functions, and investigate the behaviour
of these three models. I demonstrate that these models produce drastically
different predictions about the distribution of observable quantities, and dis-
cuss how these differences can lead to inaccuracy or ambiguous results in

studies of complex disease.

Once I have placed locus discovery efforts into both historical and statis-
tical frameworks, I will proceed to describe a series of three projects designed
to discover genetic risk factors in complex disease. Each of these projects is
designed to extend, and overcome the limitations of, first-generation GWAS
using a combination of new genetic data from patients, new publicly available

genetic and functional datasets and new statistical techniques.

In Chapter 3, I investigate the use of genotype imputation algorithms
in genome-wide association studies. As we saw above, genotype imputa-
tion can allow disease association to be tested with far more SNPs than
have been genotyped in a GWAS, facilitating meta-analysis and increasing
power. I begin by investigating the impact of reference set size and diver-
sity on imputation in Europeans, using the HapMap data, with particular
focus on the imputation of low frequency variants. I then investigate how
effective the same reference sets are at performing imputation in African pop-
ulations. Next, I expand this analysis to new datasets, looking at how well
1000 Genomes project data can impute low-frequency variation in a diverse
African population. Finally, I show how imputation of variants from the

1000 Genomes pilot can be used to draw conclusions about disease biology,
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by estimating the influence of loss-of-function variants on 7 complex diseases.

It is now clear from GWAS that a large proportion of disease risk is due to
so-called polygenic risk. This consists of a large number of common variants,
each with a small effect size, of which only those with the largest odds ratios
have so far been identified. As we have seen, custom genotyping can allow
us gather enough samples to identify loci in this long tail of low effect size
polygenic risk. In Chapter 4, I discuss how a custom genotyping platform (the
Immunochip) has been used to expand the IIBDGC GWAS meta-analyses
collection to include over 40,000 cases of inflammatory bowel disease (IBD).
This chapter details the analysis of this genotype data, including genotype
calling, quality control, and association analysis. 71 new loci for IBD are
described, bringing the total to 163 loci, with 193 genome-wide significant

independent signals.

In order to biologically interpret this large list of associated loci, I present
a number of bioinformatic analyses. This includes comparing genetic over-
laps between the two forms of IBD (CD and UC), and the overlap between
IBD and other complex and Mendelian diseases of immunity. It also includes
gene prioritisation, functional enrichment and gene expression analyses. Fi-
nally, I outline two other projects that make use of the Immunochip data.
The first is the use of Y chromosome markers to test relationships between
Y chromosome haplogroups and IBD. The second is the use of densely geno-
typed fine-mapping regions on the Immunochip, combined with functional
information, to draw conclusions about the nature and action of causal vari-

ants.

In contrast to the study of common variants of small effect, Chapter 5
describes a set of approaches to discover rare variants of large effect by us-

ing large, multiplex families. I begin by producing a joint model of common
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polygenic and rare dominant penetrant genetic risk in families, and exploring
how the probability of observing multiplex families of a certain size varies
depending on heritability and penetrance. I then lay out a method of per-
forming genetic risk prediction in families, and show that this method can
effectively distinguish between multiplex families that do or do not harbour
a penetrant mutation.

I go on to introduce a set of multiplex families with an abnormally high
prevalence of IBD, including one extended family with over 40 affected in-
dividuals. 1T describe and apply an approach to studying such families using
a combination of genotyping, whole-genome and/or whole-exome sequenc-
ing and functional annotation to detect candidate causal variants. I also
discuss various methods by which these candidate variants can be validated
and followed up.

In the final chapter I will highlight consistent themes and topics that tie
together this thesis, including the importance of external datasets, the inter-
play between statistical and biological theory, and the nature of experimental
design in the post-GWAS world. Next, I will look forward to locus discov-
ery efforts in the near future and beyond. This will involve the description
of a currently ongoing experiment involving low-coverage whole-genome se-
quencing of 5000 IBD patients and 4000 healthy controls, in order to identify
low-frequency associations. Finally, I will consider the “ideal” locus discov-
ery experiments of the coming decades, and the potential for an increased

integration of genetic and functional biology.






Chapter 2

Statistical methods and models of

genetic risk

2.1 Introduction

The field of complex disease genetics is inherently statistical, both in the
sense that it studies a phenomenon (complex disease) that is by definition
probabilistic, and in the sense that it relies on statistical methods to make
inferences from the data under study. Examples of these statistical methods
include risk prediction (either using relative risks or odds ratios), regression
analyses (usually using logistic regression) and family analyses (generally
using liability threshold models). Each of these methods is built around
assumptions, and these assumptions themselves form a model (either explicit

or implicit) about the distributions of genetic risk in the population. In
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many cases, these methods imply very different and mutually incompatible

assumptions.

In the last few years the interest in statistical models of genetic risk has in-
creased dramatically. Recent papers include general discussions of modelling
issues arising from GWAS (e.g. Sawcer and Wason (2012)), and detailed ex-
aminations of specific models (e.g. Wray et al. (2010)). Two recent reviews
(Wray and Goddard, 2010; Clayton, 2012) have made broad comparisons of
different models of genetic risk, noting a number of inconsistencies between
models and describing different implications for association studies and risk
prediction. However, neither provided a systematic survey of the properties
of genetic risk models, and in particular neither gave a detailed investigation
into the relationships between different models, and between models and
statistical methods. The time is thus ripe for a unified analysis that places

different statistical methods and models of risk into a single framework.

In this chapter I will lay out a simple framework for classifying such
models, and discuss three major models of genetic risk. Together, these
three models underlie most standard models and methods used in the field. I
will investigate how these models differ, how suitable each is to the tasks that
they have been used for, and how their predictions about the distributions

of genetic risk differ from each other.

In the introduction, I will formulate a general description of a model of
genetic risk, and discuss a specific family of models that are specified in terms
of a normally distributed genetic risk score and a link function. In Section
2.2, T will go on to discuss in more detail the relationship between locus-
based models of genetic risk (such as those fitted in GWAS) and continuous
risk scores. Sections 2.3-2.5 will discuss and critically assess three specific

models of risk that correspond to three link functions (the log, probit and
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logit models), and in Section 2.6 I will compare how these models differ in
their predictions about the distribution of genetic risk. In the final section I
will discuss how confusion between these models can generate real problems
in statistical genetics, as well as discussion some of the limitations of this

approach.

2.1.1 Definition of a genetic risk model

In general, a model of genetic risk has two properties. Firstly, it specifies a
distribution of a genetic risk value p; € [0, 1] for a randomly selected individ-

ual ¢
pi ~ Distribution(), (2.1)
where the probability of an individual developing the disease is equal to p;,
or
P(d; = 1|p;) = p. (22)

Here, d; is an indicator variable taking on value d; = 1 if the individual
i has the disease (if we are modelling the prevalence) or will develop the
disease in their lifetime (if we are modelling the lifetime risk).

Secondly, a model of genetic risk specifies a joint distribution for genetic
risk values p; and p; for individuals ¢ and j that share a family relationship

’rij

(pi,p;) ~ Distribution(6,r;;). (2.3)

For a purely genetic model, we make the additional assumption that
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disease incidence is independent in families conditional on their genetic risk,

1.e.

P(d; =1,d; = 1|p;,p;) = P(d; =1|p;)P(d; = 1|p;)

In essence, we assume that relatives have no shared environmental risk. In
this chapter we will almost exclusively consider purely genetic models. In the
case where environmental and genetic risks act independently, these models
can be reasonably interpreted as the behaviour of the genetic component,
and are easily extended to include environmental risk (as discussed in Section
2.4.1). In the presence of strong gene-environment interaction, however, these
purely genetic models will become inaccurate, and the true model will depend

on the form of the interaction.

We refer to p; as the genetic risk or the genetic disease probability. Its
distribution can be discrete or continuous, though we will only consider con-

tinuous distributions in this chapter.

2.1.2 Observable parameters of a genetic risk model

While each model of genetic risk has its own set of parameters 6, there are a
number of common parameters that we can calculate for any model, which
in turn are measurable in real populations.

The first parameter I will consider is the population prevalence of the
disease, or the probability that a randomly selected individual has the disease

in question. This is equal to
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=
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where f(-) is the probability density function of p.

A more complicated measure is how “genetic” a disease is. This concept
is relatively ill defined. The heritability of liability h? is often used for this
purpose, which is equal to the proportion of variance in the total risk that
can be attributed to genetics, where risk is measured on the liability scale
(discussed in Section 2.4.1). However, this parameter is model specific.

Instead, for comparison across models we will use the relative recurrence
risk, equal to the fold enrichment of disease prevalence in relatives of affected

individuals. For relatives of type 7;;, this is calculated as

P(dl = 1|d] = 1,7“Z'j)

A\, =
" P(d;=1)
_ Pldi = 1,d; = 1]ryj)
B P(d; =1)?
fpi fpj P(d; = 1|p;) P(d; = 1{p;) f (pi, ps|ri;)dpidp;

— = (2.6)

This can in theory be measured directly from population data, if common
environment can be controlled for. Regardless of whether or not it can actu-
ally be measured, the definition is model independent, and acts as a useful

benchmark to compare across models.
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Finally, we will be interested in the distribution of p in cases and controls

flpld=1) = P@;ﬁfﬁ@)
- %f(p) (2.7)
Fld=0) = TS (2.8)

2.1.3 Genetic risk scores and link functions

In this chapter, we will consider a specific family of continuous genetic risk
models. These models have two components, firstly a normally distributed

genetic risk score

n~ N(p,o?) (2.9)

and secondly a link function g that connects this genetic risk score to the

genetic risk probability

p=g(n). (2.10)

We can thus write down the probability density function of p as

1 =20 (121): (2.11)

Cdgo o
where ¢ is the density of the standard normal distribution.

In the following section, we will describe the relationship between discrete
genotypes & and risk scores . We will then consider three link functions: the
log link g(n) = exp(n), the logit link g(n) = (1 + exp(—n))~"' and the probit
link g(n) = @~ (n).
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2.2 From discrete genotypes to continuous risk

The conversion from discrete genotypes to a continuous genetic trait was
first outlined by Fisher (1918), who showed not only that a large number
of discrete genetic factors can give rise to a continuous trait, but also that
certain correlation structures in this continuous trait exist between family
members as a consequence of Mendelian inheritance. In this section I will
outline the relationship between discrete genetic risk factors and a continuous
risk score, and outline the distribution and parameters of this score.

Note that in the following section I will use lowercase x and y to refer to
random variables that represent genotype dosages (i.e. = € (0,1,2)), upper-
case X and Y to refer to general random variables, and lowercase z to refer
to a standard normal random variable.

The above described 7 score is constructed from a combination of geno-

types across n loci, ¥ = (21, ..., x,). The general form is

n = (), (2.12)

where t is the function that maps from genotype to score. Note that, in this
general formulation, there is no requirement that n be normally distributed
(as described in Equation 2.9).

We can simplify this by assuming that the loci are all independent, and

each contributes independently to 7, i.e.

N =ay+ Ztl(xl)- (2.13)

As the random variables x; are independent, and providing that the trans-
formed variables ;(x;) have finite means and variances that are independent

of the indicator variable [, it follows from the central limit theorum that n



48 Chapter 2. Statistical methods and models of genetic risk

tends to a normal distribution as n increases.

We can modify the score to include interaction terms between genotypes,

e.g. by including second-degree interaction

77:&04'22151']‘(%7%)- (2.14)

i=1 j=i

In this section we discuss the particulars of going from a combination of
genotypes to a continuous risk score. We will discuss the problem in general
in terms of the properties of sums of independent variables, and then discuss

the specific case where 7 is a linear function, i.e. fi(z;) = a;z;. Finally, we

will discuss issues with non-linear functions.

2.2.1 Properties of a sum of independent variables

Suppose we have two sets of random variables, X; and X5, and Y; and Y5,

such that X; L Y; V(i, 7).

We construct scores by adding these variables together, i.e. n; = X; +Y;.

The expectation and variance of this score are given by

Elp] = E[X;+Y]
— B[X) + E[Y] (2.15)
Var[n] = Var[X; +Y]
— Var[X)] + VarlY), (2.16)

and the covariance are given by
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cov(ni,m2) = Elmna] — Elm]En,]
= E[(X1+Y)(X2+Y3)] — E[X1 + VI]E[X, + Y]
= E[Xi1Xo] + EV1]E[Xs] + E[X1]E[Y] + E[Y1Y2] —
E[X\|E[Xs] — E[X1]E[Ys] — E[X5]E[Y1] — EV1]E[Y,]
= E[XiXo] - E[X\|E[X,] + EV1Ys] — E[Y1]E[Y]

= cov[ Xy, Xo] + cov[Yy, Yal. (2.17)

We can generalise this to the sum of n variables n; = Z?:1 Xi; such that

Xap L XegVa, c,b # d, to give

Eln] = ZE[XU] (2.18)
Var[n;] = Z Var[ X, (2.19)
cov(ny,me) = ZCOU(XU,XQJ'). (2.20)

If the X;;’s have finite mean and variance, then when n is large we can

approximate (1, 72) as a multivariate normal with

go= (E[m], E[Th]) (2-21)
5 Var[m] — cov(ny,n2) (2.22)
cov(n,n2)  Var[m].

If we imagine that the Xj;’s are functions of allele count for independently
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segregating genetic risk loci, we can see that to calculate the covariance of a
function that is a sum of such functions only requires the calculation of the

covariance of each function individually.

2.2.2 General covariance for linear functions of allele count

A linear, or additive, risk score has the form

ni = ap + Z i (2.23)
=1

Again we will assume that the variants in the score are in linkage equilib-
rium, and thus the allele counts at different loci are independent (x;, L x4Va # b).

The score n; has expectation and variance

Eln] = a0+ Z  Elzy]
=1
= ag+ Yy a2f (2.24)
=1
Var[n] = Z a?Var|zy]
=1

= Y a2fi(1 - f), (2.25)
=1

where f; is the allele frequency of variant [.

To calculate the covariance, suppose two individuals ¢ and j have a coeffi-
cient of relatedness p;;. This is equal to the probability that any given allele
on any given chromosome will be shared IBD (with p;; = 0.5 for siblings i

and j, etc).
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For a variant with allele frequency f, we can denote the allele count
for individual ¢ as x; = x;1 + x;2, where x;;, are allele counts on individual
chromosomes k = 1,2 for individual i. We will use S,ij = 1 to denote that
this allele is shared IBD between individuals ¢ and j on chromosome k, with
P(SY7 =1) = p;;. For now I will assume Sy L S¥, i.e. that the IBD sharing
states for the two chromosomes are independent (as is the case for siblings,
for example). The next section will generalize this to arbitrary IBD distribu-

tions.

The joint distribution of genotypes on a particular chromosome £ for two

individuals ¢ and 7 with coefficient of relatedness p;; is given by

P(2ir, wjr) = pig P(xin, wj] S = 1) + (1 — pij) P2ir, wjx| SP = 0),  (2.26)

where
” P(ay,) if zg = v
Pz, |SY = 1) = () 1F 230 = 2 (2.27)
0 otherwise,
(2.28)
and
P(zig, x| Sy = 0) = P(aa) P(x1). (2.29)

We can calculate the covariance in allele counts between two individuals

of x;;, and xj; by first calculating
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Elvgry| = inkzxjkp(xika$jk)
= P(Izkzl,xjkzl)
= psz(xlk = 17xjk = 1|S;€j = 1) -+ (1 - pZ])P(a:Zk = 17xjk = 1|S;€j = 0)

piif + (1 —pij) (2.30)

and then by using this to calculate the covariance

covlzi, xji] = Elvar) — Elvg Elv ]
piif + (L= pij) f* = f?
pij f(1 = [).

We can use Equation 2.17 to give cov|x;, ;] = 2p;; f(1 — f). Note that
var(z;] = 2f(1 — f), so cor|z;,z;] = p;j. This means that, as well as being
the probability of sharing any given allele IBD, the coefficient of relatedness

is also equal to the correlation in genotype counts.

We can therefore give the covariance of n; and n; as

n n
covlmi,n;] = cov]Y mwa, Y ai;]
=1 =1
n

= Z cov[ayxyy, ajry]

=1
n

= Pij Z%Q?fl(l —fi)

=1
= pijoar(n]. (2.31)
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Again, note that cor[n;, n;] = pi;.

When I refer to “additive” genetic risk throughout this thesis, I refer a
to risk score which can be expressed thus on some scale. This assumption of
additivity is important because it allows us to assume that the correlation

between individuals on this scale is equal to their coefficient of relatedness.

2.2.3 Covariance for non-linear functions of allele count

The coefficient of relatedness is not sufficient to give the full joint genotype
distribution for two individuals. For instance, while full siblings and parent-
offspring pairs both have the same coefficient of relatedness (p = 0.5), they
have distinct patterns of allele sharing due to the fact that parent-offspring
always share exactly one allele IBD, but siblings can share zero, one or two.

We write the proportion of alleles shared IBD 1 and 2 as py, py (with
1 — p; — po with IBD 0). We can calculate the coefficient of relatedness from
the IBD probabilities as p = %pl + po. Parent-offspring pairs have p; = 1
and ps = 0, siblings have p; = 0.5 and py = 0.25.

The table below shows the joint genotype distributions depending on IBD

status.

Genotype (z;,z;) | IBD =0 IBD=1 1IBD =2
0,0 (1—f)* Q-5 @Q-5?

0,1 2f(1—=f)* fA-£)?2 0

0,2 f2a—=* 0 0

1,1 Afrfa—f? fa-f 2fad-f)
1,2 2f°0—f) fFA-f) 0

2’2 f4 f3 f2

Note that certain genotype combinations can occor multiple ways. For in-
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stance, there are two possible ways of having one individual with two alleles

and one with zero, (z;,z;) = (0,2) and (z;,z;) = (2,0). This means that the

probability of being in either of these two states is equal to 2f2(1 — f)2.

We can then calculate the expected values of various non-linear func-

tions of genotype count. For instance, the product of genotype values has

expectation
E[Z’Z.I']]

AfP(L—f)?4+8f3(1— f) +4f

42 (2.32)
fFA—=f)+4f20— f) +4f°

f(1+3f) (2.33)
2f(1— f) +4f°

2f(1+ f) (2.34)

(1 - p1 — ps) Elw;z;[IBD = 0]

+p1 E[z;2;|IBD = 1] + py E[z;2;|IBD = 2]

(1= p1 = p2)4f* +pi(f(1+3f)) +pa2f(1 + f)
fp1 +2pa) + f(4 — p1 — 2p»)

2fp+2f%(2 - p). (2.35)

As we saw above, the expectation of the product is dependent only on p,

and not on the specific IBD distribution.

The expectation of z;z7 is given by



2.2. From discrete genotypes to continuous risk 55

ElzaZ[IBD =0] = 4f*(1—f)* +12f°(1— f) +8f*
= 2f%(2(1 = f)? +6f(1 — f) +4f")

= 4f2(1+ f) (2.36)
BElz;z{[IBD =1] = f(1—f)+6f°(1—f)+38f°
= f(1+5f+2f% (2.37)
Elz23[IBD =2] = 2f(1— f)+8f°
= 2f(1+3f) (2.38)
Elzizl) = (1—p1 — p2)Elz;a3|1BD = 0] + py E[z;27|IBD = 1]

+p2 Blz;a3|IBD = 2]
= (1=p1—p)Af*(L+ )+ pif(L+5f +2f7) + p22f (1 + 3f)
= (p1+2p2)f + (4 +p1+2p2) f7 +2(4 = p1 — 2p) f°
= 2pf+2Q2+p) P +42-p)f°. (2.39)

Again, this expression is only dependent on p. Finally, the expectation

2 2 . .
of z7x7 is given by
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Elz}a?[IBD =0] = 4f*(1— f)> +16f°(1 — f) + 16f*
= 411+ f)? (2.40)
Elzja?[IBD =1] = f(1—[f)+8f*(1—f)+16f°
= f(1+7f+8f% (2.41)
Elz}a3|IBD =2] = 2f(1— f)+ 167
= 2f(14+7f) (2.42)
Elz}a] = (1—pi—ps)Ela}23|IBD = 0]

+p1 E[z}23|IBD = 1] + py E[z23[IBD = 2]
= (L=p1i=p)Af? (L4 >+ f A+ T +8f%) +p2f (L +7f)
= f(p1+2p2) + f2(4 + 3p; + 10po)

+81%(1 —pa) +4f*(1 — p1 — po). (2.43)

And these in turn allow to us to calculate covariance and correlations of
non-linear functions of allele count between relatives. For instance, consider

the non-linear function n; = x; + bx% with dominance term b.



2.2. From discrete genotypes to continuous risk

Varn,]

Elnin;]

cov[1i, ;]

cor[n;, ;]

E[x;] + bE[x]]

2f(1+b) + 2bf?

Elz;] + bE[z?]

Af%(1 4 b)? + 8f%b(1 + b) + 402 f*
E(z; + bx?)?]

Ela?] + 2bE[x}] + b° B[]
2f(1+b)* +2*(1 + 6b + 7°)
Elni] - Bln,J?

2f(1+b)* —2f%(1 — 2b — 5b%)
—8f3b(1 + b) — 4f*v?

El(w; + bai)(w; + ba})]

Elwix;] + 2bE[x23] + b Ela}a?)

Enmj| — Elni] Enj]
cov[n;, 1]
var[ni,n;]°
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(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
(2.49)
(2.50)

We can find the maximum and minimum values of the correlation by

differentiating cor[n;, n;] with respect to b. We find that the correlation takes

on the minimum value of p, when b =

b=0.

=1
112/

and a maximum value of p when

As Figure 2.1 shows, low frequency variants show very little drop off in

correlation until very high degrees of dominance, whereas higher frequency

variants show a smoother drop off in correlation. Dominance effects thus

have a stronger impact on the risk score correlation when the variants have

higher frequency.



58 Chapter 2. Statistical methods and models of genetic risk
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Figure 2.1: The decrease in correlation in risk score for siblings and parent-
child pairs with increasing value of the dominance term (normalised such that the
maximum value is ﬁ) Different colour lines represent variants with different
allele frequencies.

2.3 The log risk model

The log risk model was defined by Pharoah et al. (2002) and more recently
elaborated on by Clayton (2009). It has most commonly been used to make
inferences about the utility of genetic risk prediction (Clayton, 2009; Sawcer
et al., 2010; Chatterjee et al., 2011), though it has also been used to estimate

sibling recurrence ratios in twin studies (Clayton, 2009).

As we will see, the model is asymptotically equivalent to the Risch multi-
locus model of genetic risk. It is also equivalent to the assumption of mul-

tiplicative combination of relative risk that is often used in genetic risk pre-
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diction (e.g. by the genetic testing company deCODEme).

This model is the least realistic of the models that I will consider, due
to the fact that the probability is not bounded, though it is also one of the
more widely used, probably due to its analytic tractability.

The link function for the log risk model is

p = exp(n). (2.51)

Substituting this into Equation 2.11, the density function for p is given
by

1 (log(p) — p
) = o (PR, (2.52)
2.3.1 Calculating parameters
The prevalence parameter K is given by
K = Ep]
= /exp(u + oz)p(x)dx

1 1,
= ex +ox — —z°)dx
/ o p(p 5 )

= /\/12_7Texp(,u—|—a2/2—%(x—a)2)dx

= exp(u+ %) /cb(x —o)dx

0.2

= exp(u+ 7), (2.53)

i.e. the expectation of the log-normal distribution (Johnson et al., 1994).
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As we saw in Section 2.2.2, under additivity the correlation in log risk
score is equal to their coefficient of relatedness p. We can thus express the

genetic risk for relatives p; and ps as

pr = exp(p+oz) (2.54)

pa = exp(u+ poz + /1 — poz), (2.55)

where z; are standard normal variables.

The probability of both relatives developing the disease given z;s is

P(dy =1,dy = 1im,n2) = p(di|m)p(da|ne)

= DPip2

= exp(pu+oz1+p+ pozy + /1 — p?02;)
= exp(2u+o(l+p)z1 +o0v/1—p?z). (2.56)

The mean rate of co-occurrence is thus
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Ep1ps]

[ iotpoind

exp(2n) [ exp( (a2 — 2001+ p)pad(ea)dandzs

exp(2n) [ exp(((a = o1+ ) = (1t ) po()dand
exp(2u-+ 50(L+0)) [ o1 = o(1 4 ppac(aa)dandzn

exp(2u + %0(1 +p)?)

« /qb(zl _o(14p)) exp(%(zg %0 /T= ?))d=1dz

exp(2p + %0(1 +0)%)

< [ o1 = ol p)) expl (2 = VT ) = (1 = 2))dnd
exp(2p+ 5o (1+ o) + 50%(1— )

< [ 601 o1+ 9)olen — oVT= Pl

exp(2p+ 5o (1+ o) + 50%(1— )

exp(2u+o(1+p)). (2.57)

The recurrence ratio in relatives is thus

E [p1p2}
K2

= exp(po). (2.58)

A =

We can rearrange equations 2.53 and 2.58 to give parameters p and o,

given a prevalence K and a sibling recurrence ratio A
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o? = 2log(\s) (2.59)

p=log(K) — o*. (2.60)

2.3.2 Case and control distributions

The distribution of 7 in cases is given by the probability density function

Pld=1) =

- e (2.61)

This can be simplified to

(i 1\2
exp(n) = exp(“U4L)

exp(p + 0?)
= el st
1 —(n—(u+02))2)

- o 27Texp( 202

P(nld=1) =

—p—0’)

Loty (262

i.e. normally distributed with a mean p + 0% and a variance 0. Thus, the
distribution of log risk for cases is the same as for the population as a whole,

but shifted upwards by o2.

The distribution for risk in controls is given by
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Figure 2.2: The case and control distributions of probability p and risk score 7
for a rare disease (K = 0.01, \; = 9) and a common disease (K = 0.05, \s = 3)

P(ld = 0) =

1—em)o(n)
oc(1-K)

(2.63)

The distribution of probability and risk score in cases and controls is

shown for example parameters (simulating a common and rare disease) in

Figure 2.2. Note that, in both parameter sets, a not insignificant number of

cases have a value of n > 0 and therefore p > 1 (see Section 2.3.5 for more

on this issue).
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2.3.3 Relationship to Risch model

The log risk model can be seen as an approximation to the Risch multilocus
model, introduced by Risch (1990), that has been used to make inferences
about genetic risk prediction (Wray et al., 2007). The Risch model assumes
that n loci exist, each with the same relative risk r and a risk allele frequency
f. An individual’s disease probability is based on the number of risk alleles

they carry z, and is given by

p = por’

= exp [log(po) + xlog(r)] (2.64)

where pg is the disease probability in individuals with zero risk alleles.
x is binomially distributed, with  ~ Binom(2n, f). As we saw above,

as n grows larger, = tends in distribution to N(2nf,2nf(1 — f)), and thus

p — exp (n) where n ~ N (log(po) + 2nf,2nf(1 — f)log(r)®), (2.65)

i.e. the Risch model is asymptotically equivalent to the log risk model with

w=1log(po) + 2nf and o? = 2nf(1 — f)log(r)>.

2.3.4 Relationship to multiplicative relative risk model and
log-linked regression
A commonly used risk prediction method is the multiplicative relative risk

model (also known as the log-linear relative risk model). This is the most

widely used of the relative risk models in epidemiology (Breslow and Storer,
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1985), and has been used in genetics, as a model for genetic risk prediction
(Lu and Elston, 2008). Notably, it is the model used by the genetic test-
ing company deCODEme to produce individual disease probabilities given a

customer’s genotypes (deCODEme, 2012).
Under the multiplicative relative risk model, we have n loci, with each
having a frequency f; and a genotypic relative risk r;. The probability for an

individual who has allele counts x; is given by

p = foHr?i

= exp |log(fo) + Z zilog(r;)| . (2.66)
i=1
Note that this can be seen as a generalisation of the Risch model, with
identical f = f; and r =r; for all ¢, and x = ), ;.
As long as the values r; are finite, the terms z;log(r;) will have finite mean
and variance, and thus the central limit theorum states that the summation

above will tend towards a normal distribution as n grows, giving

p — exp (n) where n ~ N (u,0), (2.67)
where
p=1log(fo) + Z 2filog(r;) (2.68)
i=1

n

0® =Y 2fi(1 = f;)log(r:)?, (2.69)

1=1
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i.e. equivalent to the log risk model with p and o.

2.3.5 Problem with probabilities greater than 1

Wray and Goddard (2010) noted a problem with the log risk and Risch mod-
els, in that they can predict probabilities greater than one. The authors
suggest a modified version of the model, where probabilities are capped at
1. In practice, capping at 1 may not be conservative enough: the genetic
testing company deCODEme cap their genetic risk probabilities at 90% (de-
CODEme, 2012). In contrast, Clayton (2012) argued that this is not a major
problem with the model, as for relatively uncommon diseases probabilities
greater than 1 are relatively rare in the general population.

However, I will show that this is a real problem with the model in many
circumstances. It is true that unless the disease is very common, the total
number of individuals with p > 1 is small. For a disease with K = 0.01 and
As = 9, less than 0.1% of individuals have p > 1, and even for a disease with
K = 0.05 and Ay = 3 only 0.3% of individuals have this property (Figure
2.2). However, these values rise dramatically if we only consider cases, to
0.5% and 2.2% respectively, and if we consider identical twins where both
are affected, 7% and 23% of twin pairs have a probability greater than 1.

So, while probabilities for randomly selected individuals are unlikely to
suffer from this problem, the individuals in those groups we are often most
concerned with (i.e. those with a family history and those who will go on
to develop the disease) are far more likely to. In particular, the very high
proportion of doubly-affected twin pairs with probabilities greater than 1 is
concerning given that the expectation of the product of these probabilities
is used to calculate the sibling recurrence ratio in Equation 2.58. Because

this expectation is likely to be overestimated due to the greater-than-one
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Observed Ag

Predicted Ag

Figure 2.3: The )\ predicted under the log risk model compared to the observed
value under the truncated log model with all probabilities greater than 1 set to 1,
for varying prevalence.

probabilities, it will follow that the value of A; could be greatly overesti-
mated, and likewise the size of the genetic variance and parameter o could
be underestimated given a value ;.

To investigate the degree to which this will lead to errors, I simulated
families under a truncated model (i.e. setting all p > 1 to p = 1), and
compared the observed A4 values to those predicted by Equation 2.58. Figure
2.3 shows that the log risk model significantly overestimates virtually all
values of \; when K = 0.1, all values of A\, > 5 for K = 0.01, and values of
As > 10 for K = 0.001. Only for very rare diseases (K < 0.0001) does the

log risk model perform well regardless of the value of A;.
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2.4 The probit risk model

The probit model of risk, also called the liability threshold model, was intro-
duced by Falconer (1965), and further refined by Reich et al. (1972) and Fal-
coner and Mackay (1996). Due to its compatibility with structural equation
modelling and the popularity of the Mx program (Neale and Cardon, 1992),
it has come to be used as the dominant model for twin studies of binary traits
(Rijsdijk and Sham, 2002). Outside of family studies, it has also been used to
study the potential limits of genetic risk prediction (Wray et al., 2010), and
has even been important in influencing how many non-statisticians develop
their theories of disease (see for instance Haegert (2004)).

The link function for the probit risk model is

p=2(n), (2.70)

where @ is the cumulative distribution function of the standard normal dis-
tribution. Substituting this into Equation 2.11 gives a probability density
of

f(p)

BRI LA 27

where ®~1(+) is the inverse cumulative distribution (or quantile) function of

the standard normal distribution.

2.4.1 Relationship to the liability threshold model

The probit risk distribution in Equation 2.70 is derived from the liability
threshold model. The liability threshold model assumes that individuals

have a liability score L ~ N(0, 1), and an individual is assumed to have the
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disease if L is larger than some threshold 7. A simple form of the liabil-
ity model assumes that L can be expressed in terms of an additive genetic

component A and an environmental component E as

L=A+E, (2.72)

where A ~ N(0,h?), E ~ N(0,1—h?)and A L E.

We can express A = hz where z ~ N(0,1), and thus the distribution of

genetic disease probabilities is

= (). (2.73)

We thus see that the liability threshold model is equivalent to the probit

model with

" (2.74)
72
o = L (2.75)

and likewise
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2 o’
o= (2.77)

A note on the ACDE liability model

Liability threshold modelling is often extended to partition the liability in

more detail. A general formulation is the “ACDE” model, where

L=A+C+D+E, (2.78)

and where A is an additive genetic risk score, D is a dominant genetic risk
score, (' is an environmental risk shared between family members and E is
non-shared environmental risk. All these terms have their own individual
variances 0%, and » 0% = 1.

As we have already seen, the correlation in additive risk score A is p;;,
and as we saw in Section 2.2.3 the correlation in a fully dominant risk score is
pa = p(IBD = 2). The correlation in common environment is by definition
1. It is this formulation that is generally used in twin studies, where the
model is fitted (ideally by maximum likelihood, though often by approximate
methods) to a set of identical twins (i.e. p;; = 1 and p; = 1) and non-identical
twins (i.e. p;; =0.5 and p, =0.25). In practice, having only two distinct levels
of relatedness means that only two parameters can be fitted, so in general we
either set D = 0 (the “ACE” model), or C' = 0 (the “ADE” model, generally
used for twins reared apart). Note that this formulation is not specific to the

liability threshold model, similar covariance relationships can be defined for
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any model that is expressed in terms of a normally distributed risk score.

2.4.2 Calculating parameters

By definition, the threshold T is selected such that a proportion K of indi-
viduals have a value greater than T', i.e. T = ®!(1 — K). We can thus write

K in terms as p and o as

K=1-® <\/%) . (2.79)

The heritability, provided by Wray et al. (2010) using equations derived
by Reich et al. (1972), is given by

T — T /1— (12— T2)(1 - T/2)

h* =2
2+ T2(i—T) ’

(2.80)

N _ o(T)
where T, = ®71(1 — \,K), and z = £,

2.4.3 Case and control distributions
Wray et al. (2010) calculated an approximate normal density for the genetic

liability A in cases as

1 o 2h? — A
IR — 2z = 1)) R = (s = 1))

P(Ald=1) =~ ).(2.81)

This is an approximation to the exact density
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Figure 2.4: a) The logjgp mean error (average squared distrance from the true
value) of the normal density approximation to the genetic liability in cases P(A|d =
1), as a function of prevalence K and heritability h2. b) The Area Under the ROC
Curve calculated using the exact and approximate equations, as a function of K
and h?

pAd=1) = L (A;( ffETLA)TI)D (4) (2.82)

Cle(AZL)o(A) s

Similar expressions exist for the genetic liability in controls.

Figure 2.4A shows the mean accuracy of this normal approximation as a
function of the heritability and prevalence. Note that there is significant error
in this approximation at high heritabilities, particularly if the prevalence is

also high.

This approximation is used by Wray et al. (2010) to calculate the max-

imum possible predictive capacity of genetic risk prediction for various dis-
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Figure 2.5: The case and control distributions of probability p and risk score 7
for a rare disease (K = 0.01,A\s = 9) and a common disease (K = 0.05, A\s = 3),
under the probit model.

eases. The error in this function for highly heritable common diseases sug-

gests that these values could be in error. However, Figure 2.4B shows that,

in practice, this error only serves to slightly underestimate the very largest

AUCs for very common K > 0.1 diseases, which does not substantially

change the conclusions drawn from these results.

Examples of the distributions of  and p in cases and controls are shown

in Figure 2.5.
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2.4.4 Relationship to probit regression and latent variable

modelling

Probit regression is a form of latent variable regression introduced by Bliss
(1935) in 1935 as a model for bio-assay analysis. It was the dominant method
of analysis for dichotomous traits until the 1960s, when the logistic regression

model began to overtake it (see discussion of the logistic model below).

The probit model is a latent variable model, based on a continuous score

y="D5+ Y Biite, (2.84)

where ﬁ are parameters of the model, T are observed variables, and e ~
N(0,1) is an unobserved (or latent) variable. The observed outcome is a

binary indicator variable

1 ify>0;
dly) = (2.85)

0 otherwise.

The probit regression model is fitted to determine the values of E )

We write X = [y + >, Biz;, which, given a large number of predictors,

can be approximated as X ~ N(u,,0?2), where

Ha = Bo + Z 2fiB; (2.86)
;= Z 2£(1 = f:) 57 (2.87)

We can write the probability of d =1 as
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Pd=1) = py>0)

— P(X+e>0)

= X = c >_L
\/1—0—02 1+ 02 1+ o2

— P(A+E>T), (2.88)

i.e. equivalent to the liability threshold model where

pro—= I
V1+o?
_ > 2fi(1 — fi) 7
IRV E T EAL: 2
T — gg
Bo+ > 2fiBi

. (2.90)
VIE 2L R

We can use this to fit the liability threshold or probit model directly from
the results of probit regression, and thus calculate the variance explained by
a set of genetic markers. While this is generally not used as a method for
calculating heritability, if the liability threshold model is, in fact, the true
model of genetic risk, this method should give the best approximation to the

true variance explained by a set of genetic predictors.
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2.5 The logit risk model

The general logit-normal (or logistic-normal) distribution was first defined
by Mead (1965) in 1965, who noted that its moments have no analytic closed
form, and its parameters can only be estimated iteratively (and even then
only with some difficulty). However, the logit link itself is much older, having
been used in bio-assay since the 1930s (see discussion of logistic regression

below).

The logistic-normal distribution has been used previously to model serial
observations under a random effects model (Stiratelli et al., 1984), but I
believe has only been used directly in quantitative genetics once. Commenges
et al. (1995) used a logistic-normal model to test hypotheses about familial
aggregation in Alzheimer’s disease conditional on known risk factors, much

like the standard use of the probit model described above.

The implicit importance of the logit model is much larger than its lack of
direct application may suggest. The most common methods used in modern
statistical genetics, multiplicative odds ratio analysis and logistic regression,
both implicitly assume the existence of logit-normally distributed risk. In
essence, a model of genetic risk in the population is implicitly assumed by
the methodology of almost all human complex disease genetics, but almost
never directly investigated. This disconnect between the common usage of
the regression technique and the infrequent use of the limiting normal has

been noted in other fields (Frederic and Lad, 2003).

The link function for the logit risk model is

p=(1L+exp(—n))~" 10~ N(u,0), (2.91)

and the density is
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fp) = M¢ (%log (%) = g) . (2.92)

Note that n is equal to the log-odds of disease

log(O) = log (%)
— (2.93)

2.5.1 Calculating parameters

As with the moments of the logit-normal, none of the parameters of the logit
normal have closed-form analytic solutions. Instead, they must be calculated

by numeric integration.

The prevalence is given by

K = Elp|
_ /0 pf (p)dp: (2.94)

To calculate the relative recurrence ratio, we need to look at the bivariate
distribution. Suppose we have two individuals with a relatedness coefficient

p. We model their genotypic risks as

1

R E— (2.95)

Di

where 77 = (11, 12) are jointly normally distributed with a mean of 1 and a

covariance
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Y = o? : (2.96)

We can transform 77 into independent standard normals ¥ by noting that

i = u+ B, (2.97)

where B is the Cholesky decomposition of 3, such that BB’ = ¥ and thus

10
B=g¢ . (2.98)

p 1-p?

From this, we can transform p;, giving

1 p1
_ 2.
T = {log (1 1) u} (2.99)
o 1— _229 > 1
Ty = lo opry| . 2.100
i m { g <1 2 : P ( )

The determinant of the Jacobian of this transformation is

dzx 1
i ) 2.101
dj| o1 = p? [T, pi(1 — pi) (210

thus the joint density of risk is given by
¢(7)
9(p1,p2) = (2.102)
o2y/1 = p*p1(1 — p1) Pa(1 — p2)
From this we can calculate Ap
dp:d

A — L P2t (1. p2)dprdps. (2.103)

KQ
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2.5.2 Fitting the logit risk model numerically

To find parameters p and o given parameters K and A, we find values that

minimize the error function

Error(u,o) = <\/E[p1p2|u,a] - \/)\SK2>2 + (Elplp, 0] — K)*.  (2.104)

I use the Nelder-Mead algorithm (Nelder and Mead, 1965) implemented
in the statistical language R. Note that the convergence speed and reliability
of this procedure can be very dependent on the initial values of © and 0. We
can get a good initial guess by expressing the logit risk in terms of the probit

model

We can express the probit model on the logit scale

Mprobit = P H((1+ ¢ Mosit) ™) (2.105)
d robi - — N — — ) . —
% — [gb(@ 1((1 + e nloglt) 1)(1 + e 77logzt)<1 + enlogzt):| 1 (2106)
MNiogit

We can then get the density of the logit risk score given the probit model

dnprobit
dnlogit

f(nlogit|ﬂprobit7 Uprobit) = f(nprobitl,uprobita Uprobit) ) (2107)
which can in turn give us the expectation and variance of the logit risk
variable under the probit model, which we use as an initial guess for the

parameters 4 and o under the logit risk model
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Minit = /nf(77|:uprobita O-probit)dn (2108)
n
Oinit = /(77 - ﬂinit)2f<n|:up7’obita Uprobit)dn- (2109>
n

2.5.3 Case and Control Distributions

There is no particularly elegant way of describing the distribution of the
probability p and the risk score 7 in cases and controls. Instead we can only
use the general equations given in Section 2.1.2.

Examples of the distributions of n and p in cases and controls are shown

in Figure 2.6.

2.5.4 Relationship to the multiplicative odds ratio model

Odds ratios are widely used to quantify differences between groups, and
to make probabilistic predictions for individuals given group membership
(see discussion in Morgan and Teachman (1988) for example). Odds ratios
are the most widely used summary statistic in medical studies (Bland and
Altman, 2000), mostly due to their utility in meta-analyses, though they
are not without their detractors (Sackett et al., 1996). In genetics, the odds
ratio has become the dominant method for summarising disease associations,
largely due to its connection with logistic regression.

Given an exposure a € {0,1}, and an outcome d € {0,1}, we can define
the probability conditional on exposure status a =i as p; = P(d = 1|a = ).

The odds ratio for exposure a is then defined as

1 1 —po

= 2.110
1—p1 po ( )

Ta



2.5. The logit risk model 81

e S
—— Case
o — Control © |
p
2 © 2 o
2 2 2]
] s ©°
(< a
w
S
7 L_J °
L o
o [T
T T T T T T < T T T T T T T
00 02 04 06 08 10 25 20 15 10 5 0 5
P "
(a) Rare (b) Rare
o _|
o
(\! —
0 — o
2
> © > o
7 %
5 & 2
o <« a 3
o
o 8
o
[ 2 [T
T T T T T T ° T T T T T T T
00 02 04 06 08 10 25 20 15 10 5 0 5
P "
(¢) Common (d) Common

Figure 2.6: The case and control distributions of probability p and risk score 7
for a rare disease (K = 0.01, \; = 9) and a common disease (K = 0.05, \s = 3)

Odds ratios in genetics

Throughout this thesis, I will refer to the effect size of a genetic association

in terms of the odds ratios 7. and rp,,,, where
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Pl(l —Po)

Thet = 2.111
et po(1 — PN ( )
1 —
I Sl O (2.112)
po(l — P2

where p, = P(d = 1|g = x) are the disease probabilities conditional on
risk allele count x. We will sometimes refer to the genotypic odds ratio
T = Thet = \/Thom (also called the additive odds ratio).

We can rearrange the odds ratio definitions to give expressions for the
disease probabilities for non-wild type genotypes in terms of the wild-type

disease probability

_ PoT het
1 — po + PoThet

PoThom
D2 = . 2.114
2T - Po + PoThom ( )

n (2.113)

Given a prevalence K we can get the value of py by solving the equation

po(l = f)* +pi2f(1 = f) + pof* = K, (2.115)

which can be solved analytically (but messily), or numerically (counterintu-
itively, the numeric method is likely to be more accurate (Nievergelt, 2003)).
A common analytic approximation to calculate odds ratios is to normalize

the odds ratios such that their population mean is equal to 1

(1 _f)2 + 2f(1 _f)rhet + f27;hom

=1 2.116
T T 7 ’ ( )

1.e.
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F=1—f)?+2f(1 = )rnet + [*Thom: (2.117)

We can then set

ro = % (2.118)
= (2.119)
iy = Th;m, (2.120)
(2.121)

or, given a genotypic odds ratio, 7, = ?
We can then set the disease probabilities using these normalised odds

ratios as

—_

Pe= % (2.122)

142

Tz

=

=

(2.123)

This is the method used by, for instance, the genetic testing company
23andMe (Macpherson et al., 2007).

The accuracy of this approximation varies depending on the prevalence
of the disease in question, and the size of the odds ratio (Figure 2.7). For a
rare disease (K = 0.01) the approximation is accurate to within 1% for all
realistic odds ratios and frequencies (and accurate to within 0.1% or less for
OR < 1.5). For a more common disease (K = 0.2) the approximation is only
accurate to within 1% for lower odds ratios (OR < 1.5). However, for odds

ratios typically found within GWAS (generally OR < 1.3) the approximation
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Figure 2.7: The accuracy of the odds ratio normalisation approach to genetic
risk prediction, for rare and common diseases, as a function of odds ratio and risk
allele frequency.

holds across prevalence and allele frequencies.

Combining independent odds ratios

Suppose we have two exposures a and b, with p;; = P(d =1la =1i,b=j). A
reasonable definition for these two exposures having an independent effect is

if the odds ratio r, does not depend on the value of b, and vice versa, i.e.

pio 1 —poo

1 —pio Poo

1 —
_ P11 117017 (2'124>

1—pu po

and
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por 1 —poo

1 —po1  DPoo
pii 1 —puo

1 —pi1 Dpio

(2.125)

We can then calculate the joint odds ratio for both exposures, 7., as

P11 1 —poo
1 —pi1 poo

< P11 1—]701)( Dot 1—]?00)
I1—pu po 1 —po1  poo

= 74T, (2.126)

Tap =

i.e. to combine independent odds ratios, multiply them together. Note that
this justifies the genotypic odds ratio 72 = 40, = 72,,, as it represents both

alleles acting independently at a single locus.

We can generalise this to make a combined odds ratio given genotypes

¥ = {x;} across n loci with odds ratios 7= {r;}

re — Po 2.127
1T (
=1

The disease probability is thus given as
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ps = TzPo
’ 1 —po+rzpo
B 1
- ! (2.128)
~ 1+exp(—n)’ '
where
(2%5)
n = log Tz
I —po
= log ( Po > + log (rz) Fixed brackets
I —po
n
g <1 pop > + 3 wilog(r). (2.129)
0 =1

Again, by the central limit theorem 7 tends towards a normal distribution

with parameters

o= log( Po )—I—ZQfllog(rl) (2.130)
=1

1 —po

o = Y 2£i(1 - fi)log(r)® (2.131)
=1

Thus the logit risk model is asymptotically equivalent to the assumption

that odds ratios act independently.
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2.5.5 Relationship to logistic regression

The logistic function, g = (1+exp(—n))~!, has been used since the 19th cen-
tury as a description of population growth given limited resources (Verhulst,
1838), and in the early 20th century was found to accurately model many
physiochemical responses (Reed and Berkson, 1929). It was first used as a
regression model by Berkson (1944), who introduced it as an alternative to
probit regression (and also introduced the name “logit”). Berkson later laid
down in some detail the theoretical and empirical arguments underlying logit
and probit link functions (Berkson, 1951).

In the last few decades the logit link has succeeded the probit link as the
dominant form of regression model for binary outcomes(Cramer, 2003). It
is very widely used in medical literature (though often imperfectly (Bagley
et al., 2001)), and is the dominant method for performing genome-wide asso-
ciation studies under the presence of confounding factors, particularly with
the rise of principal component methods to control population stratification
(Price et al., 2006).

The logistic regression model has the form

p = (1 +exp(—n))~" where (2.132)

n=_05+» b (2.133)

Po
1-po

This is equivalent to equations 2.128 and 2.129 with parameters 5, =
and (; = log(r;). We can thus see that, given an arbitrarily large number of
predictors, the logistic regression model is approximated by the logit-normal
risk model. This also provides us with a method of fitting the logit risk model

from genetic data, using the results of logistic regression.
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2.6 Comparing models of risk

In the previous sections I outlined three continuous models of genetic risk
and noted the different assumption that underlie them. In this section I will
examine the ways in which these models differ in their predictions about the
distribution of genetic risk in the population.

I will look at the predicted distribution of disease probability in cases
across different models, and look in more detail at the differences between the
logit and probit models. I will then consider the predicted relative recurrence

risks and predicted ROC curves for the different models.

2.6.1 Comparing disease probability distributions in cases

Figure 2.8 shows the distribution of p in affected individuals under the three
different models. In both cases, the log model produces a smaller mean p
and a left-shifted distribution relative to the log and probit models. Addi-
tionally, in both scenarios the logit and probit models give relatively similar
distributions, with approximately the same mean value of p. Disregarding a
sharp peak near p = 1 for the probit model in 2.8a, the logit model seems
to show slightly more density towards the ends of the distribution, and the
probit model shows more density towards the middle.

In these comparisons, the log model stands out as clearly underestimating
both the degree of enrichment of genetic risk in cases, predicting very few
cases to have a high risk compared to the other two models. On the scale
that we have examined, however, the logit and probit models appear similar,
and it is difficult to infer the significance of these deviations. We can look at
the differences between these two models in more detail by producing values

of p given the probit model, and projecting them onto logit space using
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Figure 2.8: The distribution of genetic disease probabilities in randomly selected
cases under the three different risk models, for a relatively rare, highly heritable
disease (K = 0.01, A\; = 9), and a more common, mildly heritable disease (K =

0.05, As = 3). The legend gives the mean value of p in cases.
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Figure 2.9: Different logistic approximations to a probit distribution. The exact
distribution of the logit score under the probit model for K = 0.01 and h? =
0.5 is shown in blue (with bars representing a histogram of samples from the
distribution). The red line shows a logistic normal fitted to have the same the
mean and variance as the probit model, and the green line shows a logistic normal
fitted to have the same K and As values as the probit model.

p = q)(nPT'Obit) = (1 + exp(_nlogit))il (2134)
(I)<T]probit>
it PR —— R 2.1
Niogit lOg <1 — (I)(Upmbit) ( 35)

Figure 2.9 shows this projection for a probit model with h? = 0.5 and
K = 0.01 (bars and blue line). The red and green lines show two logit models:
the red line showing the logit model with the same mean and variance on the
logit scale as the probit model, and the green line showing the logit model

with the same K and A, values as the probit model.
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We can see that no logit model accurately models the projected probit
distribution, due to the high kurtosis of the projection. A model with the
same mean and variance, while having similar values of A\, and h?, predicts
too high a prevalence. The model that has the same K and A, also has a

similar A2, but follows a very different curve with a much smaller variance.

This highlights clearly the ambiguity involved in comparing models or
results parameterised on these difference scales. Furthermore, we can see that
a logit model designed to closely mimic the probit model’s risk distribution
produces divergent parameters. Despite their superficial similarity, these

models cannot be viewed as approximations to each other.

2.6.2 Comparing relative recurrence risk

None of the above distributions reflect any quantities that can be observed
in the population. One long measured and studied property in the genetics
of disease is the increase in disease risk in relatives of affected individuals,
estimations of which are often used to draw conclusions about the genetic
architecture of the disease (Compston and Coles, 2008; Sawcer, 2009; Brown
et al., 2000).

As we saw in equation 2.58, under the log risk model

A = exp(op). (2.136)

Substituting o = 2log(\s) gives
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A = exp(2log(As)p)

= ¥, (2.137)

This means that given the log risk model (and thus also given multi-
plicative relative risk), the recurrence ratio in relatives A, falls off with the
logarithm of the coefficient of relatedness p. Deviation from this log-linear
relationship is often interpreted as evidence of genetic non-additivity (Brown
et al., 2000). However, deviations from this relationship could also be evi-

dence that a different model is at play.

Figure 2.10a shows the fall-off in A, as a function of p for the three models
(all with K' = 0.05 and Ay = 3). All models give very similar predictions,
though there are slight differences between the models (Figure 2.10b). This
includes up to a 6% increase in the risk ratio for probit and logit relative
to the log model for highly related individuals (p > 0.5, including identical
twins and siblings of consanguineous parents), and a corresponding decrease
in risk for more distance relatives (peaking at a 3% difference at p = 0.25, or

avuncular relationships).

These differences are on the limit of what can be detected in family stud-
ies: for 80% power to detect a 3% deviation from Ay = 3 at p < 0.05 would
require over 38 000 avuncular pairs. In addition, even if the log risk model
could be rejected, we would not be able to say whether this difference was
due to a different additive model applying, or merely a non-additive model.
In theory measurements for a large range of different relative types could re-
solve this question, but in practice an even larger number of relatives would

be required. In short, there is no plausible family study that could distinguish
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between these three models of genetic risk.

2.6.3 Comparing ROC curves for risk prediction

Many authors have attempted to make predictions about how useful genetic
risk prediction could be if we managed to account for the total load of genetic
risk predicted to exist by family studies. However, the results have been in
many cases divergent, even when authors apply their methods to the same
datasets. Some authors draw the conclusion that genetic risk prediction is
unlikely to ever be of high utility (Clayton, 2009), while others conclude that
genetic risk prediction could be of great use (Wray et al., 2010). T discussed
the general question of how and when genetic risk prediction could be useful
in the introduction, but here I will focus more specifically on how the model
used can change your conclusions about the utility of genetic risk prediction.

Figure 2.11 shows the predicted ROC curves for diseases with a prevalence
of K =1/200 and K = 1/20, and a sibling relative risk of Ag =9 and A\; = 3
for the three models. For the rarer disease all the models give divergent
answers, with the probit model giving an AUC of 0.98, a logit model an
AUC of 0.96, and the log model an AUC of 0.89. For the common disease,
the logit and probit models agree on an AUC of 0.93, though with a different
sensitivity-specificity trade-off, and the log model gives a much lower AUC
of 0.84.

The low predictive accuracies for the log model are probably due to the
problems mentioned in Section 2.3.5, and I will disregard these values. It
therefore seems like a plausible maximum AUC for rare diseases likely lies
between 0.96 and 0.98, and common diseases around 0.93, as predicted by
the logit and probit models. However, the significant variability, both in
the AUC values and in the shape of the ROC curves, highlights the degree
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Figure 2.10: a) The log relative risk (log(\,)) under the three models as a
function of the coefficient of relatedness p, Parameters are K = 0.05, A\s = 3 b)
The ratio of probit and logit A, values to log A, values, as a function of p.
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Figure 2.11: The ROC curves for the log, logit and probit models of disease risk
for a rare disease with a prevalence K = 1/200 and sibling relative risk of A\g = 9,
and a common disease with K = 1/20 and Ay = 3, given that all genetic risk has
been explained. The corresponding AUCs are 0.89, 0.96 and 0.98 respectively for
the rare disease, and 0.84, 0.93 and 0.93 for the common disease.

to which forecasts of the future utility of genetic risk prediction are model

specific.
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2.7 Conclusion

2.7.1 Summary of models

As we have seen, the three models that we have examined can each be seen
as the natural result of the assumptions made in one or more major statis-
tical method. We can summarise the three models, and their corresponding

methods, using the following table:

Model Link function Equivalent models/methods

Log risk p = exp(n) Risch model, multiplicative relative
risk

Probit risk | p = ®(n) Liability threshold model, latent vari-

able model, probit regression
Logit risk | p= (1 + exp(—n))~! | Multiplicative odds ratios, logistic re-

gression

We have seen that these models differ in their predictions about the dis-
tribution of risk in populations. Some of these differences are minor (they
all have a similar relationship between coefficient of relatedness and relative
recurrence risk), but some are large (they give divergent predictions about

the maximum utility of genetic risk prediction).

2.7.2 Limitations of this approach

An important caveat is that the analyses of these three models above are all
built on two major assumptions. The first is that the risk score n can be
approximated by a normal distribution, and the second is that the risk score

n is additive.
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Figure 2.12: The closeness of fit to the normal distribution for variants with
different frequencies and odds ratios. The black line represents the normal ap-
proximation, and the green bars are odds ratios sampled from the model. The
number of variants N is chosen to have A\; = 3.

Speaking to the first assumption, Figure 2.12 illustrates how well this ap-
proximation holds across different architectures, given the same value of A;.
In fact, the normal approximation holds for almost all plausible genetic ar-
chitectures; the approximation is very accurate for polygenic and oligogenic
models, and is relatively accurate for low-frequency variants. The approxi-

mation becomes significantly less accurate for a disease driven purely by rare,
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Figure 2.13: The affected of epistasis on heritability estimation from twin studies.
The epistasis model used is the multiple threshold model of Zuk et al. (2012), in
which the risk score is the minimum of N independent liability scales, each with a
heritability hg. The dots represent increasing N (starting with 1, increasing in the
direction of the arrow), and the colours represent different values of hg. The first
panel shows the overestimation of the narrow-sense heritability, and the second
shows the overestimation of the broad-sense heritability.

highly penetrant mutations.

As for the second, non-additivity can alter the models in two ways.
Firstly, it can lead to non-normality in the risk score. However, as I men-
tioned in Section 2.2, it seems likely that most forms of pairwise interaction
can be approximated as a normal distribution, and even risk scores based on

more detailed forms of epistasis can be modelled as normal (see, for exam-

ple, Zuk et al. (2012)). Secondly, as we saw for single-locus dominance in

section 2.2.3, non-linearity can alter the correlation structure of risk scores
in related individuals. Specifically, non-additivity reduces correlation such

that cor[n;,n;] < p. This is turn can lead us to overestimate the heritability

of the disease.

We use the model of Zuk et al. (2012) to explore this effect. Figure 2.13
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examines how serious this effect will be on our estimation of heritability, and
thus the results of our models. Zuk et al. (2012) showed that, under epistasis,
the narrow sense heritability (i.e. the correlation in additive risk score) will
be greatly overestimated by twin studies (as shown in Figure 2.13a). How-
ever, for our purposes we are more interested in the overestimation of the
full heritability, which is what determines the univariate distribution of the
probit score 7. Figure 2.13b shows that this value is significantly less prone
to overestimation than the narrow sense heritability, and is only seriously

overestimated in cases where H? > (.8.

2.7.3 Problems generated by model ambiguity

The use of methods with differing underlying models can itself create am-
biguity in results. Suppose we have performed a genome-wide association
study of a disease with K = 0.05, using logistic regression. We have identi-
fied 48 loci, each with an estimated odds ratio of 2 and a frequency of 50%.
We wish to compare these results with data from of twin studies, which have
found that the disease has a heritability of h? = 0.8, in order to say what
proportion of genetic variance has been explained. There are three ways that

we could answer this question

1. Fit the log-normal model from the data using equation 2.131, project
the result onto the probit scale using Equation 2.134, calculate the

variance and convert to h? using Equation 2.75. This gives h% ~ 0.586

2. Fit the log-normal model, calculate the value of A4, and use Equation

2.80 to calculate the corresponding h?. This gives h? ~ 0.634

3. Perform probit regression on the original genetic data, and use equation

2.89 to calculate h%. A simulation of this (generated under the logistic
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model) gives h? ~ 0.751.

The technique used can alter the percentage of heritability explained from
74% to 93%. The smallest answer may lead people to invest further to
discover the missing quarter of heritability, while the latter will likely lead to
a conclusion that the trait is essentially solved. There is no correct answer,
as the question we are asking is inherently problematic: the two results we
are comparing were generated under different models. Which of the values
is correct (if any) will depend on the true model underlying the genetic risk

in the first place, which is unknown.



Chapter 3

Investigating new reference and

target sets in genotype imputation

3.1 Introduction

Genome-wide association studies (GWAS) are based on a tag SNP approach.
Genotyping arrays use a set of SNPs chosen such that, between them, they
are correlated with most of the common variants in the human genome. Any
common causal variants will be then be well correlated with at least one SNP
on the array, and (providing a large enough sample size is genotyped) such
associations can be detected via signals at these tag SNPs.

While tag SNP sets are picked using a high-density reference set, the ap-
proach of testing these tag SNPs for association in a GWAS cohort makes

no assumptions about what untyped SNPs are being tested. However, it

101
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is possible to use the data in the reference set to improve the coverage of
the study. The reference set tells us (at least some of) the common SNPs
that exist, and allows us to place them together into multi-SNP haplotypes.
We can therefore use the tag SNPs we have genotyped to match the haplo-
types in our GWAS samples to haplotypes in our reference set, and use this
matching to infer these samples’ genotypes at other sites. This process is
called “genotype imputation”, and we refer to the dataset we are predicting
genotypes for as the “target set”.

Genotype imputation has a number of advantages over tag SNP testing.
Firstly, it allows meta-analyses to be performed even when the component
studies have been performed using different sets of tag SNPs, by allowing
a common set of SNPs to be imputed. Secondly, imputed genotypes, while
only probabilistically predicted, are imputed using information from many
surrounding SNPs, and thus are often more strongly correlated with the
true genotype than any single tag SNP. This gives improved power to detect
associations, especially for variants that are not well tagged by the array,
and can lead to significant associations being detected that would have been
missed otherwise (Huang et al., 2012). Thirdly, it allows test statistics to be
produced at all sites in the reference set, which (if the reference set is high
enough density) is likely to contain the true causal variant, and thus can

allow the function of associated variants to be inspected.

3.1.1  Overview of imputation software and methods

The vast majority of the human genome is diploid, meaning that it is made
up two copies. Each copy contains its own set of alleles, which together make
up the two multi-marker haplotypes that an individual carries. To perform

the haplotype matching that genotype imputation relies on, we first need
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to reconstruct these two haplotypes from the diploid genotypes produced by
genotyping chips, by determining the phase of the alleles at each site (i.e.
inferring which alleles are present on the same copy of the chromosome).
This process is known as “phasing”, and is the most statistically challeng-
ing aspect of imputation. The history of imputation is therefore, to a first

approximation, a history of phasing techniques.

Experimental and family-based phasing techniques are as old as genetics
itself, but statistical phasing techniques began being applied in the 1990s
(Browning and Browning, 2011). The first statistical imputation method
for unrelated individuals was the Clarke algorithm published in 1990 (Clark,
1990), which inferred the existence of haplotypes based on parsimony. Soon
after methods based on Expectation-Maximisation (EM) were developed to
estimate haplotype frequencies and phase small numbers of SNPs. Both
of these methods are computationally expensive and relatively inaccurate,
and thus did not generalise outside of small haplotype blocks (Browning and
Browning, 2011). The EM method is still in use, however, for instance in the

imputation function of the popular statistical genetics toolkit Plink (Purcell

et al., 2007).

Most modern phasing and imputation methods are based on approxi-
mate coalescent techniques. Coalescent theory was developed in the 1980s
as a way of linking population genetics to genealogy at a single gene or
site (Kingman, 1982), and was extended in the 1990s to include recombi-
nation (Griffiths and Marjoram, 1996). Because coalescent theory models
both polymorphism frequency and stretches of the genome shared by de-
scent it is particularly well suited to modelling haplotype frequencies. While
full coalescent theory is computationally difficult to apply in most circum-

stances, approximate methods have been developed that are computationally
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tractable (McVean and Cardin, 2005). The most widely used approximation
is the Li and Stephens model (Li and Stephens, 2003), which partitions the
coalescence likelihood into a series of sequential conditional approximations,
which are in turn calculated using a Hidden Markov Model that includes
recombination and mutation.

The first piece of software to use the approximate coalescent was PHASE
(Stephens et al., 2001). A faster technique, fastPhase (Scheet and Stephens,
2006) (also implemented in BIMBAM (Servin and Stephens, 2007)), was
introduced in 2006; this was also the first software to perform genotype
imputation per se. Other imputation programs using the same approach
include IMPUTE (Marchini et al., 2007), IMPUTE2 (Howie et al., 2009),
MaCH (Li et al., 2010) and SHAPEIT (Delaneau et al., 2012).

Not all imputation programs are based on an approximate coalescent
model. The imputation program Beagle (Browning and Browning, 2007,
2009), while also based on a Hidden Markov Model approach, does not ex-
plicitly model mutation and selection, instead using a haplotype clustering
model to perform phasing and imputation (Browning, 2006). In contrast,
QCall (Le and Durbin, 2011) (an imputation program for sequencing data)
performs imputation by directly fitting mutations to a sequence of sampled

ancestral recombination graphs.

3.1.2 New reference and target sets in imputation

Imputation methods in GWAS originally used the HapMap phase 2 reference
set (Frazer et al., 2007), which contained data on 400 haplotypes from three
ethnic groups. This served as a successful reference set for common SNPs
in Europeans for the first wave of GWAS, allowing around 75% of common

SNPs to be imputed with accuracies of above 98% (Marchini et al., 2007),
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and allowing meta-analysis of studies from different technologies (Zeggini

et al., 2008).

However, in the last five years reference sets have developed substantially.
The HapMap phase 3 expanded the dataset in the sample direction to include
data from many populations, with five times the total number of samples as
HapMap phase 2 (Altshuler et al., 2010). The 1000 Genomes pilot reference
set expanded in the marker direction with 16M SNPs, indels and structural
variants (Project, 2010), and the 1000 Genomes phase 1 reference set includes
an unprecedented 40M SNPs on 1092 samples (Project, 2012), including data
from genotyping chips, exome and whole genome sequencing. Many of the
newly discovered variants are low frequency (MAF < 5%). We have a far
less detailed understanding of how well these new variants can be imputed,

and how the changes in reference set will impact imputation.

Likewise, many of the original GWAS that used imputation were carried
out on individuals of European descent. However, many important GWAS in
recent years have been performed using sample collections from Africa (The
MalariaGEN Consortium, 2009; Thye et al., 2012; Akinsheye et al., 2011).
As we will discuss later in this chapter, these African populations tend to
have a greater diversity (both within and between populations). They also
have a lower correlation (linkage disequilibrium, or LD) between markers,
and the patterns of LD tend to differ between populations. As a result,
genotype imputation in these populations is more complicated and less well

understood.

In this chapter I will investigate how changes in reference and target
sets impact imputation. This will show how new reference sets allow us to
use genotype imputation to fill gaps that old imputation reference sets left.

This includes imputing variants at low frequency, and variants from specific
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functional classes. It will also include imputation into populations where
imputation has traditionally had more difficulty, such as African populations.

I will start by studying the impact of sample set and diversity on impu-
tation of common and low frequency variation in Europeans, using HapMap
imputation. I will then report two studies of imputation in Africa, including
an investigation of HapMap imputation for GWAS meta-analyses, and the
use of 1000 Genomes imputation in a single diverse population. Finally, I will
discuss how these new imputation reference sets can be used to give us new
biological insight into the relationship between variant function and disease
association, by allowing us to impute loss-of-function variants into GWAS

cohorts.
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3.2 The impact of reference set diversity in Euro-

peans

This section describes a study that I carried out and published (Jostins et al.,
2011) in the first year of my PhD. The reference sets and software versions
used are therefore largely out of date at the time of writing this thesis. How-
ever, the broader leasons learned about reference set diverse and genotype

imputation are nonetheless still valid.

The HapMap phase 2 reference panel consists of genotype data from three
homogeneous populations, with 120 haploid genomes each of European and
African origin, and 180 of East Asian origin, genotyped at over 2 million sites.
By contrast, the larger HapMap phase 3 (or HapMap3) reference set (Alt-
shuler et al., 2010) is much larger, containing over 1000 samples genotyped at
a restricted set of approximately 1.5 million variants. Unlike the HapMap2,
this data is drawn from a set of 11 populations, providing a far more diverse
dataset. Additionally, the HapMap3 benefits from a more mature genotyp-
ing technology, providing higher genotype quality. Taken together, these
two HapMap datasets provide a significant and stable set of test data to

investigate the impacts of the reference set on imputation quality.

[ investigate the relationship between sample size and ancestry and impu-
tation accuracy by comparing results obtained using HapMap2 and HapMap3
as the reference set. My comparative analysis focuses on three areas: (1)
what effect does the higher quality of genotyping from HapMap3 compared
to HapMap2 have on imputation? (2) what improvements can the large
increase in sample size have on imputation accuracy and predicted quality
scores, especially for low-frequency SNPs? and (3) what can we infer about

the importance of closely matching ancestry of reference and target samples?
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Population Code HapMap2 | HapMap3
African Americans ASW 0 63
North Europeans CEU 60 117
Chinese Americans CHD 0 85
Gujarati GIH 0 88
Japanese and Chinese | JPT+CHB | 90 170
Luhya LWK 0 90
Mexicans MEX 0 52
Maasai MKK 0 143
Toscani TSI 0 88
Yoruba YRI 60 155

Table 3.1: A summary of the HapMap sample sets and their sizes in the HapMap2
and HapMap3 datasets. I used release 21 of the phased HapMap2 data, and release
2 of the phased HapMap3 data.

3.2.1 Performing and Scoring Imputation

For the target set, I used 1 374 individuals from the 1958 British Birth Cohort
(Power and Elliott, 2006), genotyped on both the Illumina HumanHap550
BeadChip and Affymetrix GeneChip Human Mapping 500k chips as the tar-
get set. I used the Illumina data to perform imputation, and checked the
answers using the Affymetrix data (Illumina chips having been previously
shown to be more powerful for imputation (Anderson et al., 2008)). For the
target reference sets, I used the approximately 2.5M polymorphic SNPs of
the HapMap2 CEU samples, and various mixtures of HapMap3 samples, with
approximately 1.4M polymorphic SNPs. Details on the HapMap reference
sets are shown in Table 3.1, and the large-scale genetic relationships between
these population (measured by principal component analysis) are shown in
Figure 3.1.

To perform the imputation I used the imputation program Beagle (Brown-
ing and Browning, 2007) (version 3.0.2). I split the genome up into 500kb
chunks, with 250kb buffer region on each side, and ran Beagle for 10 itera-
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Figure 3.1: The first two principal components for each of the HapMap3 sam-
ples, coloured by population. Principal component analysis was performed on all
genotypes on chromosome 17, using all founder samples.

tions. To remove poorly imputed SNPs, I applied a filter that removed SNPs
with a predicted dosage 72 of less than 0.9. For several analyses I compare

common (MAF > 5%) and low-frequency (MAF < 5%) SNPs.

To score the imputation results, I measured both the accuracy of impu-
tation and the usefulness of the predicted quality scores that the imputation
method provides. Accuracy was measured using dosage 72, defined as the
square of the Pearson correlation coefficient between the imputed and the
actual allele dosage across all imputed samples. The actual dosage is the
count of minor alleles for each sample, and the imputed dosage is the ex-
pected minor allele count, defined as 2P(aa) + P(Aa), where a is the minor

allele, and P(G) is the posterior probability of a particular genotype. The
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dosage r? is useful as it is not confounded by minor allele frequency, and thus
can be used to compare low-frequency and common SNPs; as well as having

a simple relationship to power in a GWAS (Anderson et al., 2008).

For predicted quality scores, most imputation programs (including Bea-
gle) give a predicted dosage 2 for each SNP, which was evaluated using four
criteria: (1) the calibration, or mean difference between predicted and actual
dosage r* (2) the quality r2, or the correlation between predicted and actual
dosage r?, (3) the number of overconfident calls, i.e. the number of SNPs
that are poorly imputed despite having high predicted dosage 72, and, vice
versa, (4) the number of under-confident calls. I am particularly interested in

the number of overconfident SNPs, as these may lead to costly false positives.

3.2.2 Reference Set Quality

While the majority of SNPs in both HapMap2 and HapMap3 are of high
quality, the genotyping for a number of previously poorly genotyped SNPs
was improved in the development of HapMap3. To investigate whether this
increase in reference set quality had a significant effect on imputation, I
performed genome-wide imputation on the target set using two ‘reduced’
HapMap reference sets, and measured differences in dosage r2. These reduced
sets contained only the 56 CEU samples and 1M SNPs that HapMap2 and
HapMap3 have in common. I found a small but significant difference due
to genotyping quality (mean dosage r? 0.841 vs 0.845, Figure 3.2), but not
enough to explain a meaningful difference in imputation quality between

HapMap2 and HapMap3.
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Figure 3.2: A histogram of dosage 72 for a genome-wide imputation using the
reduced HapMap2 and HapMap3 sets, which contain only the 1,069,264 SNPs and
56 CEU samples that both HapMap2 and HapMap3 have genotype information
for. The means of the distributions are 0.841 and 0.845, and the difference is
significant (t = 7.59, df = 256480, p <10713).

3.2.3 Reference Set Size

To assess the effect of larger HapMap sample sizes, I performed genome-
wide imputation on the target set, using five reference sets of increas-
ing size and diversity. I used the HapMap2 and HapMap3 CEU samples
(HM2CEU and HM3CEU), which should be the best match to the UK tar-
get set, as well as a mixed reference set of HapMap3 European samples
(CEU+TSI). To give a large, but still partially matched reference set, I
used the HapMap3 European samples mixed with the Indian and Mexican
samples (CEU+TSI+GIH+MEX), as these populations cluster together on

the first two principal components (see Figure 3.1). Finally, I examined all
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Figure 3.3: The effects of reference set on imputation accuracy. A histogram of
dosage 72 scores genome-wide for samples imputed with HapMap2 and HapMap3
CEU, as well as HapMap3 CEU+TSI, and a reference set consisting of HapMap3
CEU+JPT+CHB of the same size as the CEU+TSI set.

HapMap3 individuals (WORLD), in order to assess a very large and very

diverse reference set. Sample sizes are shown in Table 3.2.

I found that HapMap3 yields a substantial increase in imputation accu-
racy compared to HapMap2, with the number of SNPs in the highest score
category (> 95%) increasing, and the number in all lower-scoring categories
decreasing (Figure 3.3). A further increase in imputation accuracy is seen
when adding the HapMap3 TSI samples. The number of SNPs that pass the
filter (have a predicted r? greater than 0.9) rises as imputation accuracy in-
creases, although this falls as samples from many populations are added due

to a decrease in the imputation software’s predicted confidence (see below).
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Reference Size | CPU Passed Filter Filtered Dosage r>
Set
Common | Low- Common | Low-
frequency frequency
HM2CEU 60 | 514h* | 83.7%" | 52.5%" | 0.957 0.889
CEU 117 | 296h | 85.1% 59.7% 0.968 0.921

CEU4TSI 205 | 350h | 86.1% 63.1% 0.974 0.934
CEU4TSI 345 | 458h | 85.3% 60.3% 0.978 0.957
+GIH+MEX
WORLD 1010 | 1207h | 83.8% 55.5% 0.979 0.968

Table 3.2: Information on Genome-Wide imputation using various reference sets.
The CPU columns shows the number of CPU hours used in the imputation, which
increases with the size and SNP density of the reference set. The proportion of
SNPs that passed the filter (predicted dosage 72 > 0.9), and the mean dosage 72 of
those that passed, are shown for common (MAF > 0.05) and low-frequency (MAF
< 0.05) SNPs. @ HM2 has a large SNP set, hence the longer imputation time °
HM2 has a larger number of SNPs in total

The dosage r? of filtered SNPs shows a trend of improved imputation with
increasing sample sizes. This increase is statistically significant (p < 10719)
for all increases in sample size, with the exception of the WORLD set (Ta-
ble 3.2). A corresponding increase is seen in computational time, especially
for the WORLD set; however, the CEU+TSI4+GIH+MEX reference set only
takes 55% longer to process than just CEU, despite being nearly 3 times

larger.

The improvement for low-frequency SNPs is the most striking. The
HM2CEU mean dosage 2 score is low, especially compared to common SNPs
(0.89 vs 0.96). If all samples from all HapMap3 populations are included,
this gap nearly disappears (0.96 vs 0.98). In general, fewer low-frequency
SNPs pass the imputation quality filter (63% at most), but the accuracy of
these imputed low-frequency SNPs can become very high. The improvement

in dosage 72 is inversely proportional to the frequency of the SNP, with the
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Figure 3.4: The genome-wide increase in dosage 72 for imputed SNPs relative
to HapMap2 CEU, plotted against minor allele frequency, for the four HapMap3
sample mixtures.

greatest improvement observed for the very rarest SNPs (Figure 3.4).

For small reference sets, the calibration of predicted quality scores tends
towards overconfidence. As the reference set increases in size, the calibra-
tion improves, though very diverse reference sets lead the confidence scores
towards under-confidence (Table 3.3). The correlation between predicted
and actual dosage 72 improves, though with a slight decrease for the most
diverse sets. These trends are stronger in low-frequency variants than in
common ones; low-frequency variants tend to have less well calibrated and
correlated predicted quality scores. Larger reference sets decrease the num-

ber of overconfident mistakes and the number of under confident mistakes
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Figure 3.5: The rates of overconfident and under-confident mistakes in imputa-
tion, using various reference sets. An overconfident mistake is any SNP that is
imputed with a predicted dosage 72 > 0.9, but an actual dosage r? < 0.8, and an
under-confident mistake has a predicted dosage 72 < 0.8 and an actual dosage 72
> 0.9.

(with the exception of the WORLD set, which causes a slight inflation in

under-confident calls, Figure 3.5).

3.2.4 Reference Set Diversity

I investigated the importance of population matching, independent of sam-
ple size, in two ways. Firstly, [ compared genome-wide imputation using the
HapMap3 CEU+TSI reference set to a CEU+JPT+CHB reference set of the
same size and non-CEU proportion. This allows us to investigate the effect

of adding poorly matched samples on imputation. Second, I created a num-
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Reference Calibration Quality r?
Set

Common | Low- Common | Low-

frequency frequency

HM2CEU 0.019 0.038 0.78 0.73
CEU 0.008 0.027 0.88 0.76
CEU+TSI 0.002 0.009 0.92 0.79
CEU+TSI -0.006 -0.019 0.93 0.79
+GIH+MEX
WORLD -0.010 -0.043 0.91 0.76

Table 3.3: Calibration data for Genome-Wide imputation using the five reference
sets. Quality calibration is defined as the mean difference between the actual and
predicted dosage 72; a negative value represents conservative quality scores, and
a positive value represents liberal quality scores. The quality r2 is the correlation
between the predicted and actual 2. The SNPs are split into common (MAF >
0.05) and low-frequency (MAF < 0.05).

ber of equally sized reference sets for chromosome 17 by combining a range
of mixture proportions of either CEU and TSI , or CEU and CHB+JPT.
I measured the accuracy of imputation using these reference sets for low-
frequency variants. I denote these constant-sized mixed reference sets as
CEU/TSI and CEU/CHB+JPT, in order to distinguish between reference
sets in which sample size is not held constant (e.g. CEU+TSI).

I found that, while the mismatched CEU+JPT+CHB reference set gives
a lower imputation accuracy than CEU4TSI, it still yielded a substantial
improvement over the CEU reference set alone. Half of the improvement
in imputation accuracy from CEU to CEU+TSI was also gained with the
CEU+JPT+CHB reference. This implies that while matching the reference
set to the target set is important, even the addition of unrelated samples
yields increases in imputation accuracy.

Increased diversity initially correlates with increased imputation accuracy

for both CEU/TSI and CEU/CHB+JPT (Figure 3.6), though the former is
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Figure 3.6: The relationship between the dosage r? and the proportion of non-
CEU samples in a 100-sample reference set. The trend lines are quadratic least
squared regression curves, and both explain the data significantly better than
a linear relationship (N = 207, p < 107* and N = 159, p < 107! for TSI and
CHB+JPT respectively). The insert shows an expansion of the trend lines between
0 and 50%.

far less marked than the latter. Beyond a certain proportion of non-CEU
samples accuracy starts to fall off as the effect of diversity is outweighed by
the effect of mismatching. The optimum population mix is 22% for CEU /TSI,
and 17% for CEU/CHB+JPT. It is only above 43% TSI do we see a decrease
in imputation accuracy for adding TSI over pure CEU; for CHB+JPT this

figure is 33%. This relationship is specific to low-frequency variants.
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3.2.5 Discussion

Higher quality reference data and larger sample sizes yield improved im-
putation accuracy. Using HapMap3 as a reference set compared to using
HapMap?2 demonstrates this improvement, especially at sites with a low mi-
nor allele frequency. While this result was expected I did not anticipate the
substantial improvement achieved with large and genetically diverse reference
sets. Including samples from such diverse populations as MEX and GIH can
provide significant improvement in imputation into UK samples of alleles
with a minor allele frequency of less than 5%. Larger reference sets also
improve predicted quality scores, with a decrease in overconfident mistakes
without inflating under-confident calls.

Overall, an imputation reference set consisting of CEU, TSI, MEX and
GIH improves the quality of imputation in all frequency ranges, and greater
improvement for very low-frequency SNPs was achieved with very large and
highly mixed reference sets. The latter came at the cost of computational
power, as well as overly conservative predicted quality scores. The qual-
ity scores are likely to be lowered due to the poor match of haplotype fre-
quencies between the reference and target samples, which will in effect de-
crease the prior on correctly matched haplotypes. Imputation is robust to
the precise mix of samples of closely related ancestry (such as CEU/TSI),
and small amounts of divergent ancestry can actually improve accuracy (such
as CEU/CHB+JPT). However, crude population matching is important, as
demonstrated by the reduced accuracy of the CEU+JPT reference compared
to CEU+TSI.

My results are consistent with those of Huang et al. (2009), who found
that the imputation of Yoruba samples had higher accuracy with a YRI+CHB-+JPT

HapMap?2 reference than with a pure YRI. However, Huang et al did not con-
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trol for reference size, and showed a much smaller improvement compared
to my results, probably due to the highly divergent nature of the HapMap2
populations.

These results imply a set of relatively simple rules for picking imputation
reference sets: for the best trade-off between accuracy and computation time,
the most diverse mixture of populations that still approximately cluster with
the target samples of interest on a world-wide PCA plot should be used.
However, if imputing genotypes for low-frequency variants with high accuracy
is required, all samples available should be used, with the understanding
that this will increase computational time, and cause quality scores to be

somewhat conservative.

More recent developments in genotype imputation

Since I wrote the above section additional papers have been published by
other researchers that shed further light out the relationship between ref-
erence set diversity and genotype imputation. Marchini and Howie (2010)
performed imputation using HapMap2 data and demonstrated that combin-
ing reference haplotypes across continents gives greater imputation accuracy
for low-frequency variation regardless of whether IMPUTE2, Beagle or fast-
PHASE was used, though IMPUTE2 being the most computationally ef-
ficient. Similar experiments using 1000 Genomes data carried out by Sung
et al. (2012) showed a similar improvement in imputation low-frequency vari-
ation with larger and more diverse reference sets, this time while using the
MaCH imputation program.

Over the last few years a concensus has emerged that imputation us-
ing world-wide datasets (including data from all available populations) is

the simplest way of performing high-quality imputation. For instance, Howie
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et al. (2011) demonstrated that such world-wide datasets give optimal or
near optimal imputation results using both cross-validation experiments and
imputation into real African GWAS data. The rise of pre-phasing techniques
(Howie et al., 2012), which allow fast phasing that is independent of reference
set size, has made the use of very large reference sets more computational
tractable. The appeal of using world-wide reference sets is that they do not
require careful selection of reference haplotypes to match the target panel,

and thus can be used out-of-the-box on any set of samples.
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3.3 Imputation in African populations

The previous section, and indeed most work on imputation to date, focused
on imputing variants into European and East Asian datasets. However, many
important GWAS datasets have been generated in African populations, no-
tably studies of malaria (The MalariaGEN Consortium, 2009), tuberculosis
(Thye et al., 2012) and sickle cell disease (Akinsheye et al., 2011). Just
like European studies, these African studies require imputation, particularly

where meta-analyses are performed.

Imputation in Africa provides us with its own unique set of difficulties.
African populations show a higher degree of genetic diversity than European
populations (both within and between populations (Altshuler et al., 2010)).
They show less linkage disequilibrium (Altshuler et al., 2010), and substantial
differences in patterns of LD between populations (Teo et al., 2009). Given
this, it is unsurprising to note that imputation generally performs less well
in African populations (Huang et al., 2009; Altshuler et al., 2010; Howie
et al., 2011). However, while imputation is more difficult, the rewards are
potentially greater. Good quality imputation can greatly improve power
when the causal variant is not well tagged (The MalariaGEN Consortium,
2009), and can also allow well-powered meta-analyses in cases where LD

differs between populations (Teo et al., 2010).

In this section I will discuss two studies of imputation in African popula-
tions. The first investigates HapMap3-based imputation in a GWAS meta-
analyses to discover common associations, and the second looks at using a
1000 Genomes Project high-density reference set to impute into a single,

diverse African population.
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3.3.1 HapMap-based imputation in a GWAS meta-analyses
Description of the study and data

A large collection of blood samples from individuals diagnosed with severe
malaria (including cerebral malaria and severe malarial anaemia), along with
matched population controls, have been collected by MalariaGEN consortium
partners in 9 African countries. 5425 cases and 6891 controls from three of
these collections (Gambia, Malawi and Kenya) were genotyped on three dif-
ferent technologies (Illumina 650K, Illumina 1M and Ilumina 2.5M respec-
tively). The aim of the experiment was to identify and investigate genetic
loci that correlate with severe malaria, and to investigate changes to standard
methodology (including QC, imputation and association techniques) that are
required to study these African collections.

Due to the difficulty of taking blood from severely ill children, only a small
amount of DNA could be extracted and whole-genome amplification was per-
formed, increasing noise in the genotype data. To produce a robust set of
genotype calls, three different calling algorithms were used to process inten-
sity data from the Illumina arrays, separately in each of the three cohorts.
A set of consensus calls were obtained by treating as missing any genotype
that was discordant among algorithms. SNPs with a missing data rate of
> 2.5% were removed. Sample with outlying missingness of heterozygosity

were also removed prior to imputation.

Performing and QCing imputation

Imputation was performed using Impute 2.12, using the phased release 2 of
HapMap3 from the Impute website (http://mathgen.stats.ox.ac.uk/impute/).

As we saw in section 3.2, a diverse reference set provides maximal imputation



3.3. Imputation in African populations 123

accuracy, so | used all HapMap3 haplotypes from all populations (African
and non-African) to perform imputation.

The genome was split up into chunks which are either 5Mb, or have 20
000 reference SNPs (whichever is smaller), with an additional 500kb buffer
on either side of the segment. I used imputation parameter settings of k =
80 and Ne = 14000. Imputation was performed in parallel for each segment,
and segments were reconstructed into chromosomes once all imputations had
finished.

To ensure that imputation was performing correctly, I developed a manual
imputation QC strategy for examining the output. For each sample cohort
I manually examined the following quality-control diagnostic plots to ensure

that imputation had performed properly:

(a) a histogram of certainty quality scores across SNPs

(b) a histogram of info quality scores across SNPs

(c) a histogram of per-individual type2 r2 scores, averaged across segments

(d) a histogram of per-segment heterozygous imputation accuracy (propor-
tion of genotyped heterozygous calls that are also confidently imputed

as heterozygous)

(e) a plot of per-segment mean type2 r2 scores against the segment’s position

along the genome

Examples of these plots (taken from the imputation of the Kenya dataset)
are shown in Figure 3.7. This imputation run has completed without prob-
lems, as the quality scores peak near to 1 (Figures 3.7a and 3.7b), no chunks
have abnormally low quality (Figure 3.7d), and the imputation performance

shows no significant variation genome-wide (Figure 3.7e). One anomaly is
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Figure 3.7: Example output from the imputation quality control pipeline for the
Kenya imputation. Panels a) and b) show the distribution of two quality scores
(certainty and predicted r2) across SNPs, figures ¢) and d) show the distribution of
quality scores across samples and across chunks, and figure e shows the distribution
of quality genome-wide (blocks of colour represent chromosomes).
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bimodal distribution of imputation quality.

the unusual “bump” in the per-sample imputation plot (Figure 3.7¢). Fur-
ther investigation reveals that this “bump” arises at least in part from ethnic

differences within Kenya (Figure 3.8).

Accuracy of imputation across populations

I assessed the accuracy of imputation using the dosage r? between imputed
and true allele count at directly typed SNPs (This is generated internally by
IMPUTEZ2, and called the type 2 r2). Figure 3.9 shows per-individual dosage
r? broken down by country. While less accurate than typically achieved in
European populations, imputation still captures the majority of common
variation in these three populations (a mean dosage 72 of 0.93 in Malawi,
0.92 in Kenya and 0.87 in Gambia). As in Europeans, common SNPs were

better imputed than low-frequency SNPs.
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Figure 3.9: Per-sample imputation accuracy measured by dosage 72, averaged
over imputation chunks. Black vertical line shows typical imputation accuracy in
a UK population, taken from Section 3.2. Gambian samples (red) perform worst
due to the poor coverage of African variation by the Illumina 550K platform,
followed by Kenyan samples (green) on the Illumina Omni2.5M, which while dense
has limited overlap with our HapMap3 reference, with Malawian samples (yellow)
performing best.

As I discussed above, as well as imputation accuracy we are also interested
in the numbers of overconfidently and under-confidently imputed SNPs. I
evaluated the calibration of the confidence of IMPUTE2 (measured by the
info score) against its actual performance at genotyped SNPs. The calibra-
tion of confidence was high across our three samples (quality r2s of 0.93 in
Malawi, 0.92 in Kenya, 0.96 in Gambia) but, like overall accuracy, on average
worse than in European samples (0.96). I included only SNPs with info score
> 0.75 for downstream analyses, leaving a high quality set with mean r2 >

0.9 in all samples, and less than 1% of either very overconfident (predicted



3.3. Imputation in African populations 127

r2 > 0.75, actual < 0.6) or very under-confident (predicted < 0.75, actual
> 0.9) SNPs. Taken together, these results suggest the underlying model of
IMPUTE2, combined with our diverse reference panel, is generally applicable
to samples from African populations.

Despite the high performance of imputation overall, I discovered a num-
ber of factors that influenced relative imputation performance, including (i)
genotyping platform, (ii) ethnic matching of target GWAS samples to the
imputation reference panel, and (iii) homogeneity of individual GWAS col-
lections. The Gambian samples (typed on the [llumina 650Y array) show
much poorer imputation quality (Figure 3.9) than our Kenyan and Malawian
samples (typed on Illumina chips with > 1 million SNPs). While genotyping
array represents the single most important factor to imputation accuracy,
two aspects of population genetics are also critical: good matching between
reference and target samples and homogeneity within a GWAS sample (il-
lustrated by the small number of samples of differential ancestry in Kenya

with poorer imputation quality seen in Figure 3.8).

3.3.2 1000 Genomes-based imputation in a single, diverse

population
Description of the data

The MalariaGEN Kenya dataset, included in the previously discussed meta-
analysis, was genotyped on Illumina’s Omni2.5 genotyping chip. This high-
density SNP array is the first of a new generation of genotyping chips designed
to assay a subset of the large numbers of SNPs discovered by resequencing
studies, such as the 1000 Genomes Project. The Kenya malaria dataset is

the first of many MalariaGEN datasets that will be genotyped on this chip,
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Figure 3.10: A PCA of the 2502 Kenyan samples, coloured by ethnicity.

as it is believed the higher density will allow us to overcome the LD issues

that can confound cross-population meta-analysis.

However, this dataset also provides us with an opportunity to make a
detailed assessment of the accuracy of high-density imputation into a diverse
African population. Two factors make this a particularly good dataset for
such assessment. Firstly, the 2502 Kenyan samples are ethnically diverse,
as shown by their large number of stated ethnicities, and their significant
structure on a principal component plot (both shown in Figure 3.10). We
can use this to investigate the impact of target set diversity and structure on
imputation accuracy. Secondly, the Omni2.5 is a particularly good system to
assess GWAS imputation, as it is built on the backbone of an OmniExpress

(a typical, middle cost GWAS chip), with a large number of 1000 Genomes
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Reference Set N. haplotypes CPU use Memory use
Pilot Yoruba 120 143hrs 20.5 Gb
Pilot (all samples) 360 163hrs 20.9 Gb
Phase I Yoruba+Luhya 400 165hrs 21.1 Gb
Phase I (all samples) 2420 220hrs 25.4 Gb

Table 3.4: Reference sets used for testing 1000 Genomes imputation, with re-
sources required for imputation.

SNPs added. The OmniExpress backbone, as a model of a GWAS chip, can
be imputed into from a high-density dataset, and the additional content can

then be used as a validation set.

Performing imputation

Because the Omni2.5 can only be used to assess imputation results for SNPs
on that chip, I decided to reduce imputation complexity by only using the
Omni2.5 data generated as part of the 1000 Genomes Phase 1. I made a set
of four test reference sets from this data, consisting of two 1000 Genomes
pilot and two phase 1 datasets, with one containing only African samples,

and one containing all samples (Table 3.4).

Imputation was performed only on Chromosome 1, using the Impute2
pipeline described in section 3.3.1. This took between 140 and 220 CPU
hours and 20 to 26 CPU Gbs, and was only weakly dependent on reference
set size (Table 3.4).

Imputation accuracy was measured using dosage r? between imputed and
true genotyped at non-OmniExpress SNPs. For per-individual accuracy, I
used heterozygous certainty (the mean heterozygous posterior probability at

truly heterozygous sites).
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Figure 3.11: The relationship between imputation accuracy and call rate using
the various reference sets. YRI=Yoruba, AFR=African. Note that these data has
not been filtered by quality score.

Impact of reference set on imputation

Looking first at the pilot data, imputation of 1000 Genomes variants into
Kenya performed very badly (Figure 3.11). Even common variants had a
mean dosage 72 of around 0.7. However, going to the Phase 1 data dra-
matically improved imputation performance, bringing the dosage r? up to
over 0.8. Interestingly, the non-African haplotypes made almost no improve-
ment to imputation for common SNPs in either the pilot or the phase 1
data. However, for the very low-frequency SNPs (MAF < 2%), introduction
of non-African haplotypes dramatically improved imputation, both for the
pilot data (0.33 to 0.45) and for the Phase 1 data(0.51 to 0.61). This again

reinforces the value of distantly related haplotypes to improve imputation
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for low-frequency variation.

Impact of target sample on imputation

To investigate the impact of population structure on imputation accuracy,

I found the first principal component for the Luhya and Yoruba Phase 1

reference sets, and projected all Kenyan samples onto this axis (using the R
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Figure 3.13: The variation in imputation accuracy between the major ethnic
groups, ordered by distance from YRI

package snpMatrix). I then correlated this value with the imputation accu-
racy for the Kenyan samples imputed with the AFR Phase 1 dataset (Figure
3.12). Surprisingly, I found a significant inverse correlation, with samples

that lay closer to the Luhya cluster having lower imputation accuracy.

The same relationship appeared to hold if median accuracy across ethnic-
ity was considered, with ethnicities that were genetically more similar to the
Luhya having lower median quality (Figure 3.13). However, it also appears
that samples that are closest to the Yoruba also show a slight decrease in
imputation quality. This suggests that the decrease in quality is in fact due
to being ethnic outliers from the main Kenyan cluster, rather than due to
similarity to reference populations. This may due to the effect of phasing:

IMPUTE2 uses the entire target set to perform phasing, which will lead to
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samples that are not closely related to the rest of the target set having worse

phasing, and thus lower imputation accuracy.

Conclusions

I believe that the results above allow us to draw four conclusions about high-

density imputation in diverse populations:

1. The Phase 1 1000 Genomes reference set grants significant improve-

ments in imputation for African populations

2. Low-frequency imputation benefits from extreme diversity, illustrating

the need for world-wide genotype reference sets
3. Imputation accuracy in Kenya varies significantly by ethnic group

4. The relationship between accuracy and target/reference match can be

complex and counter-intuitive
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3.4 Using imputation to explore the impact of loss-

of-function variants on complex disease

3.4.1 Loss-of-function variants and the 1000 Genomes project

Loss of function (LoF) variants are SNPs, indels or CNVs where one allele
entirely removes the function of one or more genes. These can include SNPs
that disrupt a start codon, create a new stop codon or disrupt an essential
splice site, indels that create a frame-shift and CNVs that partially or en-
tirely delete a gene. Clearly these mutations are major candidates for having
phenotypic effects, and many of the known Mendelian diseases are caused
by LoF mutations, but it is also clear that many LoF variants are relatively
benign and circulate at high frequency in the population. As part of the 1000
Genomes project, the LoF Group (now the Functional Integration Group)

was founded to identify and investigate both common and rare LoF variants.

After extensive filtering, we discovered 1285 high quality LoF mutations
in the 1000 Genomes pilot (MacArthur et al., 2012). This was a particularly
challenging project, largely due to the high proportion of false positives in
this dataset: 1666 putative loss-of-function variants were excluded due to
possible mapping artefacts, errors in gene model and systematic sequenc-
ing errors. In total, we concluded that the average human genome contains
around 100 loss-of-function mutations, with approximately 20 genes homozy-

gously inactivated.

As well as identifying these mutations, an important aim of the project
was to shed light on the biology of these mutations. This included identifying
differences in the property of genes that harbour common LoF mutations and

those where LoF mutations cause Mendelian disease, as well as using RNA-
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Seq to study the impact of LoF mutations on gene expression. In this section,
[ will describe a study that I carried out, using genotype imputation to assess

the impact of loss-of-function variants on human complex disease.

3.4.2 Performing imputation and association analysis

To assess whether LoF variants were enriched for effects on complex disease
risk, I imputed all SNPs and indels genotyped in the CEU population in the
1000 Genomes low-coverage pilot (Project, 2010) into the complete Wellcome
Trust Case Control Consortium 1 (WTCCC1) dataset (Wellcome Trust Case
Control Consortium, 2007), comprising 2,938 controls and 13,241 cases that
pass sample QC.

Genotypes for CEU SNPs and indels were obtained from the July 2010
release, and were merged with SNP genotypes from HapMap3 release 2. Im-
putation of these variants into the WTCCC1 dataset was performed using
the IMPUTE2 pipeline described in section 3.3.1.

I investigated potential associations with complex disease risk for 625
high-confidence LoF variants identified as polymorphic in the CEU popula-
tion. Of these variants, 417 imputed well enough in both controls and at
least one cohort to go ahead with association (using an info score threshold
of 0.2), resulting in a total of 2901 association tests in the seven disease co-
horts. Only 3 variants were close enough to the threshold to be assessed in
some cohorts but not others.

I performed a frequentist association analysis using the program SNPTest
(Marchini et al., 2007), version 2.2.0. I used an additive model of risk,
and a likelihood score test to account for uncertainty in imputed genotypes.
Matched synonymous and missense sets were calculated using allele frequen-

cies in controls, taking random draws without replacement of synonymous
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Figure 3.14: Association of coding variants with complex disease risk. Observed
-log10(P) values for disease association in 16,179 individuals from seven complex
disease cohorts and a shared control group, following imputation of variants identi-
fied by the 1000 Genomes low-coverage pilot, are plotted against the expected null
distribution for all LoF variants and frequency-matched missense and synonymous
SNPs.

and missense variants from the same 1% frequency bin as each LoF variant.

In both cases, five random draws were made.

3.4.3 Results

There were no significant detectable enrichments of associations for LoF vari-
ants compared to missense variants at P value thresholds of 107, 10~% or
1073 (Fisher’s exact P values 0.4994, 0.1245 and 0.8034, respectively), sug-
gesting that common LoF variants are not substantially over-represented
among complex disease risk variants compared to other functional coding
polymorphisms.

The major caveat of this analysis is that the systematically low frequencies

of LoF variants result in a decrease in imputation accuracy, and a subsequent
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drop in power to detect association. However, note that the NOD2 frameshift
indel, with an allele frequency of <3% and an odds ratio of approximately
3, achieved a P value of 1.78 x 107'* for association with Crohn’s disease
despite having a low info score for imputation (0.25). This suggests that
my analysis would have successfully identified other LoF variants with large
effects, even where allele frequency and imputation accuracy was relatively
low. Additionally, imputation quality was high for common LoF variants,
allowing us to positively rule out a major role of common LoF variants in
complex disease.

In addition to the NODZ2 variant that achieved genome-wide signifi-
cance, two LoF variants achieved Bonferroni-corrected significance: rs16380,
a frameshift indel in ZNF3 (associated in type 1 diabetes), and a novel
frameshift indel at chr1:152018423 in the gene SLC27A3 (associated in hy-
pertension). I pursued the evidence for association for the ZNF3 variant us-
ing data from a meta-analysis of genome- wide association studies of type 1
diabetes incorporating 7,514 cases and 9,045 controls (Barrett et al., 2009a).
3 SNPs were in strong linkage disequilibrium with rs16380 based on 1000
Genomes pilot data that were also examined in the meta-analysis; these
showed only nominal significance in the meta-analysis (P = 0.03-0.04), and
this association was driven entirely by the samples overlapping with the
WTCCC1 analysis: looking only at samples that were not overlapping with
WTCCCI, the P value was 0.4012. This suggests that the marginally signif-
icant association in the WTCCC1 samples is a chance finding rather than a

genuine association.
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3.5 Concluding remarks

Throughout this chapter we have seen how new reference sets can add sig-
nificant value to genome-wide association studies via genotype imputation.
This has included allowing assessment of low-frequency variations from both
HapMap and 1000 Genomes reference sets, as well as facilitating meta-
analysis of diverse African populations and inferring the impact of newly
discovered loss-of-function variants in human disease.

However, we have also seen that imputation is most useful when we have
access to large, diverse and high-density reference sets. The well-matched but
small HapMap2 reference set is not sufficient to allow accurate imputation
of low-frequency variation in Europeans (section 3.2). Likewise, despite its
high marker density, the 1000 Genomes pilot data is not able to produce
accurate imputation in a diverse African population (section 3.3.2). These
experiments have shown that to accurately impute all markers down to low
frequency, we require sample sizes on the scale of the HapMap3, but with
the high-density granted by sequencing.

In essence, this is what has now been achieved by the 1000 Genomes
Project Phase 1 release (Project, 2012), which we have seen is capable of
imputing low-frequency variation even in a diverse African population (sec-
tion 3.3.2). This reference set, and subsequent imputation sets from the
1000 Genomes Project and other sequencing projects, presented a new op-
portunity to extend the reach of genome-wide association studies into new
frequency ranges and classes of variation. As such, they represent a valuable,

and continually growing, resource for adding value to GWAS.



Chapter 4

Investigating IBD genetics using

the Immunochip

4.1 Introduction

This chapter describes a set of studies carried out using a custom genotyping
platform named Immunochip. This genotyping chip was collaboratively de-
signed by a large number of researchers in the genetics of complex immune
and inflammatory disease, in order to offer an affordable way of performing
very large locus discovery and fine-mapping studies. This chapter describes
the application of this genotyping chip to the large number of samples col-
lected by the component research groups of the International IBD Genetics
Consortium (IIBDGC).

Both the Immunochip in general, and the IIBDGC study in particular,
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have been very successful in uncovering the genetics of immune-mediated dis-
ease. One study described in this chapter increased the number of associated
loci known for IBD to 163, which is more than for any other complex disease.
The very large number of associations has also necessitated a change in the
way we interpret these results, from a locus-by-locus examination of genes to
a large-scale bioinformatic interrogation of all loci. Much of this chapter will
be dedicated to applying these techniques to the results of the Immunochip

studies.

4.1.1 Overview of this chapter

I will begin (Section 4.2) with a discussion of the design of the Immunochip.
This section starts with a discussion of the economics and power consid-
erations of large-scale locus discovery and fine-mapping projects. It also
contains a brief investigation into the biology of the fine-mapping loci sub-
mitted to the Immunochip, and what they tell us about the shared biology
of immune-mediated diseases.

Section 4.3 will discuss the IIBDGC Immunochip data itself, and how
calling, quality control and association analyses were carried out. It will
describe the large number of novel loci this study has uncovered. Section
4.4 describes a detailed set of bioinformatic analyses to transform this locus
list into biological insights. These analyses draw on a range of external data,
such as associations with other phenotypes, gene networks, gene annotations,
population genetic data and expression analyses. This section also sets out
the main biological conclusions that can be drawn from these analyses, as I
see them.

Finally, I will discuss two smaller studies carried out on this dataset. Sec-

tion 4.5 discusses an association study of Y chromosome haplogroups in IBD,
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and reports a novel association with a Northern Furopean Y haplogroup.
Section 4.6 discusses a pilot fine-mapping project, investigating coding and
non-coding causal variants in the important NOD2 locus in CD, which will

act as a template for larger Immunochip fine-mapping efforts.
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Genotyping method Cost/sample | Number of variants
Sequenom genotyping (1 plex) | £1.25 25-30

[Mumina Omnikxpress GWAS | £160 800,000

array

Agilent and HiSeq targeted se- | £90 All in 6Mbp target region
quencing

[llumina Infinium iSelect HD | £25¢ 90,000-250,000

custom genotyping

Table 4.1: The costs and capacities of various genotyping technologies. All
costs are approximate, and assume large order numbers (>5000 individuals). ¢
Assuming an order of >100,000 chips.

4.2 An overview of the Immunochip

4.2.1 The economics of the Immunochip
The economics of deep replication

The 30 novel loci discovered by the last International IBD Genetics Consor-
tium’s GWAS meta-analysis of Crohn’s disease (Franke et al., 2010) have a
median odds ratio of 1.1. The total discovery and replication dataset in this
study contained 22,441 cases and 29,496 controls, and thus had a 90% power
to establish such loci at genome-wide significance (p < 5 x 107%), assuming an
allele frequency of 0.25 and an additive genetic model. However, a limitation
of this study was that the discovery cohort only had ~29% power to detect
these signals with a p-value less than the significance threshold required to
be taken forward into the replication (p < 5 x 107%). This means that we
have likely only discovered 29% of the variants that the total collection is
well-powered to detect, suggesting another 70 loci that could be discovered.

How can we map these loci in an affordable manner?

One option for uncovering some of these associations would be to expand
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the GWAS collection. Doubling the number of cases on a low-cost genotyping
chip such as the Illumina OmniExpress would cost around £160 x 6333 =
£1,013,280 (all costs shown in Table 4.1). This would increase the proportion
of true associations taken forward for replication to 65%, and would likely
result in around 50 new loci for follow-up. Replication on two Sequenom
plexes would then cost around £76,370. This would thus involve spending
a total of £1,089,650 to discover approximately 33 new loci, at a cost of
£29.450 per locus.

Instead of expanding the GWAS collection, we could instead expand the
replication genotyping effort (a so-called deep replication experiment). For a
replication set containing all SNPs with p < 10~* would contain around 800
SNPs (or 32 Sequenom plexes), and would include 54% of true associations.
This would cost £1.25 x 32 x 30,548 = £1,221,920 to uncover approximately
26 loci, or £46,997 per locus.

There is a third option: custom microarray genotyping. Designing a cus-
tom genotyping array allows the genotyping of a large number of SNPs at
a lower cost than GWAS arrays. For instance, the Illumina iSelect Infinium
HD custom genotyping chips can genotype up to 250,000 markers. For small
numbers of samples the cost is relatively high (starting at around £100/sam-
ple). However, if a very large number of chips are ordered the price can fall
substantially, and for orders measured in the hundreds of thousands the price

falls to under £25/sample.

At this price, the entire IIBDGC replication cohort can be genotyped for
£763,700. Additionally, because tens of thousands of SNPs can be taken
forward for replication, we can perform very deep replication. For instance,
taking forward the approximately 5000 SNPs that show p < 1072 would allow

us to test 76% of true associations. This would allow us to discover 44 new
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loci at a cost of £17,357 each.

The economics of fine-mapping

Most of the associations that have been established during the IIBDGC meta-
analyses are still poorly understood. For all but the most long-established
associations the causal variant is unknown, and in many cases the gene or
genes that are being acted on are also unknown. Bioinformatic techniques,
such as those discussed in section 4.4.3, can shed light some light on the causal
genes. However, the gold standard for establishing causation is genetic fine-
mapping, i.e. demonstrating that a single variant, and no others, is capable
of explaining the observed association.

In general, fine-mapping is not easy to achieve. To take a simple example,
consider a common association (allele frequency of 50%) with a small effect
size (odds ratio of 1.2), with the lead SNP in high LD (r* = D’ = 0.95) with
another variant of the same frequency. To have 80% power to identify the
causal variant with high certainty (i.e. posterior > 0.99), we would require
genotypes at 20,000 cases and 20,000 controls. In practice, the structure of
the genome, and the biases of GWAS detection, will lead to most associations
having many variants in high LD. To fine-map these associations we need a
large number of samples, genotyped for a large number of SNPs. The IIB-
DGC cohort, with an effective sample size of around 25,000 cases, has enough
power to fine-map a significant fraction of the CD associations detected by
GWAS. However, designing this experiment in an affordable manner is diffi-
cult.

A basic fine-mapping effort will involve genotyping a limited set of can-
didate causal variants. If we examine the 40 CD loci that have not been

previously fine-mapped with the lowest degree of LD, we find that there are
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536 SNPs with 72 > 0.8 to the hit SNP in the 1000 Genomes pilot. This set of
SNPs could be genotyped using around 19 Sequenom plexes, and would cost
£1,233,504 to genotype the entire IIBDGC cohort. However, if the causal
variant has r? < 0.8 to the hit SNP, we will not find it (and indeed may
end up with a false positive causal variant). Additionally, only the primary

signal at the locus can be fine-mapped in this fashion.

The ideal fine-mapping experiment involves sequencing entire regions, as
this allows us to assay all variants that could drive the association, as well
as allowing us to identify new (potentially low-frequency) associations. A
pull-down array designed to capture DNA from CD loci, combined with low-
cost next-generation sequencing would allow us to perform this. However,
while the cost of sequencing is now extremely low, the cost of sample prepa-
ration and the pull-down arrays is still relatively high. Even if we restricted
sequencing to 20K cases and 20K controls, such a project would still cost in

excess of £3,600,000.

Again, a powerful third solution comes in the form of custom genotyping,
and in particular via a combined deep replication and fine-mapping array.
The same genotyping array that is being used for deep replication (and thus
is already being run on a significant fraction of the IIBDGC cohort) can also
used to genotype variants in IBD-associated regions taken from the 1000
Genomes project and dbSNP. This allows the primary signal and any sec-
ondary signals to be fine-mapped, and also allows any low-frequency variation
that is in the SNP databases to be assayed as well. This approach has less
full coverage than would be achieved by sequencing, but for common varia-
tion the coverage should be nearly as high, at a much lower cost. In essence,

the fine-mapping and deep replication efforts are combined on a single chip.
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An immune-mediated disease chip

We have seen that custom genotyping is an affordable way to discover and
fine-map new loci using existing collections, providing that a large enough
purchase is made. If the IBDGC alone purchased 40,000 chips (enough to
genotype all CD and UC cases, and all controls), this would still be too small
an order to be cost effective. However, by including deep replication studies
from other disease consortia, we can rapidly increase the total number of

chip users, and reduce the price to affordable levels.

It was these economic considerations that led to the creation of the Im-
munochip. This custom genotyping platform was designed for deep replica-
tion and fine-mapping in a wide range of studies, with particular focus on
immune-mediated diseases (Table 4.2). Along with the reduction in price,
there are a number of additional advantages to this cross-consortium collabo-
ration. Firstly, it greatly reduces the costs of control genotyping, as common
control sets can be used. Secondly, because there is a high degree of genetic
overlap in immune-mediated diseases (see section 4.2.3) a high proportion of
deep replication SNPs and fine-mapping regions will be associated to multiple
diseases, reducing redundancy and increasing the power to detect new shared
associations. Finally, because the chip contains almost all known immune-
mediated disease loci at time of creation, and because it is being run on a
range of different immune-mediated diseases, it makes a perfect platform for

performing cross-phenotype analyses of immune diseases.

4.2.2 The content of the Immunochip

The Immunochip is an Infinium iSelect HD custom genotyping chip, manufac-

tured by llumina. It contains 196,524 variants (largely SNPs, plus 718 small
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Immune-mediated diseases Other diseases
Autoimmune Thyroid Disease® Barrett’s oesophagus
(AITD)

Ankylosing Spondylitis (AS) Bipolar Disease (BD)
Bacteraemia susceptibility (BS) Glaucoma

Crohn’s Disease (CD) Ischaemic stroke

Coeliac Disease (Coeliac) Parkinson’s Disease

IgA deficiency® (IgAD) Pre-eclampsia

Multiple sclerosis (MS) Psychosis endophenotypes
Primary Biliary Cirrhosis* (PBC) Statin response

Psoriasis (PS) Reading and mathematics abilities
Rheumatoid arthritis (RA) Schizophrenia

Sarcoidosis

Systemic lupus erythematosus

(SLE)

Type 1 Diabetes (T1D)

Ulcerative colitis (UC)

Vasculitis

Visceral leishmaniasis

Table 4.2: The diseases involved in the Immunochip design *Fine-mapping only,
no deep replication.

indels), picked specifically for the purpose of discovering and fine-mapping
genetic associations with immune-mediated disease. The variants are selected
based on three criteria: deep replication of variants implicated by GWAS,
fine-mapping of established disease associations and variants submitted as
wildcards. In total, approximately 240,000 SNPs were selected for inclusion,

with an assay design success rate of ~80%.

Deep replication

Approximately 50,000 SNPs are included on the Immunochip as deep repli-
cation for the diseases shown in Figure 4.2. These SNPs showed suggestive

evidence in GWAS, and are intended to be replicated in a large set of samples
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in order to discover novel associations. Many of these (including all repli-
cation for non-immune-mediated traits) were included as part of the second
Wellcome Trust Case Control Consortium project. While these SNPs make
up only a quarter of the total, they represent the larger proportion of the
genome tagged, as they are largely independent (in contrast to the high level

of redundancy in the fine-mapping regions).

Fine-mapping regions

A total of 290 established disease associated loci were included on the Im-
munochip for fine-mapping. 196 of these came from studies that were sub-
mitted, accepted or published when the Immunochip was designed (listed in
Table 4.3). An additional 94 loci were included on the basis of personal com-
munication with researchers carrying out GWAS and GWAS meta-analyses
that were not yet submitted for publication at the time of chip design (listed
in Table 4.4). All but one of these studies have now been published. How-
ever, many of the fine-mapping loci included were not included in the final
publication for these studies. Some of these loci were subsequently discov-
ered in other studies, but there are still 13 “false” loci that are included on
the Immunochip and have never been reported in a publication (Table 4.4).
Many of these loci are actually true associations; for instance, three of the
four “false” IBD loci are confirmed in the IIBDGC Immunochip data (see
section 4.2.2).

Fine-mapping regions were defined by taking 0.2cM on either side of the
hit SNP, using the combined HapMap2 genetic map. SNPs for fine-mapping
were chosen from the 1000 Genomes pilot 1 two-of-three way SNP site set

(dated 10/11/2009), and from dbSNP build 130.

The 290 fine-mapping regions include a high degree of overlap. Exactly
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Phenotype | Study Loci
AITD Kavvoura et al. (2007) 1
AITD Brand et al. (2009) 1
AS Burton et al. (2007) 2
BD Ferreira et al. (2008) 2
BD O’Donovan et al. (2008) 1
CD Barrett et al. (2008) 30
CD Kugathasan et al. (2008) 2
Coeliac Hunt et al. (2008) 3
Coeliac Dubois et al. (2010) 27
IgAD Ferreira et al. (2010) 1
MS Booth et al. (2008) 3
MS De Jager et al. (2009) 5
MS Bahlo et al. (2009) 1
MS Esposito et al. (2010) 3
MS Jakkula et al. (2010) 1
MS McCauley et al. (2010) 2
MS Mero et al. (2010) 1
PBC Hirschfield et al. (2009) 1
PS Capon et al. (2008) 1
PS Nair et al. (2009) 6
PS Zhang et al. (2009) 2
RA Raychaudhuri et al. (2009b) | 23
SLE Harley et al. (2008) 3
SLE Kozyrev et al. (2008) 1
SLE Han et al. (2009) 14
SLE Gateva et al. (2009) 7
T1D Cooper et al. (2008) 1
T1D Smyth et al. (2008) 1
T1D Barrett et al. (2009a) 34
T1D Qu et al. (2009) 1
T1D Wallace et al. (2010) 2
UC Franke et al. (2008) 1
UC Kugathasan et al. (2008) 2
UC Imielinski et al. (2009) 1
ucC Asano et al. (2009) 1
ucC Silverberg et al. (2009) 3
UC Barrett et al. (2009b) 4
UC Festen et al. (2009) 1
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Table 4.3: Fine-mapping regions included on the Immunochip as a result of
studies published or submitted at the time of chip design. The “Loci” column gives

the total number of fine-mapping regions on the Immunochip from this study.
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Disease | Study On | In study “False”
chip | (Confirmed)
AS Reveille et al. (2010) 4 3 (1) 0
AS Evans et al. (2011) 2 1(19) 0
CD Franke et al. (2010) 34 | 32(1%) 1
MS Sawcer et al. (2011) 11 |10 1
PS Strange et al. (2010) 11 19 2
PS Stuart et al. (2010) 3 2 1
RA Stahl et al. (2010) 1 2 1
RA Freudenberg et al. (2011) | 1 1 0
SLE NA® 10 | 0°(39) 7
T1D Swafford et al. (2011) 1 1 0
T1D Heinig et al. (2010) 1 1 0
UC Anderson et al. (2011) 15 | 13 (29) 0

Table 4.4: Fine-mapping regions included on the Immunochip as a result of
studies that were not completed at the time of chip design. “On chip” is the total
number of loci included on the Immunochip from this study, “In study” is the
number of these loci that were subsequently included in the final locus list for that
study, “Confirmed” is the number of loci that were not included in the study have
subsequently been confirmed elsewhere, and “False” is the number of loci included
on the Immunochip from this study that have never been published. *These loci
are confirmed in the study described in this chapter, ’I do not believe that this
study has been published yet. “Confirmed by Evans et al. (2011) Confirmed by
Danoy et al. (2010) ?Confirmed by Guerra et al. (2012)

how many independent regions exists depends on exactly what parameters
are used, but merging any regions with boundaries that lie within 50kb of
each other, and excluding the two BD regions, gives 186 separate immune-

mediated disease regions.

In addition to the regions included due to established associations, a total
of 6378 SNPs from across the MHC were included to allow fine-mapping and
imputation of HLA alleles.
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Wildcard variants

Many groups with the contributing consortia submitted “wildcard” SNPs.
Each contributor was given an allocation of SNPs that could be picked based
on criteria not directly related to deep replication or fine-mapping.

Many researchers submitted wildcard variants in candidate genes. For
instance, the IBD consortium added three SNPs in the gene XBP1, impli-
cated as involved in IBD by a functional and candidate gene study (Kaser
et al., 2008). The most associated SNP in the original study, rs35873774, had
an odds ratio interval of 0.66-0.84 in 4389 cases and 5322 controls. In the
22,442 cases and 30,837 controls of the IIBDGC Immunochip data, it had an
odds ratio interval of 0.92-1.02, suggesting that this association is not real, or
at least has been overestimated. A more powerful example is an attempted
replication via wildcard genotypes of an association between variants in the
gene SIAE and autoimmune disease. The original study that reported the
association tested 923 cases and 648 controls (Surolia et al., 2010), but an
Immunochip-based study in over 60 thousand individuals failed to replicate
the results (Hunt et al., 2012). Often candidate gene studies are expensive
to replicate, and many false associations are not disproved. These wildcard
replication efforts can allow us to confirm or falsify associations that would
not be tested in ordinary circumstances.

Some groups submitted candidate SNPs generated from sequencing ex-
periments. For instance Manny Rivas and colleagues submitted 260 low-
frequency SNPs that had been identified through resequencing of IBD GWAS
regions, many of which replicated successfully in the IIBDGC Immunochip
cohort (Rivas et al., 2011).

Other sets of SNPs were added for other purposes. 100 SNPs within the
Killer cell Immunoglobulin-like Receptor (KIR) gene cluster were added, to
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allow development of techniques to impute KIR serological alleles. 1735 Y
chromosome SNPs were included to allow Y haplogroup analyses (discussed
in section 4.5 below), and a further 848 SNPs were added from the NHGRI
GWAS catalogue to allow testing of GWAS hits from non-immune-mediated

diseases.

Unpicking “false” IBD fine-mapping regions

There are four IBD fine-mapping regions that were included on the Im-
munochip despite not appearing in either the Franke et al. (2010) nor An-
derson et al. (2011) meta-analysis papers. These include two CD and two
UC regions.

In the UC meta-analysis, the first “false” SNP (rs1518070) showed genome-
wide significant evidence (Peompined = 7.9 x 107%), leading to its inclusion on
the Immunochip. However, final replication did not meet p,eprication < 0.05
due to a high rate of technical failure. The second “false” SNP (rs1569501)
showed genome-wide significant evidence of association in the UC GWAS
alone, but failed assay design during replication and was thus not included
in the final study.

In CD, one “false” SNP (rs1536833) met genome-wide significance in
the replication datasets available when the Immunochip was first designed
(Peompined = 2.6 x 1078), but dropped just below genome-wide significance
when the final replication cohorts were included (peompinea = 9.5 x 1078).
The second, rs2098112, showed a significant value of peompined (leading to its
inclusion on the Immunochip), but the entire signal was entirely driven by
association in the GWAS data, and was excluded from the final list due to
lack of signal in the replication.

Of the four IBD fine-mapping regions included “in error”, three were
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Figure 4.1: Locus sharing between immune-related diseases, using Immunochip
fine-mapping regions. Connecting line width represents number of loci shared,
either a) unweighted or b) weighted by square root of the product of the number
of associations in both phenotypes.

found to be truly associated in the IIBDGC Immunochip study described
in this chapter. The only association that failed to show signal in the Im-
munochip was rs2098112. Additionally, the improved GWAS imputation
described below reduced the association signal from p = 4.5 x 1071° to p =

0.35, showing that this association was driven entirely by poor imputation.

4.2.3 The biology of the Immunochip

The fine-mapping regions on the Immunochip represent a complete survey
of the known genetics of immune-mediated disease (or at least, a relatively
complete survey of the loci known in mid-2010). What can this list of loci
tell us about the shared biology of the diseases that the Immunochip was

designed to study?
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Locus sharing between immune-mediated diseases

Of the 186 fine-mapping loci, 61 were submitted for more than one dis-
ease, including 9 loci shared by at least 4 diseases. Highly shared loci in-
clude loci that been traditionally considered important in immunity such as
IL23R/IL12RB2 (5 diseases) and PTPN22 (4 diseases), and other loci that
do not have well-understood roles in immunity such as KIF21B (5 diseases).

We can use these shared loci to construct a locus sharing network for 9
autoimmune diseases (excluding diseases with 2 or fewer loci). An unweighted
network (Figure 4.1a) shows strong connectivity between CD, UC, T1D and
Coeliac. However, these diseases are also those with the largest number of
discovered loci, so this connectivity is unsurprising. If we weight the network
edges by the geometric mean number of associations in the two diseases, we
get a very different network (Figure 4.1b). The strongest connection here is

between UC and AS (two comorbid diseases).

Network analyses of Immunochip loci

We can place the Immunochip loci in the context of gene networks, and ask
which loci seem to play a central role in these networks. I used two gene
network tools (GRAIL and DAPPLE) to construct networks using genes in-
side Immunochip regions. The first, GRAIL (Raychaudhuri et al., 2009a)
(Gene Relationships Across Implicated Loci), is a network connectivity tool
that uses text mining to calculate a network distance between genes in dif-
ferent implicated loci. Each gene is measured for enrichment of connectivity
to genes in other associated loci, and a p-value is calculated. The second,
DAPPLE (Rossin et al., 2011) (Disease Association Protein-Protein Link
Evaluator), is a network connectivity tool that uses protein-protein interac-

tions. Each gene is measured for enrichment in either direct or indirect (i.e.
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Figure 4.2: The relationship between GRAIL network connectivity and number
of associations for Immunochip fine-mapping regions. a) The GRAIL gene network,
with genes in shared loci highlighted in red. b) The relationship between GRAIL
connectivity p-value and degree of locus sharing

via other proteins) interactions with genes in other loci, and an empirical
p-value is calculated by permutation.

Looking at the GRAIL literature network (Figure 4.2), genes that tend to
be closest to the centre of the network also tend to be in regions associated
with more than one phenotype. In general, there is a correlation between
connectivity p-value and number of associations for both GRAIL (Spearman
p =-0.39, p =145 x 1077) and DAPPLE (p = -0.31, p = 1.15 x 107%)
networks. As intuition might lead us to believe, that loci that play a more
central role in the pathways of immune disease are more likely to impact
multiple diseases.

The 10 most connected Immunochip fine-mapping loci are shown in Table
4.5. Nine of these regions are associated to more than one disease, though
the most significantly connected region, the TNFSF/ locus, is only asso-
ciated with SLE. TNFSF/ (also called OX40L) is expressed by dendritic

cells and promotes Th2 differentiation and thus humoral immunity, and has
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Chrom:Pos GRAIL DAPPLE Genes Phenotypes
(MB) p-value p-value
1:171.4-171.6 | 3.61 x 107 | 0.23 TNFSF) SLE
1:7.6-8.1 8.32x 102 | 0.07 TNFRSF9 | CD, UC,
Coeliac
2:204.2-204.5 | 1.73 x 1071 | <0.002 ICOS, RA, AITD,
CD28, T1D,
CTLAY Coeliac
16:28.2-28.9 1.64 x 107 | <0.002 1L27, CD, T1D
NFATC2IP,
CD19
21:44.4-44.5 2.47 x 10718 | 0.44 ICOSLG CD, Coeliac
2:191.6-191.7 | 4.65 x 10718 | <0.002 STATY, SLE,
STAT1 RA,CD*,UCHY
1:67.4-67.7 9.97 x 107 | <0.002 IL12RB2, PS, CD,
IL23R ucC, AS,
PBC
20:44.0-44.2 | 1.11 x 1077 | 0.22 CD40 RA, CDe,
uce
3:161.1-161.2 | 3.03 x 10717 | <0.002 IL12A MS, Coeliac
12:54.6-55.1 3.10 x 10717 | <0.002 IL23A, PS, T1D
STAT2

Table 4.5: The top 10 most connected Immunochip fine-mapping regions, ac-
cording to a GRAIL network analysis. “New associations discovered in the IBD
Immunochip analysis.

been investigated as a drug target in allergic diseases (Wang and Liu, 2007).
If this gene were truly associated only to SLE, and not to other immune-
mediated diseases, it would suggest a good starting point for investigating
deep-rooted differences between immune diseases. However, we can also use
the Immunochip itself to investigate this possibility. The SLE-associated
SNP, rs1234315, shows a low but sub-genome-wide-significant signal in the
Crohn’s disease IIBDGC data (p = 2.03 x 1071), suggesting that this locus

is active in other diseases, but has too small an effect size to be reliably

detected in GWAS.
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Chrom:Pos GRAIL DAPPLE Genes” Phenotypes

(MB) p-value p-value

1:199.1-199.3 | 0.90 0.63 KIF21B MS, AS,
UucC, CD,
Coeliac

2:162.7-163.1 | 0.38 0.68° IFIH1 [gAD, T1D,
PS, CD¢,
uce

6:90.9-91.1 0.08 0.96 BACH?2 T1D,
Coeliac,
CD, UC*

Table 4.6: Immunochip fine-mapping regions associated with at least 3 pheno-
types, but with no evidence of connection via either DAPPLE or GRAIL. *New
associations discovered in the IBD Immunochip analysis. ’The stated genes are
the standard candidate genes given the in the literature *IFIHI is not included in
the protein network used by DAPPLE

As well as highlighting highly connected genes, this analysis can also
highlight loci that are associated to many different immune-mediated dis-
eases, but do not show evidence of network centrality. Table 4.6 shows three
loci that are associated with at least three diseases, but show p > 0.05 in
both the GRAIL and DAPPLE analyses. One of these genes, IFIH1, was not
present in the DAPPLE interaction dataset, so may represent a simple lack of
data. One of the others, KIF21B, was originally discovered in MS, and was
believed to act via its role in neuronal transport (McCauley et al., 2010).
However, associations to AS, CD, UC and Coeliac disease suggest a more
general role in immunity. All three of these regions are associated in IBD,
and two contain candidate genes identified by the IBD-specific gene prioriti-
sation approach described in section 4.4.3. IFIH1 shows a marginal GRAIL
association (p = 0.032), and KIF21B was prioritised by a gene co-expression

network approach.
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Figure 4.3: Numbers of IBD and control samples passing quality control, from
each country participating in this study. The numbers for the Immunochip samples
(numbers in blue) only include samples that are not also present in the GWAS
(numbers in red).

4.3 QC and association analysis of the [IBDGC

Immunochip dataset

4.3.1 The IIBDGC Immunochip dataset

As part of the International IBD Genetics Consortium (IIBDGC), research
groups from 15 countries (Figure 4.3) collected Crohn’s disease (CD) and
Ulcerative colitis (UC) samples and genotyped them using the Immunochip.
These data were combined with the GWAS meta-analysis collection to create
a large dataset for locus discovery.

The GWAS meta-analysis dataset consists of seven Crohn’s disease collec-

tions and eight ulcerative colitis collections with genome-wide SNP genotype
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Cohort Countries Chip Case / control (unique)
CD cohorts
BEL1 Belgium, ILMN317 | 513 / 884 (884)
France
BEL2 Belgium ILMN317 | 153 / 94 (94)
CEDARS USA ILMN317 | 835 / 2881 (1364)
CHOP USA, Canada, | ILMN550 | 1495 / 6090 (3054)
Italy, UK
GERMAN Germany ILMN550 | 480 / 1114 (573)
NIDDK USA, Canada | ILMN317 | 759 / 929 (462)
WTCCC UK AFFX500 | 1721 / 2935 (1612)
Total 5956 / 14927 (8043)
UC cohorts
CEDARS USA ILMN317 | 836 / 2928 (1566)
CHOP USA, Canada, | ILMN550 | 664 / 6091 (3038)
Italy, Scotland,
Canada
GERMANY Germany AFFX6 990 / 2915 (2383)
NIDDK1 USA, Canada | ILMN550 | 498 / 1070 (624)
NIDDK?2 USA, Canada | ILMN550 | 451 / 1428 (1420)
NORWEGIAN | Norway AFFX6 258 / 279 (279)
SWEDISH Sweden ILMN317 | 918 / 341 (341)
WTCCC UK AFFX6 2353 / 5412 (4076)
Total 6968 / 20464 (13727)

Table 4.7: GWAS cohorts, with country of origin, genotyping chip and size. Case
and control numbers are after QC, and the number in brackets in the number of
unique controls after duplicates between CD and UC have been removed.

data (Table 4.7). The CD cohorts contained a total of 6,299 cases and 15,148
controls, and the UC cohorts contained a total of 7,211 cases and 20,783 con-
trols (the control sets contain largely overlapping samples). Four different
chips were used: two produced by Affymetrix (the GeneChip Human Map-
ping 500K Array and the Genome-Wide Human SNP Array 6.0) and two
produced by Illumina (the HumanHap300 BeadChip and the HumanHap550
BeadChip). The majority of these samples were used in the published IIB-
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Center Nationality CD / UC / control
Bonn Germany 0/0/ 1494
Cedars Sinai USA 1156 / 822 / 0
Feinstein Institute | Australia 844 / 706 / 464
Canada 610 / 506 / 305
New Zealand 422 /420 / 0
Netherlands 140 / 157 / 0
USA 743 / 364 / 2288
Total 2759 / 2153 / 3057
Kiel Denmark 66 / 169 / 88
Germany 1062 / 261 / 1490
Ttaly 1273 / 595 / 272
Lithuania/Baltic | 129 / 304 / 269
New Zealand 260 / 0 / 457
Norway 122 /54 /0
Spain 264 / 0/ 282
Sweden 669 /0/0
Total 3845 / 1383 / 2858
Leuven Belgium 1434 / 783 / 721
Munich Germany 0/0/ 286
U of Pittsburgh Australia 0 /57 /62
Canada 0/25/20
Germany 0 /537 / 505
Netherlands 0/ 327 / 346
Sweden 0/232/315
USA 315 / 218 / 388
Total 315 / 1396 / 1636
U de Liege Belgium 1015 / 548 / 699
UMC Groningen | Slovenia 171 / 38 / 217
Netherlands 1116 / 366 / 989
Total 1287 / 404 / 1206
UVA UK 0/0 /2441
Sanger Institute UK 2952 / 3431 / 1579
Total 14763 / 10920 / 15977

Table 4.8: Immunochip cohorts, broken down by genotyping centre and country
of origin. Case and control numbers are after QC, and after samples that overlap
the GWAS cohorts have been removed.
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DGC meta-analyses (Franke et al., 2010; Anderson et al., 2011).

The Immunochip dataset consists of collections from 15 countries geno-
typed in 11 different genotyping centres (Table 4.8). Genotyping was per-
formed in 20 batches, with each centre processing between one and three
batches. A total of 60,828 samples were genotyped on the Immunochip,
comprising 20,076 CD cases, 15,307 UC cases and 25,445 controls. These
numbers include many samples that were also present in the GWAS cohorts,
which are to be used for fine mapping and not for locus discovery.

Overall, after QC and removing overlapping samples (see below), this
dataset has 20,700 CD cases, 17,865 UC cases and 37,747 controls. This
is the first time a large meta-analysis has analysed CD and UC together,
allowing very high power for variants shared across both phenotypes. For
instance, the dataset has an 80% power to detect common IBD associations
with an odds ratio greater than 1.06. It is also well-powered to detect low-
frequency variants (MAF of 1%) with an odds ratio of >1.35, and rare (MAF

= 0.1%) variants with an odds ratio of >2.3.

4.3.2 Genotyping, imputation and quality control

GWAS data

In addition to the quality control performed by individual studies before

submission, each GWAS study was subject to the following QC:

1. missing rate per SNP < 0.05
2. missing rate per individual < 0.02
3. heterozygosity per individual 4 0.2

4. missing rate per SNP < 0.02 (after sample removal)
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Figure 4.4: All GWAS samples plotted on the first two principal components,
coloured by study. Circles are cases, crosses controls

5. missing rate per SNP difference in cases and controls < 0.02
6. Hardy-Weinberg equilibrium (controls) P < 107¢

7. Hardy-Weinberg equilibrium (cases) P < 1071,

A set of 17,385 high-frequency SNPs (MAF > 5%) in linkage equilibrium
(r? < 0.05 for all SNP pairs) was generated. Plink was used to calculate
relatedness statistics (the estimated coefficient of relatedness ), and indi-
viduals with 7 > 0.2 to another sample were removed. Samples duplicated
between CD and UC control datasets were recorded: these samples are kept
in for single-phenotype tests, but removed for combined tests. Principal com-

ponent analysis was performed (Figure 4.4), and principal components that
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Figure 4.5: a) Principal component projection of Immunochip samples onto a)
continental axes fitted from HapMap samples and b) European axes fitted from
Immunochip controls

correlated with disease phenotype were recorded for use as covariates.
Imputation of untyped SNPs was performed within each study in batches
of 300 individuals. These batches were randomly drawn in order to keep
the same case-control ratio as in the total sample from that study. Imputa-
tion was performed with the CEU+TSI HapMap3 reference set (containing
1,252,901 polymorphic SNPs), using Beagle 3.13 with a chunk size of 10Mb

and default parameters.

Immunochip data

Because many of the variants on Immunochip do not meet the manufacturer’s
quality standards set for GWAS products, rigorous QC is essential. Further-
more, because samples with poor quality DNA or with other genome-wide
problems can adversely affect the genotype calls at high quality samples, I
performed a first stage of “coarse” QC on genotypes called using Illumina’s

GenomeStudio program. I exclude samples with >5% missing data, genome-
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wide heterozygosity outside a 95% confidence interval in each batch, samples
of non-European ancestry (via PCA, see below) or with abnormal mean in-
tensity values from further analysis.

For all remaining samples, I used the optiCall clustering program (Shah
et al., 2012) (v0.3.0) to call genotypes, with a no-call cutoff of 0.7 and HWE
blanking disabled. I identified duplicate and related samples (7 > 0.1) using
PLINK with the same set of SNPs used for PCA (details below for details),
and removed the duplicate or related sample with the higher missing data
rate. I used a set of 692 SNPs present on both the Immunochip and all four
GWAS chips to remove Immunochip samples that were also present in the
GWAS. I removed samples without a phenotype definition of Crohn’s disease,
ulcerative colitis or healthy control, and finally removed all samples with >
2% missing data in this improved call-set.

I performed SNP QC in this filtered dataset, removing SNPs with >2%
missing data or HWE p-value < 107! in controls. However, a relatively large
number of SNPs still showed poor clustering, driving many false positive
associations. To further ensure the quality of genotype calls in our analysis,
I selected 3,356 variants for manual inspection, including those with meta

analysis p<10~® which fulfilled at least one of the following criteria:

1. Cochran heterogeneity p < 0.01 between GWAS and Immunochip
(N=8T71)

2. lie outside fine-mapping regions known to be associated with immune-

mediated disease (N=797)
3. are one of the 3 most significantly associated SNPs in a region (N==851)

4. any SNP with p < 5x10™® which did not fit those criteria (N=195)
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5. random SNPs as a comparator (N=642)

I distributed intensity data for these SNPs to 16 members of the [IBDGC
for manual inspection. Included was a version of the manual inspection pro-
gram Evoker (Morris et al., 2010) optimised for multi-cohort inspection, and
a document describing the protocol for manual inspection. Each SNP was
inspected by three individuals, and was considered to have passed inspec-
tion if three individuals passed the SNP, or two passed it and one marked it
as a “Maybe”. 1015 SNPs were removed during this process. A further 29
SNPs had genotypes manually adjusted (blind to phenotype and association
statistics) to correct recoverable errors.

I used principal component analysis to identify ethnic outliers, and to
generate covariates to control for population stratification. To identify
outliers on the continental scale I constructed a reference set consisting
of 662 HapMap founder samples genotyped on the Illumina HumanlM,
the Affymetrix Human SNP Array 6.0, and the Illumina Omni2.5 for the
HapMap3 and 1000 Genomes Projects. This reference set was designed to
maximise overlap with the Immunochip, and has a total of 3,268,731 SNPs,
of which 83,689 are present on the Immunochip. I used PLINK to LD prune
the data such that no pair of SNPs had r? > 0.2, and I also removed GC/AT
SNPs, SNPs within known high LD regions (Price et al., 2008) and SNPs
with MAF < 5%. I projected the Immunochip samples on the principal
component axes generated using these 17,891 SNPs from the 662 reference
samples using the R package snpMatrix (Clayton and Leung, 2007). All sam-
ples that did not cluster with the European samples were excluded (Figure
4.5a).

To resolve within-Europe relationships, I performed PCA within the re-

maining Immunochip samples. LD pruning was performed within European
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Figure 4.6: QQ plots, A and Ajggg values for the CD, UC and IBD GWAS
analyses. Grey shapes show 95% confidence interval under the null.

controls (this was performed three times, to properly break up the LD in
fine-mapping regions), and SNPs present in high LD regions or with MAF
< 5% were removed, leaving a total of 19,111 SNPs. I generated principal
component axes within the controls, and projected the cases onto these axes
to generate PCs for all samples. The first four principal component axes
seemed to capture significant population structure (Figure 4.5b), and addi-
tion of components beyond the fourth as association covariates in a subset

of the Immunochip data did not further reduce the genomic inflation factor.

4.3.3 Association analyses

4.3.4 GWAS and Immunochip analyses

Three association scans were performed for both GWAS and Immunochip.
These included a CD analysis (Crohn’s disease vs controls), a UC analysis
(ulcerative colitis vs controls) and an IBD analysis (combined CD and UC
vs controls).

For the GWAS, the CD scan had a total of 5,956 QC+ cases and 14,927
QC+ controls, the UC scan had 6,968 cases and 20,464 controls, and the
IBD scan had 12,882 cases and 21,770 controls. For the IBD scan, controls
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Figure 4.7: QQ plots and X values for the CD, UC and IBD Immunochip analyses.
Grey shapes show 95% confidence interval under the null.

that overlapped between the CD and UC control cohorts were removed from
whichever dataset had a greater excess of controls. Association testing was
carried out in PLINK, using the dosage data from the imputation and using
10, 7, 15 principal components for CD, UC, IBD respectively as covariates (all
PCs that correlated with case-control status). The CD, UC and IBD scans
had genomic inflation (Age) values of 1.137, 1.129, and 1.169 respectively
(Figure 4.6). These inflation figures are substantially lower than the figures
for the previous CD and UC meta-analyses.

For the Immunochip analysis, the CD, UC and IBD scans all used the
entire control dataset. The CD scan had a total of 14,763 QC+ cases, the UC
scan had 10,920 cases, the IBD scan had 25,683 cases, and all scans used the
15,977 QC+H controls. I performed association testing using additive logis-
tic regression in PLINK conditioned on the first four principal components.
Test statistic inflation was computed from a set of 3120 SNPs chosen based
on GWAS of schizophrenia, psychosis and reading/mathematics ability. Ge-
nomic inflation factors were relatively low, given the large sample size and
presence of polygenic risk: Agc., = 1.353, Agoye = 1.154, Age,np, = 1.234
(Figure 4.7).

For comparison, I also performed an association test on all IBD samples
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using the Cochran-Mantel-Haenszel method to stratify by country of origin
of the samples. This is one of the standard methods used to analyse GWAS
replication data, where population stratification correction via principal com-
ponents are usually not available. The genomic inflation value for the IBD
all analysis was A\gc,,, = 2.00, showing that without the genome-wide SNP
data on the Immunochip this replication analysis would have shown severe
inflation.

This also has some worrying implications for the GWAS field, as it sug-
gests that most standard international replication datasets will suffer from
test statistic inflation. This in turn could mean that combined GWAS-
replication p-values may be too liberal. In the future, it seems prudent that
large replication analyses should include a number of ancestry-informative
SNPs to control for stratification. Exactly how many such SNPs would be
required to reduce inflation is unknown, and the Immunochip provides a

platform to investigate this.

4.3.5 Deep replication meta-analysis

A combined analysis was performed using both the GWAS and the Im-
munochip association results comprising 20,700 Crohn’s disease, 17,865 ul-
cerative colitis cases and 37,747 healthy controls.

All SNPs in GWAS association results with p < 0.01 in the CD, UC
or IBD scans were selected for replication in the Immunochip dataset (a
total of 25,075 SNPs). A fixed-effect meta-analysis was performed using
odds ratios and standard errors from the GWAS hit and the Immunochip
tag with the highest r? to the hit SNP, providing a tag with 72 > 0.4 was
available. The Cochran heterogeneity p-value was also calculated (none of

the final association signals showed significant heterogeneity after correcting
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for multiple testing).

SNPs with p < 5 x 1078 in any of the three phenotypes in this analysis
were combined into clumps if they had r? > 0.1. SNPs within these clumps
were tested for evidence of association independent of the strongest signal
in the clump. Because the tag SNP meta-analysis approach makes stan-
dard methods for conditional analysis impossible to carry out, so we used an

approximate conditional Z-score

Zi = Zi — i it Znit (4.1)

Where Z; is the Z score of the SNP being tested, Z,;; is the Z score of the
strongest signal in the clump, and r; ;; is the correlation coefficient between
the strongest signal and the SNP being tested. If P(Z! > 0) < 5 x 1078 then
this clump is considered to have a secondary signal, and the SNP with the
Z! largest in magnitude is recorded as a secondary signal in this clump. All
other SNPs in the clump are then tested for a tertiary signal independent of

the first two, using

ZZ, =7 — Ti,hz‘chit - T’i72ndZ2nd (42)

We do not test for additional signals after the third. Theoretically, this
could be extended to an arbitrary number of signals, but the approximation

will become less accurate as additional signals are tested for.

This approach yielded 193 genome-wide significant independent signals of
association. None of these signals had significant heterogeneity of effect size,
and all had their Immunochip intensity cluster plots manually inspected to

ensure that they were well clustered.
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Figure 4.8: The results of a null simulation of association clumping. The x-axis
shows varying thresholds of proximity for two statistically independent signals
to be considered in the same locus. The y-axis shows the number of loci for a
particular threshold, from 193 (the total number of independent signals) at the
left when no signals are combined to fewer than 50 when even extremely distant
signals 100Mb apart are combined. The grey shaded area shows the 95% confidence
interval from simulations of 193 random signals, and the black line shows the true
number of loci for a given clumping value. The red line is 500kb, the actual
clumping distance we used.

4.3.6 Combining signals into loci

The large number of independent signals (193) makes categorising them into
functionally separate loci problematic. We conventionally define signals as
coming from the same locus if their lead SNPs lie within a certain physical or
genetic distance of each other. However if this physical distance parameter is
too large functionally independent signals that are adjacent by chance may be
incorrectly combined. Conversely, selecting too small a distance parameter

could cause variants that act relatively proximately on the same gene to be
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split into independent loci.

To test the effect of this distance parameter on classifying signals into
loci, I performed a null simulation. I selected randomly from the PCA SNPs
to simulate null signals, and examined what proportion of signals are incor-
rectly merged together for a given distance parameter value. Based on this, I
decided to define a locus as a 500kb unit: 250kb on either side of the hit SNP.
This results in between 95% and 99% of null loci being correctly separated
(Figure 4.8).

Each independent signal had a region defined around it, which was 250kb
on either side of the hit SNP, or the extent of LD (defined as the positions
of the furthest up-and-downstream variants with 72 > 0.5 to the hit SNP).
Overlapping regions were merged together, providing that they were associ-
ated to compatible phenotypes under the likelihood analysis (see below); i.e.
loci were not merged if one was uniquely associated with CD, and the other
uniquely associated with UC. The final merged regions were defined as loci,
with their extents being the maximum extent of their component signals. A

total of 163 independent loci were thus defined (Table 4.9).

4.3.7 Crohn’s disease/Ulcerative colitis likelihood modelling

We used a likelihood modelling approach to classify signals into four cate-
gories according to their relative strength of association to CD and UC. We
used a multinomial logistic regression model with additive log-odds ratio pa-
rameters Scp and Syc. The model was fitted to the Immunochip genotypes
using the mlogit package in R.

We fit this model with four sets of parameter constraints:

1. CD-specific model: Bye = 0 (i.e. UC cases and controls have the same

frequency), Bep fitted by maximum likelihood
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2. UC-specific model: Scp = 0, Bye fitted by maximum likelihood

3. IBD unsaturated (same-effect size) model: Bop = Byc = Bisp (ie.
frequency is the same in CD and UC cases), f;pp fitted by maximum

likelihood

4. IBD saturated (different effect sizes) model: Scp and Sye both fitted

by maximum likelihood

Note that models 1-3 are all constrained versions (1 d.f.) of model 4 (2
d.f.).

We calculated likelihoods for each model, and performed a likelihood ratio
test of each of models 1-3 against model 4. If the likelihood ratio test had p
< 0.05 for all 3 models (the 2 d.f. model is nominally significantly a better
fit than any of the 1 d.f. models), we classified the signal as “saturated” (i.e.
associated to both CD and UC, but with evidence of different effect sizes).
Otherwise, we classified the signal according to which of the first three models
had the largest likelihood. Note that being classified as IBD unsaturated
should be interpreted as “associated to both CD and UC, without significance
evidence of differing effect sizes”.

In Table 4.9 below, the “IBD” section contains all loci where the main
signal was classified as IBD unsaturated or IBD saturated. An exception
was made for the CD associations at PTPN22 and NOD2, where the correct
model was “IBD saturated”, as there were significant UC associations that
went in the opposite direction to the CD effect.

Even within these classifications there is a significant variation in the
balance of CD and UC effect sizes (Figure 4.9). To capture this we also used
polar-transformed log odds ratios as a continuous measure of CD vs UC effect

size balance. This is defined as # = atan2(log(ORCD), log(ORUC)). Large
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values of 6 correspond to associations with a stronger UC component, smaller

values correspond to a stronger CD component.

4.3.8 Comparison of this locus list to previous CD and UC

lists

Because this study has access to raw genotype data from both CD and UC for
the first time, it has allowed us to clarify several aspects of the 99 previously

reported associations:

e While previously suspected, we have confirmed that the associations in
the MHC are distinct for CD and UC, and therefore should be split into

two phenotype specific associations, rather than a single IBD locus.

e Conversely our improved imputation has re-localised the CD associa-
tion previously reported as VAMPS to be the same effect as the adja-
cent previous UC association to TNFRSF9, making this a single IBD

locus.

e Two previously independent associations on chromosome 2 near 102Mb
(one CD, one UC) have both been shown to be IBD, and accordingly
have been merged into independent effects in a single IBD locus. Sim-
ilarly, a previous CD SNP (chromosome 2 near 198Mb), which is now

associated to UC as well, was incorporated into a new nearby UC locus.

e Five previous associations (Chr2@198Mb, Chr5@36Mb, Chr6@3Mb,
Chr6@44Mb, Chr13@42Mb) are no longer genome-wide significant. In
four cases, our improved PCA-corrected analysis is >2 orders of magni-
tude less significant than the previous country-stratified analysis, sug-

gesting that these associations may have been driven in part by uncor-
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rected population structure. In the final instance the key SNP failed

Immunochip design.

Thus, from 99 previously reported loci, one was split, three were merged
and five were lost, leaving 92 established and 71 novel loci. This highlights
both the overall robustness of our previous analyses as well as potential pit-
falls in small-scale replication genotyping, for which correction for population
stratification is difficult.

We also compared the total phenotypic variance of CD and UC explained
by our loci compared to previously published estimates. In ulcerative colitis
we improved from 3.9% of phenotypic variance explained by known loci to
7.0% explained by our 193 signals. For Crohn’s disease we improved from
7.6% to 12.0%. Two additional comments are necessary: first, I have decided
here to report phenotypic variance explained, rather than heritability, due
to the difficulties in measuring narrow-sense heritability discussed in Chap-
ter 2. Second, the odds ratios estimated from the Immunochip are smaller
than previous estimates for several key loci in CD, including NOD2, IL23R
and ATG16L1. This difference was not explained by an abnormal degree of
stratification or differential ancestry at these sites. Our new odds ratios are
estimated in replication samples in this project, so this effect may reflect less

severe disease than the samples previously collected for GWAS.
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Table 4.9: The 163 inflammatory bowel disease loci, split into Crohn’s Disease
specific, Ulcerative Colitis specific, and shared across Inflammatory Bowel Disease.
Key genes are those identified by one of the candidate gene prioritisation analyses
described in the text, and bold genes are identified by more than one bioinformatic
approach. Loci shaded grey are newly identified in this study. SNP IDs marked *
denote the presence of a second genome-wide significant alternative signal at this
locus, and ** denotes the presence of two or more additional signals. Odds ratios
marked with a tshow evidence of heterogeneity of effect size between CD and UC.

Chrom:Pos SNP P-value RAF | OR Key Genes (+N
(Mb) additional in lo-
cus)

Crohn’s Disease

1:78.37-78.87 rs17391694 2.96 x 1079 0.889 | 1.134 | (5)

1:114.05-114.55 | rs6679677 2.03 x 10~ | 0.907 | 1.1961| PTPN22,

DCLRE1B,

(7)
1:120.2-120.7 rs3897478 1.97 x 107 | 0.891 | 1.161 | ADAMS0, (5)
1:172.6-173.1 rs9286879 5.53x 10722 | 0.249 | 1.125 | FASLG, TN-

FSF18, (0)
2:27.38-27.88 rs1728918 4.86 x 10716 | 0.299 | 1.123 | UCN, (23)
2:62.3-62.8 rs10865331 | 9.77 x 1071 | 0.396 | 1.098 | (3)

2:230.84-231.34 rs6716753 1.17 x 10716 | 0.196 | 1.134 | SP140, (5)

2:233.87-234.42 | 1312994997 | 4.14 x 10-7° | 0.523 | 1.233 | ATG16L1,
INPP5D, (7)

4:48.11-48.61 16837335 1.75 x 10~8 | 0.647 | 1.086 | TXK, TEC,
SLC10A4, (3)

4:102.61-103.11 rs13126505 1.84 x 10712 | 0.096 | 1.172 | (1)

5:55.18-55.68 rs10065637 3.68 x 10712 | 0.773 | 1.123 | IL6ST, IL3IRA,
(1)
5:72.29-72.79 rs7702331 5.63 x 10710 | 0.621 | 1.088 | (4)
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5:173.09-173.59
6:21.17-21.67

6:31.02-31.52

6:127.2-127.7
6:127.99-128.49
6:159.24-159.74
7:26.63-27.13

7:27.92-28.42

8:90.62-91.12
8:129.31-129.81
13:44.2-44.7

15:38.64-39.14

16:50.31-51

17:25.59-26.09

19:0.87-1.37

19:46.6-47.1

19:48.95-49.45

21:34.52-35.02

rs17695092
1512663356

159264942

rs9491697
1513204742
rs212388
rs10486483

rs864745

rs7015630
rs6651252
rs3764147

rs16967103

rs2066847**

152945412

rs2024092

rs4802307

rsb16246

rs2284553

4.68 x 1079
4.01 x 10712

4.96 x 10728

3.79 x 10710
8.38 x 1071°
3.04 x 10714
3.48 x 1078

3.65 x 1079

1.42 x 10~8
1.45 x 10~16
2.19 x 102!

3.88 x 1079

5.86 x 107299

8.68 x 10717

8.26 x 10722

2x 10710

1x 10715

2.14 x 10716

0.703

0.533

0.378

0.439

0.124

0.410

0.247

0.497

0.739

0.865

0.248

0.203

0.024

0.587

0.215

0.706

0.483

0.599

1.095
1.095

1.145

1.077
1.173
1.105
1.089

1.087

1.075
1.185
1.155

1.088

3.103t

1.137

1.156

1.099

1.107

1.123
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CPEBJ, (2)

(3)

HLA-C,
PSORS1CI,
NFKBILI, (19)

CREBS,
(1)

RIPK?2, (4)
(0)
LACCI, (3)

JAZF1,

RASGRP1,
SPREDI, (2)

NOD2, ADCY7,

(5)
LGALS9, NOS2,
(3)
GPX/, HMHAL,
(20)
(9)
DBP,  SPHK?,
1ZUMO1, FUT?,
(22)
IFNGR2, IF-

NAR1, IFNAR?,
IL10RB, (9)
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Ulcerative Colitis

1:2.25-2.75

1:19.88-20.42
1:199.84-200.34

2:198.18-199.12

2:199.27-200.12

3:52.8-53.3

4:103.26-103.76

5:0.34-0.84
5:134.19-134.69

6:32.33-32.86

7:2.53-3.03

7:26.97-27.47
7:107.18-107.72

7:128.32-128.82

11:95.77-96.27

rs10797432

rs6426833**
rs2816958

rs1016883

rs17229285*

rs9847710

rs3774959

rs11739663
rs254560

rs6927022

rs798502

rsd722672
rs4380874*

rs4728142

rs483905

2.62 x 10712

2.39 x 1068
1.98 x 10~17

2.87 x 1078

1.73x 10713

1.05 x 1078

3.66 x 10712

1.81 x 1078
2.55 x 109

4.71x 107133

6.09 x 10~17

2.06 x 1078
2.07 x 10726

4.37 x 10714

1.21 x 1078

0.522

0.542
0.887

0.817

0.496

0.416

0.358

0.760
0.397

0.535

0.709

0.183
0.405

0.444

0.292

1.078

1.265

1.23

1.1

1.117

1.064

1.118

1.071

1.056

1.444

1.127

1.091

1.137

1.104

1.056

TNFRSF14,
MMEL1, PLCH?,

(8)

(9)

(3)
RFTNY,
(7)

(0)
PRKCD,
(8)
NFKBI,
MANBA, (2)

PLCL1,

ITIH),

SLCIAS3, (8)

(6)
HLA-DQB1,
DRB1, -DQAl
(13)

CARDI11,
GNA12, TTYHS,

(4)
(14)
DLD, (9)

IRF5,  TNPOS3,
TSPANS33, (11)

JRKL,
(2)

MAML?,
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11:114.13-114.63 | rs561722 515x 10717 | 0.663 | 1.12 | FAMS55A,
FAMS55D, (5)

15:41.29-41.81 | 1s28374715 | 2.43x 1078 | 0.738 | 1.082 | ITPKA,  NDU-
FAF1, NUSAP1

(8)
16:30.22-30.72 rs11150589 6.04 x 1071° | 0.463 | 1.09 ITGAL, (20)
16:68.33-68.83 rs1728785 3.71x 1078 0.767 | 1.075 | ZFP90, (6)
17:70.39-70.89 rs7210086 1.89 x 107° 0.797 | 1.111 | (3)
19:46.87-47.37 rs1126510 1.55 x 107 0.363 | 1.075 | CALMS3, (14)

20:33.55-34.05 | rs6088765 | 2.21 x 1078 | 0.437 | 1.079 | PROCR, UQCC,
CEP250, (8)

20:42.81-43.31 156017342 1.43 x 10743 | 0.530 | 1.228 | ADA, HNFJA, (9)

Inflammatory Bowel Disease

1:0.99-1.49 rs12103 7.66 x 10~ | 0.182| 1.099 | TNFRSF18, TN-
FRSF/, (30)

1:7.77-8.27 135675666 | 1.12x 1071° | 0.838 | 1.112 | TNFRSFY, (6)

1:22.45-22.95 112568930 | 1.26 x 10717 | 0.821 | 1.0951| (3)

1:67.4-67.95 rs11209026%* | 8.12x 107161 | 0.933 | 2.013t| IL23R, IL12RB2,
(4)

1:70.74-71.24 152651244 229 x 1078 | 0.599 | 1.015t| (3)

1:151.54-152.04 | rs4845604 3.52x 10716 | 0.857 | 1.1441| RORC,(14)

1:155.22-156.12 | rs670523 579 x 10711 | 0.324 | 1.06t | UBQLNJ,  ITt,
STO1,(28)
1:160.6-161.1 rs4656958 6.8 x 1079 0.686 | 1.061 | CD48, SLAMF1I,

ITLNI, CD2//,
(12)
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1:161.22-161.72

1:197.33-197.87

1:200.62-201.12

1:206.68-207.18

2:24.87-25.37

2:28.36-28.86

2:43.56-44.06

2:60.95-61.45

2:65.42-65.92

2:102.41-103.31

2:162.85-163.35

2:191.67-192.17

2:218.89-219.39

2:241.31-241.83

3:18.51-19.01

151801274

rs2488389
rs7554511

rs3024505

rs6545800
rs925255
rs10495903

rs7608910

rs6740462

rs917997*

rs2111485

rs1517352

rs2382817

rs3749171%*

rs4256159

2.12 x 10738

8.45 x 10713
1.24 x 10732

6.66 x 10~42

6.14 x 10716
2.67 x 10710
8.03 x 10712

8.65 x 10732

2.35x 1078

3.12x 10720

1.93 x 1078

3.28 x 10~ 11

3.7x 10712

3.07 x 1072

9x 1071

0.509

0.220

0.725

0.160

0.445

0.557

0.130

0.394

0.739

0.231

0.404

0.600

0.408

0.167

0.140

1.124%

1.115
1.164

1.2087

1.109%
1.092f
1.0861

1.138

1.081

1.103

1.066

1.077

1.073

1.135¢

1.107¢
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FCGR2A,
FCGR2B,
FCGR3A,
HSPAG6 (11)
Clorf53,(2)
KIF21B,(6)

IL10, 1L 20,
IL19, IL24, (7)
ADCYS, (6)
FOSL2, BRE, (1)
(5)

REL,  C2rf1),
KIAA1841,
AHSA2, (6)
SPRED?, (1)

ILIR2, IL1SRAP,
IL1S8R1,  ILIR{,

(5)

IFIHI, (5)
STATI,
(2)
SLC11A1,

CXCR2,
CXCR1, PNKD,

(11)
GPR35, (12)

(0)

STATY,
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3:47.96-49.96

4:74.6-75.1

4:122.91-123.53

5:10.44-10.94

5:40.02-40.74

5:95.99-96.49

5:129.75-130.26

5:130.36-132.01

5:141.26-141.76

5:150.02-150.52

5:158.53-159.07

5:176.54-177.04

6:14.46-14.96

6:20.47-21.06

6:90.71-91.21

6:106.18-106.68
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rs3197999**

rs2472649

rs7657746
rs2930047
rs11742570**

151363907

rs4836519

rs2188962*

rs6863411

rs11741861

rs6871626**
rs12654812
rs17119
rs9358372*
rs1847472

rs6568421

1.01 x 10~%7

2.57 x 108

2.76 x 10713
1.03 x 1078
1.81 x 10~82

5.62 x 10713

4.24 x 10710

1.35 x 10752

3.59 x 10714

2.94 x 10737

1.43 x 10742
1.68 x 108
3.08 x 10~
8.66 x 10~14
1.57 x 10710

8.24 x 10~20

0.296

0.824

0.753

0.382

0.605

0.411

0.768

0.425

0.630

0.093

0.337
0.335
0.786
0.379
0.655

0.301

1.18

1.095¢

1.116
1.065
1.198f

1.068

1.072f

1.158¢

1.089¢

1.249%

1.181%
1.068
1.071
1.089¢
1.06

1.108¢

MST1,
PFKFB,
MSTIR,
(61)

UCN2,

CXCL5,
CXCL1,
CXCL3,

(7)

IL2, IL21, (2)

ILS,

DAP, (2)
PTGER/, (1)
ERAP2, ERAPI,
LNPEP, (2)
(1)

IRF1,
CSF2,

SLC22A4,
(14)

IL13,

SPRY/,
(5)
TNIP1,  IRGM,
ZNF300P1, (8)

NDFIP1,

IL12B, (3)

DOKS3, (17)
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6:111.55-112.09

6:137.75-138.25

6:143.65-144.15

6:167.12-167.62

7:49.94-50.55
7:98.5-99
7:100.06-100.61
7:116.64-117.14
8:126.28-126.78
8:130.37-130.87
9:4.73-5.23
9:93.67-94.17

9:117.3-117.89

9:138.99-139.64

10:5.83-6.33

10:30.47-30.97
10:35.04-35.55
10:59.74-60.24
10:64.12-64.89

10:75.42-75.92

rs3851228

rs6920220
rs12199775

rs1819333

rs1456896*
rs9297145
rs1734907
rs38904
rs921720
rs1991866
rs10758669
rs4743820

rs4246905**

rs10781499*

rs12722515

151042058
rs11010067
rs2790216
rs10761659**

rs2227564

1.08 x 10~13

1.4 x 10~
1.99 x 10~8

6.76 x 10~2

7.28 x 1071°
8.21 x 10712
1.67 x 10713
1.31 x 108
8.3 x 10720

1.65 x 10~?
7.88 x 1074
3.6 x 1079

2.8 x 10732

4.38 x 10726

3.76 x 10~190

5.93 x 10~
2.49 x 1072
8.07 x 107°

6.37 x 10746

6.75 x 10719

0.073

0.206

0.929

0.523

0.688
0.265
0.149
0.532
0.609
0.422
0.349
0.702

0.709

0.412

0.849

0.592
0.346
0.778
0.543

0.770

1.153

1.1021
1.129

1.081%

1.088
1.082
1.114%
1.0541
1.081%
1.054
1.174
1.0561

1.142

1.188¢

1.1021

1.075%
1.115¢
1.066

1.1667

1.082¢

TRAF3IP2,
FYN, REVSL, (2)

TNFAIP3 (1)
PHACTR2, (5)

CCRS,
RPS6KA2,
RNASET?, (3)

ZPBP, IKZF1, (4)
SMURF1, (6)

EPO, (21)

JAK2, (4)
NFIL3, (2)
TNFSFS,
FSF15,

(2)
CARDY9, PM-

PCA, SDCCAGS,
(19)

TN-
TNC,

IL2RA,
IL15RA, (6)

MAPS3KS, (3)
CREM, (3)
CISD1, IPMK, (2)
(3)

(13)
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10:80.78-81.28

10:82-82.5

10:94.18-94.68
10:101.03-101.53

11:1.62-2.12

11:58.08-58.58

11:60.52-61.02

11:61.31-61.81

11:63.85-64.39

11:65.4-65.9

11:76.04-76.54
11:86.87-87.37
11:118.49-118.99
12:12.4-12.9
12:40.5-41.03
12:47.95-48.45

12:68.24-68.74

13:27.27-27.77
13:40.45-41.26

13:99.7-100.2

rs1250546

156586030

rs7911264
rs4409764

rs907611

rs10896794

rs11230563

154246215

rs559928

rs2231884

rs2155219
156592362
15630923
rs11612508
rs11564258*
rs11168249

rs7134599

rs17085007
rs941823**

159557195

3.15 x 1018

9.24 x 10716

2.98 x 108
1.03 x 10754

2.7 x 1010

6.8 x 10710

9.03 x 10713

1.93 x 10715

4.19x 1071

2.91 x 10710

4.24 x 10736
2.32x 1078
7.07 x 107
1.06 x 10~8
6.38 x 102
7.78 x 107

8.51 x 10732

2.79 x 10~
2.07x 10714

237 x 1074

0.604

0.847

0.519
0.491

0.315

0.762

0.654

0.338

0.821

0.157

0.509
0.248
0.846
0.267
0.025
0.467

0.378

0.183
0.758

0.772

1.0961

1.115%

1.066
1.182

1.068

1.08

1.085

1.079%

1.101

1.083t

1.151%
1.083

1.074%
1.058f
1.334%
1.054%

1.0961

1.1061
1.071%

1.112
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(5)

TSPAN1/ ,
1001158, (4)
(4)

NKX2-3, (6)
TNNIZ,
(17)

LSP1,

CNTF, LPXN, (8)

CD6, CD5, PT-
GDR2, (12)

Cll1orf9, FADSI,
FADS2, (12)

CCDCS88B,
RPS6KA/,(20)

RELA,  FOSLI,
CTSW, SNX32,
(22)

(5)

(1)

CXCRS5, (17)

LOH12CR1, (8)
MUC19, (1)
VDR, (8)
IFNG,
1L22, (1)
(2)

(3)
GPR183,
GPR18,(6)

1126,
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14:69.02-69.52 rs194749 2.7x 1071% 1 0.226 | 1.0751| ZFP36L1, (4)
14:75.45-75.95 rs4899554 2.71 x 107% | 0.819 | 1.083t| FOS, MLHS3, (6)
14:88.22-88.72 rs8005161 2.35x 107 | 0.089 | 1.153 | GPR65, GALC,
(1)

15:67.18-67.68 1517293632 | 5.97 x 10716 | 0.235 | 1.067| SMADS, (2)

15:90.92-91.42 rs7495132 9.48 x 10711 | 0.891 | 1.134 | CRTCS3, (3)

16:11.12-11.95 | rs529866* 1.73x 10716 | 0.803 | 1.1241| SOCS1, LITAF,
RMI2, (10)

16:23.61-24.11 rs7404095 9.68 x 10719 | 0.572 | 1.06 PRKCB, (5)

16:28.26-28.93 | 1526528 9.65x 10722 | 0.451 | 1.0991| RABEP2,  IL27,
EIF3C, SULT1A1,
(11)

16:85.75-86.25 rs10521318 1.41 x 107° 0.915 | 1.1551| IRFS, (4)

17:32.34-32.84 | 1s3091316 | 1.22 x 10726 | 0.722 | 1.122| CCL13, CCL2,
CCL11, (4)

17:37.66-38.16 | 1s12946510 | 4.1 x 10738 | 0.465 | 1.157 | IKZF3,  ZPBP2,
GSDMB, OR-
MDL3, (13)

17:40.28-40.78 | 1512942547 | 551 x 10722 | 0.580 | 1.103t| STAT3, STAT5B,
STAT5A, (13)

17:57.71-58.21 | rs1292053 | 8.85 x 10713 | 0.446 | 1.076{| TUBDI,
RPS6KBI, (9)

18:12.55-13.05 rs1893217 3.05 x 10726 | 0.157 | 1.171f| (6)
18:46.14-46.64 rs7240004 1.31 x 107° 0.616 | 1.057| SMADY, (2)
18:67.28-67.78 rs727088 4.65 x 1079 0.484 | 1.077 | CD226, (2)

19:10.22-10.76 | 1s11879191% | 2.04 x 108 | 0.797 | 1.136 | TYK2, PPAN-
P2RY11, ICAMI,
(25)

19:33.48-33.98 rs17694108 5.85x 107 | 0.282 | 1.1 CEBPG, (8)
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19:55.13-55.63 | 1s11672983 | 6.5 x 10~'! | 0.392 | 1.087 | NLRP7, NLRP2,
KIR2DL1,
LILRBJ, (15)

20:30.47-31.03 rs6142618 6.05 x 10719 | 0.564 | 1.072{| HCK, (10)
20:31.12-31.62 rs4911259 1.2x107° 0.383 | 1.075 | DNMT3B, (8)

20:44.49-44.99 | rs1569723 | 9.95 x 1074 | 0.259 | 1.0911| CD40,  MMP9,
PLTP, (11)

20:48.7-49.2 15913678 4.59 x 1078 0.662 | 1.056 | CEBPB, (5)

20:57.57-58.07 | rs259964 1.01 x 10712 | 0.464 | 1.085 | ZNF831, CTSZ,
(5)
20:62.09-62.59 | 16062504 | 1.09 x 10~23 | 0.684 | 1.104 | TNFRSF6B,
LIME1,
SLC2A4RG,
(24)

21:16.56-17.06 152823286 9.28 x 10730 | 0.708 | 1.1571| (0)
21:40.21-40.71 1s2836878 4.62x 10748 | 0.733 | 1.18% | (3)
21:45.37-45.87 157282490 2.35x 10726 | 0.391 | 1.105 | ICOSLG, (9)

22:21.67-22.17 rs2266959 1.39 x 10716 | 0.186 | 1.105 | MAPK1, YDJC,

UBE2LS3,
RIMBPS, (9)

22:30.12-30.73 | rs2412970 | 2.7x 1074 | 0.457 | 1.08 | LIF, 0SM,
MTMR3, (8)

22:39.4-39.97 rs2413583% | 4.4 x 10733 | 0.833 | 1.209f| ATF, TABI,

APOBECS3G, (16)
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Figure 4.9: The IBD genome. A) The 163 IBD loci identified in this study.
Each bar, ordered by genomic position, represents an independent locus, and the
width of the bar is proportional to the variance explained by that locus in CD and
UC. Bars are connected together if they are identified as being associated with both
phenotypes. Loci are labelled if they explain more than 1% of the total variance
explained by all loci for that phenotype. B) The 193 independent signals, plotted
by total IBD odds ratio and phenotype specificity (measured by the odds ratio
of CD relative to UC), and coloured by their IBD phenotype classification from
Table 1. C) Number of overlapping IBD loci with other immune-mediated diseases
(IMD), leprosy, and Mendelian primary immunodeficiencies (PID). Within PID,
we highlight Mendelian susceptibility to mycobacterial disease (MSMD).

4.4 Biological and bioinformatic interpretation of

163 IBD loci

Our meta-analysis of the GWAS and Immunochip data identified 193 statis-
tically independent signals of association at genome-wide significance (P < 5

x 1078) in at least one of the three phenotypes (CD, UC, IBD). These signals
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were merged into 163 regions, of which 71 have never been reported before
(Table 4.9). This is more loci than has ever been recorded for a complex
disease, and the number of loci, and the large number of genes they contain,
make a locus-by-locus interpretation difficult. To go from a list of regions to a
set of specific biological hypotheses we have to use computational techniques,
and make use of external datasets.

In this section I will discuss a number of ways in which this can be
achieved, starting with a brief overview of the IBD loci. I will go on to
use genetic data from other disease loci (both complex and Mendelian) to
place IBD genetics in the context of other immune diseases. Next I will de-
scribe a range of methods for identifying candidate causal genes within the
identified loci using gene networks and functional information. I will then
describe a detailed analysis of the identified candidate genes in terms of Gene
Ontology (GO) terms and canonical pathways, followed by an analysis of the
IBD loci in the context of natural selection. Finally, I will describe a number
of functional analyses based on gene expression data carried out by other

members of the IIBDGC Immunochip analysis group.

4.4.1 Global patterns in the “IBD genome”

A traditional Manhattan plot of this study does not provide much informa-
tion, due to the large number of peaks and high variation in significance
between them. Instead, I have developed an alternative visualisation, which
[ call the “Belgravia plot” (by analogy with the flat, regular Regency terraces
in Belgravia, London). This plot (Figure 4.9A) shows the relative contribu-
tion of each locus to the total variance explained in UC and CD using width,
rather than height. This gives us an intuitive overview of the importance of

the global structure of IBD. For instance, CD is more dominated by the two
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major loci (NOD2 and IL23R), with UC having a more even distribution.

The likelihood-based model selection analysis described in Section 4.3.7
gives us information on the global level of genetic sharing between the two
IBD phenotypes. The vast majority of loci (110) are associated with both
disease phenotypes, of which 62 have an indistinguishable effect size in UC
and CD, while 48 show evidence of heterogeneous effects (highlighted in Table
4.9). Of the remaining loci, 30 are classified as specific for CD and 23 for
UC, but notably, 43 of these 53 show the same direction of effect in the non-
associated disease (overall P = 2.8 x 107°), suggesting that only a few of the
loci may be truly disease specific.

While likelihood-based approaches for the classification of IBD loci are
instructive, it should be noted that there is continuous variability in the CD-
UC balance of effect sizes among loci (Figure 4.9B). While locus sharing is
almost exclusively in the same direction, risk alleles at two CD loci, PTPN22
and NODZ2, show significant (P < 0.005) protective effects in UC, highlighting
them as particularly informative about biological differences between these

related diseases.

4.4.2 |BD genetics in the context of autoimmunity and infec-
tion

To place the IBD loci in the context of other immune-related diseases, I
generated lists of associations with other immune-related disease. I included
complex autoimmune and immune-mediated and diseases (IMD), and auto-
somal dominant or recessive primary immunodeficiencies (PID).

I took autosomal dominant and recessive genes identified as causing PID
from Notarangelo et al. (2009). Genes that lie within 250kb of each other

were merged together into regions, giving 135 genes across 121 independent
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Disease | Locus | Fold- Enrichment | 95% CI P-value
overlap | enrichment | OR

PS 14 13.5 14.71 8.5-25.5 | 4.15 x 10712
AS 8 12.56 13.18 6.5-26.8 | 3.22 x 107"
AD® 3 12.1 12.32 3.9-38.6 | 0.002

PBC 13 10.99 11.88 6.7-21.0 | 3.12x 10710
PSC? 1 10.93 11.00 1.5-78.6 | 0.085

RA 12 10.92 11.74 6.5-21.1 | 1.64 x 107°
Celiac 16 10.57 11.64 7.0-19.5 | 4.56 x 1072
T1D 20 9.99 11.28 7.1-19.0 | 2.35x 107
SLE 12 9.75 10.47 5.8-18.9 | 5.87 x 107°
All AT 66 8.62 13.94 10.2-19.1 | 5.15 x 10~*
MS 17 8.19 9.06 5.5-15.0 | 5.11 x 10~*
Asthma | 7 7.61 7.91 3.7-16.9 | 4.90 x 1073
All PID | 20 4.85 5.42 3.4-8.7 8.52 x 107°

Table 4.10: Enrichment in overlap between IBD loci and loci for other immune-
mediated diseases. The enrichment OR is measured on the logistic scale (as de-
scribed in section 4.4.4). “Atopic dermititus. *Primary sclerosing cholangitis

regions. I took associated regions for the IMD list from the NHGRI GWAS
catalogue, and included the following diseases: Primary sclerosing cholangi-
tis, primary biliary cirrhosis, rheumatoid arthritis, type 1 diabetes, multiple
sclerosis, celiac disease, atopic dermatitis, psoriasis, ankylosing spondylitis,
asthma and systemic lupus erythematosus. All SNPs in the catalogue with p
< 5 x 107® were included. As with the IBD loci, I defined a region as 250kb
on either side of the hit SNP, and overlapping regions were merged together
into loci. This generated a total of 156 independent IMD loci. I assessed
overlap between lists (IBD, PID and IMD) using the method described in
Section 4.4.4.

A large proportion (113 of 163) of the IBD loci are shared with other
complex diseases or traits. Sixty-six of these 113 are among the 154 loci

previously associated with other immune-mediated diseases (Hindorff et al.,
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2009), which is 8.6 times the number that would be expected by chance
(Figure 4.9C, P < 1071%). Comparing overlaps with specific diseases (Ta-
ble 4.10) is confounded by the differential power in studies of different dis-
eases. For instance, while type 1 diabetes (T'1D) shares the largest number
of loci (20/39, 10-fold enrichment), this is partially driven by the large num-
ber of known T1D associations. Indeed, seven other immune-mediated dis-
eases show stronger enrichment of overlap, with the largest being ankylosing

spondylitis (8/11, 14-fold) and psoriasis (14/17, 13-fold).

In addition to this well-established genetic overlap between IBD and other
complex immune mediated diseases, we can now show that IBD loci are also
markedly enriched (4.9-fold, P < 10~%) in genes involved in primary im-
munodeficiencies (PIDs, Figure 2C). Consistent with an important role for
T-cells in IBD, most of the PIDs overlapping with IBD loci are characterised
by reductions in levels of circulating T-cells (ADA, CD40, TAP1/2, NBS1,
BLM, DNMT3B), levels of Th17 (STATS3), memory T-cells (SP110) or reg-
ulatory T-cells (STAT5B), rather than reduced levels of circulating B-cells

(cell count characteristics taken from Notarangelo et al. (2009)).

Compared to the overlap between PID genes and IBD loci, the subset of
PIDs leading to Mendelian susceptibility to mycobacterial infection (MSMD)
(Notarangelo et al., 2009; Bustamante et al., 2011; Patel et al., 2008) are
enriched still further. Of the eight known autosomal genes that increase
susceptibility to MSMD, six are located within IBD loci (46-fold enrichment,
P = 1.3 x 107%), and a seventh, IFNGRI, narrowly missed genome-wide
significance (P = 6 x 107®). A further relationship to MSMD is seen in the
new association near the gene CD/0, which is involved in MSMD induced
by mutations in the X chromosome gene NEMO (Filipe-Santos et al., 2006).
Furthermore, genetic defects in STATS3 (Holland et al., 2007; Minegishi et al.,
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2007) and CARDY (Glocker et al., 2009b), also within IBD loci, lead to PIDs
involving skin infections with staphylococcus and candidiasis, respectively,
further underscoring the importance of host-microbe interactions in IBD.

This mycobacterial disease overlap is not limited to Mendelian suscep-
tibility. We also find IBD associations in 7/8 loci known to be associated
with complex susceptibility to leprosy GWAS (Zhang et al., 2011), including
6 cases where the same SNP is implicated (Figure 4.9C).

There appears to be a shared biology underlying these all these overlap-
ping mycobacterium susceptibility loci. All of the MSMD mutations that
overlap with IBD cause defects in interferon signalling pathways, which are
known to be important in mycobacterium infection (Flynn et al., 1993). Ad-
ditionally, the six MSMD genes, four of the leprosy genes and CD40 fit
together into a single well-connected subnetwork within the GRAIL and
DAPPLE networks described below (Figure 4.10A). This subnetwork also
includes many important signalling proteins involved in IBD and bacterial

defence, including IFNG, IL10 and NFKBI.

4.4.3 Prioritising candidate genes in IBD loci

We used various methods to reduce the 1438 genes in our locus list to a more
limited list of candidate variants. We used both gene network analyses, and
analyses of SNP function, to implicate candidate genes.

We used GRAIL and DAPPLE (discussed in Section 4.2.3) to prioritise
genes based on network connectivity. In both cases, we removed the HLA
region (due to its large size), and fixed four well-established IBD genes as
causal (NOD2, IL23R, ATG16L1 and PTPN22). We took any gene with
p < 0.05 as implicated. We also included genes from the gene expression

network discussed in section 4.4.6.
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Figure 4.10: a) A combined network graph including GRAIL (blue lines) and
DAPPLE (red lines) connections, consisting of all genes connected to MSMD or
leprosy genes (highlighted in green and teal respectively) b) The GRAIL network
for all genes with GRAIL P < 0.05. Genes included in our previous GRAIL net-
works in CD and UC are shown in light blue, newly connected genes in previously
identified loci in dark blue, and genes from newly associated loci in gold.

Compared to previous analyses that identified candidate genes in 35%
of loci (Anderson et al., 2011; Franke et al., 2010) our updated GRAIL-
connectivity network identifies candidates in 53% of loci, including increased
statistical significance for 58 of the 73 candidates from previous analyses.
The new candidates come not only from genes within newly identified loci,
but also integrate additional genes from previously established loci (Figure
4.10B). The joint-IBD loci are more likely to contain GRAIL connected genes
than CD- or UC-specific loci (P = 0.005), pointing to the shared core of

genetic risk between the two diseases.

We also used existing annotations of variant function to search for likely
causal mechanisms. We used SeattleSeq to annotate all variants in high LD
(r? > 0.8) with missense or nonsense SNPs, producing 29 IBD associations

that caused a protein code change. We also collected eQTL data from a range
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of studies, including lymphoblastoid cell lines of asthmatic children (Dixon
et al., 2007), various tissues from obese patients (Greenawalt et al., 2011),
and a collection of eQTL studies from the Chicago eQTL browser. We found

evidence that 64 IBD associations altered the expression of at least one gene.

Overall, our network analyses and functional annotations highlighted a
total of 300 candidate genes in 125 loci, of which 37 contained a single gene

supported by two or more methods.

4.4.4 Testing for enrichment of functional terms within IBD

loci

Gene Ontology (GO) terms and canonical pathways are a natural way to
ask questions about the function of the genes in the identified IBD loci. We
can ask whether there is an enrichment of certain functional terms in IBD
loci, as well as whether these functional loci are associated with a particular
type of locus (e.g. CD loci). Below I outline a method for performing tests
for enrichment and association of functional terms. I then go on to apply
this to the IBD data, to find functional terms associated with IBD, as well
as identifying terms associated with CD-UC balance, and are more strongly
enriched in IBD relative to other immune-mediated diseases. Finally, I use
this methodology to investigate potential functional biases introduced by the
structure of Immunochip, and by using genes identified by the prioritisation

approaches described above.
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A methodology for testing functional enrichment in IBD loci
Basic framework

We wish to assess the enrichment of a particular functional term (e.g. a
GO term) in causal IBD genes. Given a list of causal genes, we could easily
calculate an enrichment odds ratio A; of a functional term ¢ in IBD genes
relative to the genome as a whole, and perform a statistical test of \; =1 vs
A; > 1. However, we do not know the causal variant for most IBD regions,
and most IBD regions contain multiple genes. To compensate for this, we
use an extension of the standard odds ratio method that takes into account
the presence of non-causal genes.

Assume that we have M loci, designated by j = (1,..., M) each of which
contains IN; genes. For each associated locus j we set an indicator variable
0;; to 1 if the functional term ¢ is present in locus j, and 0 otherwise. We also
calculate a genome-wide frequency for term f; that is equal to the proportion
of all genes that contain the term .

We calculate g;, the frequency of term ¢ in causal genes, given an enrich-

ment odds ratio \; as

a 1- i\~
gi—(1+ Az‘fi) : (4.3)

We then assume that all other genes have a frequency of the term f;.
Assuming that there is exactly one causal gene in the region, the log likelihood

L; is given by

L, = Z dijlog (1 —(1- fi)Nj(l — gl)> +Z(1 —d;5)log ((1 — fi)NJ(l _ gz)) )
] ’ (4.4)
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We fit the parameter \; by maximum likelihood using the Nelder-Mead
optimisation method, implemented in the statistical package R. We assess
the significance of the parameter \; by performing a likelihood ratio test of

/\l:1VS/\Z7é1

Extension to arbitrary predictors

We can extend the method above to include arbitrary per-locus predictors
X = {xj} that correlate with level of enrichment of a function term. We

can extend the definition of g; to take the form of a generalised logistic model

1—fi o\
gi = (1 + 7 exp(—SBo — BX)) : (4.5)

We keep the enrichment odds ratio (in this case as \; = exp(fy)), but also
include regression coefficients for the other predictors B’ The predictors X
can be discrete (e.g. xj; = 0if locus j is a UC locus, and zj, = 1 if it is a CD
locus), or continuous (e.g. z;, = 6;, where 6, is the polar-transformed odds
ratio described in section 4.3.7). The model is fitted by maximum likelihood
in the same way as the simple enrichment model, and likelihood ratio tests

for B, = 0 can be used to assess the significances of the parameters.

Extension to interval overlap

We can extend the above methodology to look for an enrichment in overlap
between a set of genomic intervals (e.g. a set of wide linkage peaks) and our
IBD loci. We assume that we have a set of genomic intervals k£ = 1.,,.R,
each of length ;. We will also assume that the length of each locus is {; and
the length of the whole genome is [,. We can thus modify equations 4.3, 4.4
and 4.5 above by setting
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1
fi= T Z(lk +1;). (4.6)

Ik
It was this extension that enabled me to evaluate the significance of over-

lap between our IBD loci and GWAS associations discussed in section 4.4.2.

Functional term associations in the IBD loci

I tested the 300 genes prioritised in section 4.4.3 for enrichment in 15,526
human GO terms (27/02/2012 release) and 833 canonical pathways (taken
from KEGG, Reactome and Biocarta). I identified 286 GO terms and 48
pathways demonstrating significant enrichment in genes contained within
IBD loci. The top associations are shown in Table 4.11, though the large
number makes interpreting the entire list difficult.

We can use the hierarchical nature of the GO terms to bring some order
to these terms. For instance, cytokine production is the most significantly
enriched term, but within that four child terms drive this: IFN~, IL12, TNF«
and IL10. These cytokines are all produced by the cells of the innate immune
system (including macrophages, dendritic cells and natural killer cells) in
response to bacterial stimulation. This immediately suggests that the IBD
risk alleles are, as a whole, interfering with the correct response to bacteria
by altering the resulting rates of cytokine production.

The second strongest enrichment was in immune system processes (P =
2.6 x 10723), with activation of T-, B-, and NK-cells being the strongest
contributors to this signal (P = 1.6 x 10722). Strong enrichment was also
seen for response to molecules of bacterial origin (P = 9.6 x 107%°), further
evidence for a close relationship between IBD risk and bacterial exposure.

We can test whether any of these enriched functional terms show evidence

of differential enrichment between CD and UC phenotypes, both by using the
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Term Description Loci | P-value
G0:0002376 | immune system process 69 | 3.45x 1072
G0O:0002682 | regulation of immune system process | 60 | 2.61 x 1072
GO:0001817 | regulation of cytokine production 39 | 265x 10
G0O:0046649 | lymphocyte activation 32 1.77 x 10723
GO:0031347 | regulation of defence response 39 4.78 x 107
GO:0048518 | positive regulation of biological pro- | 90 | 3.23 x 10722

cess
GO:0050865 | regulation of cell activation 36 | 1.63x 102
GO:0045321 | leukocyte activation 33 1.84 x 1072
GO:0048522 | positive regulation of cellular process | 83 9.27 x 107%
G0:0002237 | response to molecule of bacterial ori- | 28 | 2.41 x 10=%°
gin
GO:0050776 | regulation of immune response 46 | 2.90x 10720
GO:0002684 | positive regulation of immune system | 45 | 3.05 x 1072°
process
GO:0042110 | T cell activation 24 1.56 x 10719
G0:0006955 | immune response 51 1.76 x 10719
G0:0002694 | regulation of leukocyte activation 33 3.09 x 1071
GO:0001775 | cell activation 38 | 340x 1071
G0O:0032496 | response to lipopolysaccharide 26 5.36 x 1019
G0:0051249 | regulation of lymphocyte activation | 31 8.13x 1071
GO:0070663 | regulation of leukocyte proliferation | 24 | 8.67 x 10~
GO:0080134 | regulation of response to stress 43 1.55 x 10718
KO:04630 Jak-STAT signalling pathway 20 480 x 10~
KO:05140 Leishmania infection 16 3.89 x 1071
KO:04060 Cytokine-cytokine receptor interac- | 25 | 1.66 x 10713
tion
BI Th1/Th2 differentiation 10 1.64 x 10712
BI NO2-dependent IL12 pathway 7 3.25 x 10710
RE:690 0 Signalling in immune system 24 3.35 x 10710
KO:04062 Chemokine signalling pathway 16 1.10 x 107°
BI IL12-dependent signalling pathway | 7 7.73x 107
KO:05330 Allograft rejection 9 2.34x 1078
KO:04660 T-cell receptor signalling pathway 13 | 249x 1078

Table 4.11: The top 20 most enriched GO terms, and top 10 canonical path-
ways, in IBD loci. Terms starting “GO” are Gene Ontology terms, those starting
“KO” are KEGG pathways, “RE” are Reactome pathways and “BC” are Biocarta
pathways



4.4. Biological and bioinformatic interpretation of 163 IBD loci 197

Term Description Direction | py Pcpjuc

GO:0007243 | intracellular protein kinase | CD 0.0046 | 0.0005
cascade

GO:0051241 | negative regulation of multi- | UC 0.0796 | 0.0039
cellular organismal process

G0O:0000165 | MAPK cascade CD 0.0058 | 0.0086

GO:0002237 | response to molecule of bac- | CD 0.0099 | 0.0140
terial origin

Table 4.12: Pathways that show evidence of differential enrichment (p < 0.01) in
CD and UC. The “direction” shows which phenotype has the higher enrichment of
this term. py is the evidence of association between functional term and CD-UC
balance parameter 6. pcp e is evidence of differential enrichment in CD and UC
loci (as defined in Table 4.9)

Term Description PIMD | PPID | Pazis
KO:04350 | TGFf signalling pathway 0.015 | 0.004 | 0.001
BI Erythropoietin signalling pathway | 0.03 | 0.04 | 0.004

Table 4.13: Pathways that show evidence of enrichment (pgz;s < 0.01) in IBD loci
relative to other immune-mediated disease loci. prysp and pprp is the enrichment
p-value relative to complex immune-mediated diseases and Mendelian primary

immunodeficiencies respectively, and p,.is is the enrichment p-value of IBD relative
to both IMD and PID.

phenotype-specific loci defined in Table 4.9, and using the continuous CD-UC
balance parameter 6 defined in section 4.3.7. Neither analysis produced any
results that met Bonferroni-corrected significance, but results that showed
nominal (p < 0.01) significance are shown in Table 4.12. Perhaps the most
interesting is the evidence that CD may have a larger enrichment of terms
involved in response to bacterial products, as this reinforces the opposite
direction of effect we see at the NOD2 locus (itself responsible for responding
to the bacterial product MDP).

We can perform a similar analysis comparing IBD to the set of immune-

mediated complex diseases and primary immunodeficiencies described in sec-
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Figure 4.11: GO enrichment in known vs. new loci. The enrichment odds ratios
for enriched GO terms are plotted for loci discovered via GWAS and for new loci
identified in the current Immunochip analysis. The circled are filled if they were
significant in the GWAS loci, and empty if they are only significant when all loci

are combined.

tion 4.4.2. Again, no functional term produced a Bonferroni-significant re-

sult, but the strongest enrichment was in the TGFf signalling pathway (Ta-

ble 4.13). TGFf is a widely expressed protein that has been implicated in

many diseases. However, knock-out mice develop colorectal cancer, poten-

tially suggesting a particular role for TGF/ in the intestinal immune system

(Sterner-Kock et al., 2002).
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Testing for functional biases in Immunochip genes

The Immunochip was constructed using variant lists submitted by immune-
related disease association consortia. We may therefore expect there to be
a bias towards discovering loci that are associated to both IBD and other
immune-related diseases. This would, in turn, cause an artificial inflation
in enrichment of immune-related GO terms. To test this hypothesis, I re-
calculated enrichment odds ratios for the 286 enriched GO terms and 48
canonical pathways in two non-overlapping subsets of the 163 loci: (i) the 92
loci described in our previous meta-analyses, and (ii) the 71 newly discovered
loci. If our analysis for identifying new IBD loci were biased (via the Im-
munochip design) toward loci shared across autoimmune diseases we would
expect larger enrichment odds ratios in set (i) compared to (i). Figure 4.11
shows that in fact, the opposite is true: the previous loci are, on average,
slightly more strongly enriched than our new loci (p = 2.2x107%). This dif-
ference might suggest that the strongest IBD loci (i.e. those already known)

play a more central role in key immune functions than our new discoveries.

This lack of observable bias, while initially surprising, can largely be
explained by our experimental design, and the specifics of the SNP selection
process for the Immunochip. As part of that design we included the top 2000
most associated SNPs each from the earlier CD and UC GWAS meta-analyses
regardless of function or association with other phenotype (corresponding to
p < 0.0009 for CD and p < 0.0004 for UC). This subset of SNPs therefore
represents a functionally unbiased, genome-wide replication set that includes
147 (55 new, 92 known) of our 163 reported loci. Therefore the non-IBD part
of the Immunochip contributed to only 16 of our loci, of which only 8 are
known to be also associated with another immune-mediated disease. This

number is too small to strongly bias enrichment analyses, as demonstrated
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Figure 4.12: Enrichment p-values (a) and odds ratios (b) for GO terms (black
dots) and canonical pathways (red dots) calculated on all 1438 genes in IBD loci
(x-axis) and just the 300 prioritised genes (y-axis).

above.

Another potential source of bias is the use of the 300 genes selected by
our gene prioritisation procedure. There is good reason to use these genes,
as doing so grants a large increase in power to detect associations for both
GO terms and canonical pathways (Figure 4.12a). However, this procedure
is also likely to produce a bias towards the classes of genes and pathways
that can be easily detected using gene prioritisation methods. To measure
this effect, I calculated enrichment odds ratios for the selected GO term
and canonical pathways using just the prioritised genes, and then using the
entire set of genes inside the loci. Figure 4.12b shows that the estimated
odds ratios are indeed higher when using the prioritised genes, suggesting
that this introduces a detectable bias towards the detection of well-studied

pathways. However, this bias is relatively small.
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Figure 4.13: Signals of selection at IBD SNPs, from strongest balancing on the
left to strongest directional on the right. The grey curve shows the 95% confidence
interval for randomly chosen frequency-matched SNPs, illustrating our overall en-
richment (p = 5.5 x 107%), while the dashed line represents the Bonferroni signif-
icance threshold. SNPs highlighted in red are annotated as involved in regulation
of IL17 production, a key IBD functional term related to bacterial defence, and
are enriched for balancing selection.

4 .45 Natural selection in IBD loci

Infectious organisms are known to be among the strongest agents of natural
selection (Lederberg, 1997). It seems logical to ask whether the strong ge-
netic relationship between infection and IBD that emerges from the above
analyses also suggests a role for natural selection in the evolutionary history
of IBD susceptibility. There are many plausible types of selection that may
be acting on IBD risk variants. The risk alleles may be under directional
selection, either positive (if the decrease in fitness due to infection outweighs
the increase in fitness due to inflammation), and negative (if vice versa).

They may also be under balancing selection, indicative of an allele frequency
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dependent scenario typified by host-microbe co-evolution, as can be observed

with parasites (Lederberg, 1997).

To test selection on IBD loci, I used data, provided by Joe Pickrell, gen-
erated using the TreeMix method developed by Pickrell and Pritchard (Pick-
rell and Pritchard, 2012) They constructed population trees from the Human
Genetic Diversity Panel (HGDP) data (Li et al., 2008), and produced a per-
variant score that measures the extent to which population allele frequencies
at that site are over-dispersed relative to this tree. The most over-dispersed
sites are likely to have been subjected to directional (positive or negative)
selection, whereas those that match the tree most closely are likely to have

been subjected to balancing selection.

I picked the best HDGP proxy SNP for each of our associated variants
(picking only the UC associated variant from the HLA), and extracted the
scores for these variants. Because the score is confounded with allele fre-
quency, I calculated empirical p-values for each variant as follows: pick all
variants with an allele frequency within 1 percentage point of the hit vari-
ant’s allele frequency, and measure the proportion of variants with a score
greater than the score of the hit variant. I calculated p-values for directional
selection (the proportion of variants with a score higher than the hit variant),
and p-values for balancing selection (the proportion with scores lower than

the hit variant), as well as two-tailed p-values.

Two SNPs show Bonferroni-significant selection: the most significant sig-
nal, in NODZ2, is under balancing selection (P = 5.2 x 1079), and the second
most significant, in the receptor TNFRSF18, showed directional selection (P
= 8.9 x 107°). The next most significant variants were in the ligand of that
receptor, TNFSF18 (directional, P = 5.2 x 107%), and IL23R (balancing, P

= 1.5 x 1073). As a group, the IBD variants show significant enrichment in
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Term Description Direction P-value
GO:0032660 | regulation of interleukin-17 pro- | Balancing | 0.00014*
duction

GO:00327 positive regulation of interleukin- | Balancing | 0.00020
17 production
GO:0009897 | external side of plasma membrane | Directional | 0.0018

GO:0008283 | cell proliferation Directional | 0.0020
G0O:0032653 | regulation of interleukin-10 pro- | Balancing | 0.0020
duction

Table 4.14: Top 5 pathways that show evidence of natural selection in the IBD
loci. *Significant after Bonferroni-correction for 334 enriched GO terms and path-
ways.

selection (Figure 4.13) of both types (P = 5.5 x 1079).

In order to assess whether extent or direction of selection was correlated
with specific functions, I used the GO term enrichment method described
above. 1 converted the selection p-values to Z scores using an inverse nor-
mal transformation, and tested for association between these scores and GO
terms. The top five associations are shown in Table 4.14. The top re-
sult was the GO term “regulation of interleukin-17 production”, which met
Bonferroni-corrected significance (Figure 4.13). The important role of IL17
in both bacterial defence and autoimmunity suggests a key role for balanc-
ing selection in maintaining the genetic relationship between inflammation
and infection, and this is reinforced by a nominal enrichment of balancing
selection in loci annotated with the broader GO term “defence response to

bacterium” (p = 0.007).

4.4.6 Gene expression analyses of IBD loci

Gene expression datasets provide a powerful resource to interpret GWAS

results. Two other groups within the IIBDGC Immunochip analysis group



204 Chapter 4. Investigating IBD genetics using the Immunochip

10 === Dendritic Cells = CD8T cells
B cells = NK cells
o 10° CD4 Memory T cells === NKT cells
=) = CD4T cells Other
S <A
e O e | U U IS
;C: 107 o
€
§ 0.01 |
c
i || bl | \Hh
o A Al

Immune tissue type

Figure 4.14: Evidence of enrichment in IBD loci of differentially expressed genes
from various immune tissues. Each bar represents the empirical P-value in a single
tissue, and the colours represent different cell type groupings. The dashed line is
Bonferroni-corrected significance for the number of tissues tested.

used gene expression to investigate the new IBD locus list.

Xinli Hu and Soumya Raychaudhuri used enrichment of cell-type specific
genes to study the cell types implicated by our locus list, using a previ-
ously described method (Hu et al., 2011). They tested for enrichment of
cell-type expression specificity of genes in IBD loci in 223 distinct sets of
sorted, mouse-derived immune cells from the Immunological Genome Con-
sortium (Hyatt et al., 2006). Dendritic cells showed the strongest enrichment,
followed by weaker signals that support the GO analysis, including CD4+
T, NK and NKT cells (Figure 4.14). Notably, several of these cell types
express genes near our IBD associations much more specifically when stim-
ulated; our strongest signal, a lung-derived dendritic cell, had psimuiated <
1075 compared with punstimutated = 0.0015, consistent with an important role

for cell activation.

Ken Hui and Eric Shadt used gene expression networks and eQTL data to
infer causality in IBD associations. They screened genes in IBD loci against

211 co-expressed “modules” (sets of genes) previously identified by weighted
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Figure 4.15: NOD2-focused cluster of the IBD causal subnetwork. Pink genes
are in IBD associated loci, blue are not. Arrows indicate inferred causal direction
of expression regulation.

gene co-expression network analyses (Zhang and Horvath, 2005) performed
on multiple tissues (Greenawalt et al., 2011; Emilsson et al., 2008; Schadt
et al., 2008), and identified a significantly enriched module in omental adi-
pose tissue from obese patients (p < 107'%). They then used gene expression
and genotype data from these patients to construct a causal network using a
Bayesian network reconstruction algorithm (Zhu et al., 2007). To illustrate
the power of this approach, Figure 4.15 shows a small subset of this network
around the gene NOD2, which also contains many important bacterial inter-
action genes including IL10 and CARDY. This network implicates a number
of new IBD genes as playing a part in response to bacteria, and in particular
highlights the new IBD gene HCK as a potential regulator of the important
IBD genes NOD2 and IL10.

4.4.7 Take home messages about the biology of IBD

We have used a range of bioinformatic analyses to attempt to extract biolog-
ical insight from the 163 loci and 1438 genes implicated by the Immunochip

analysis. This has in turn produced a large amount of data, which itself
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needs to be interpreted. Below I will distil what I believe to be the major
biological lessons that these analyses have taught us about the aetiology of

IBD.

CD and UC show a very high degree of genetic overlap, with
almost all of the 163 loci showing some degree of association to both. Like-
wise, there does not appear to be any strong differences in the function of CD
and UC specific loci. However, many loci show a significant heterogeneity
of odds ratio between the two phenotypes, with many having differing (or
occasionally opposite) effects on CD and UC risk. Perhaps in the future we
need to think about genetic differences between CD and UC not in terms
of different loci, but as differently weighted combinations of the same loci.
The same property may apply to subphenotypes of IBD (such as ileal verses
colonic disease), and possibly even to the relationship between IBD and other

immune-mediated diseases.

IBD shows genetic overlap with almost all diseases of immunity. However,
there is a startling overlap between IBD and susceptibility to both
complex and Mendelian mycobacterial disease. This is further high-
lighted by the large number of loci that contain genes involved in interferon
gamma, including both the IFFNG gene itself and its receptor IFNGR2, which
is known to play a vital role in defence against Mycobacterium tuberculosis
(Flynn et al., 1993). This relationship appears to have led to significant
natural selection on IBD alleles during human history, and in par-
ticular balancing selection on the regulation of pro- and anti-inflammatory

cytokines IL17 and IL10.

Cell types of both the innate and adaptive immune system play an im-
portant role in IBD. Gene expression data implicated dendritic and natural

killer cells on the innate side, and CD4+ T-cells on the adaptive side. The
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Gene Ontology analysis, however, implies a different mode of action of these
two cell types. IBD risk alleles seem to lead to defects of bacteria-
induced cytokine production in innate immunity and defects of cell
activation and signal transduction in the adaptive immune system.
This is not an exclusive relationship (one innate immune cell type has an
activation-related GO term, “regulation of natural killer cell activation”),

but it does seem to hold as a rule of thumb.
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4.5 |BD and Y haplogroups

There is much suggestive evidence of a relationship between sex chromosomes
and immunity. Most autoimmune diseases are more prevalent in females than
in males (Whitacre, 2001), and individuals with Turner syndrome (a partial
or total absence of one sex chromosome) are at higher risk of developing
various immune-related diseases (Lleo et al., 2012). There is also evidence
that the progression of HIV infection can vary between carriers of different
Y haplogroups (Sezgin et al., 2009). However, large systematic studies of the
effect of Y chromosome variation on human immune disease are relatively
rare.

As mentioned in the introduction, 1735 Y chromosome variants were
placed on the Immunochip for the purpose of assigning Y haplogroups. This
gives us an opportunity to make a detailed and well powered study of the
relationship between IBD risk and Y haplogroups. In this section I will

describe the analysis of these variants in the IIBDGC Immunochip dataset.

4.5.1 Calling Y SNPs and assigning haplogroups

I selected males from the QQC+ Immunochip sample set based on their mean
normalised intensity at Y chromosome sites. There were a total of 22,129
males available, with 9,811 controls, 6,204 CD cases and 6,114 UC cases.
Because (at the time this study was carried out) the optiCall method
used for genotype calling on the autosomes had not yet been adapted to
run on sex chromosomes, I used the calling software [lluminus (Teo et al.,
2007). The calls were generally of low quality, so I selected 150 haplogroup
informative marker (Karafet et al., 2008) and manually inspected and fixed

clusters using the program Evoker (Morris et al., 2010).
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Figure 4.16: Y haplogroup frequencies in controls across the IIBDGC Im-
munochip dataset.

I developed a novel maximum likelihood method to assign haplogroups
to these individuals (implemented in C++ as the program YFitter (Luke
Jostins, 2011)). All but 9 males could be unambiguously assigned to a major
haplogroup. The dataset contained samples from 10 major haplogroups,

including 6 haplogroups with a frequency of greater than 1% (Figure 4.16).

4.5.2 Association analyses and controlling for stratification

I used logistic regression to assess association across these 6 common major
haplogroups. The frequency spectrum differs between IBD cases and controls,
even after including country-of-origin, sample collection and four autosomal

principal components as covariates (x? = 14.2, df = 5, p = 0.014). The per-
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Haplogroup | OR (95% CI) P-value
E 1.07 (0.92 - 1.24) | 0.393
G 1.20 (0.99 - 1.20) | 0.059
I 1.00 (0.93 - 1.10) | 0.837
J 0.85 (0.76 - 1.03) | 0.112
N 1.53 (1.12 - 2.07) | 0.006
R 0.96 (0.89 - 1.03) | 0.229

Table 4.15: Association statistics for the Y chromosome haplogroups

haplogroup results show that this association is largely driven by a strong
association between haplogroup N and IBD (Table 4.15).

Haplogroup N shows significant variation in frequency between European
populations (Figure 4.16). This may lead us to suspect that the association
results are due to population stratification. There are two major sources of
stratification in IBD: a higher incidence in Ashkenazi Jewish, and an increas-
ing incidence in Northern Europe compared to Southern Europe (Shivananda
et al., 1996). We can rule out the former as haplogroup N has a lower fre-
quency in Ashkenazim (Behar et al., 2004), which would produce the opposite
direction of association to that observed. However, haplogroup N is at a sig-
nificantly higher frequency in Northern Europe, so this is a plausible source
of stratification. While I conditioned on country of origin and principal com-
ponents, it is possible that additional stratification is driving the haplogroup

N association.

To attempt to remove such stratification, I selected two homogeneous
cohorts with over 10% frequency of haplogroup N (one Swedish and one
Lithuanian). To ensure the population was homogeneous, I used principal
component analysis to remove 136 individuals that lay more than two stan-
dard deviations from the mean on any of the first four PCs. Even within

these two highly homogeneous populations, the results were very similar to
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Collection Cases/controls | OR (95% CI)

Sweden 165/193 1.19 (0.60 - 2.37)
Sweden (PC corrected) 1.27 (0.62 - 2.58)
Lithuania 192,/109 1.94 (1.13 -3.33)
Lithuania (PC corrected) 1.81 (1.02 - 3.19)
Meta-analysis 228/228* 1.61 (1.05 - 2.47)
Meta-analysis (PC corrected) 1.57 (1.01 - 2.45)

Table 4.16: Association of haplogroup N with IBD in two homogenous popula-
tions. Studies were combined using variance-weighted fixed-effect meta-analysis.
¢Effective sample size

the across-Europe results (Table 4.16).

In these homogeneous groups, case-control status was correlated with
principal components, weakly in Sweden (omnibus p = 0.050) and strongly
in Lithuania (p = 3.6 x 10~*). Equally, haplogroup N shows evidence of pop-
ulation stratification via a correlation between the haplogroup and principal
components (p = 0.032 and p = 0.014). However, conditioning on the first
four principal components within these countries does not significantly alter
the results (Table 4.16), providing further evidence that this association is

not driven by stratification.

4.5.3 Identifying candidate causal variants

Because the Y chromosome does not undergo recombination, the haplogroup
association does not implicate a genomic region in the same way as an au-
tosomal association does, and thus does not immediately suggest candidate
genes or mutations.

To understand potential biological underpinnings of the haplogroup N
enrichment in IBD, I used sequence data from the 1000 Genomes Project

(specifically, from the Complete Genomics high-coverage sequencing) to iden-
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Gene Number | Location
AMELY |1 Intron

CD2 2 Upstream of TSS
KDM5D | 3 CDS (missense)
NLGN4JY | 8 Intron

PRKY 1 Intron

RPS;Y1 |1 Intron

RPS;Y2 |1 CDS (synonymous)
TBL1Y 5 Intron

TTTY10 | 2 Intron

TTTY14 | 2 Intron

TTTY15 |3 Intron

USP9Y 4 Intron

ury 13 Intron

Y 2 Intron

Table 4.17: Candidate genic mutations that may underlie the haplogroup N IBD
association.

tify Y chromosome mutations specific to that haplogroup. A total of 379 mu-
tations lie on or within the N haplogroup branch. 50 of these were present
in or near genes, implicated 15 candidate genes (Table 4.17). These in-
cluded a mutation 3kb upstream of CD24, a cell adhesion gene known to
be up-regulated in inflammatory bowel disease, and a missense mutation in
KDM5D, which encodes for a MHC antigen known to be involved in male-

to-female tissue graft rejection.
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4.6 Fine-mapping the NODZ2 locus

The TIBDGC has an ongoing project to fine-map IBD loci using the Im-
munochip. This project uses both the large European dataset discussed
above, and an additional set of approximately 12,000 transethnic samples. It
also aims to incorporate functional information from external datasets, such
as gene expression and functional sequencing. It is aimed at both establishing
the causal risk variants that underlie GWAS associations, and investigating
the biological mechanisms through which these risk variants act. Calling and
analysis of these datasets are currently ongoing.

In this section, I will describe the results of a pilot project carried out
to investigate the methods and resources that could be used in such a fine-
mapping project. This pilot project was focused on a single Crohn’s disease
fine-mapping region, the long-established NOD2 locus. I will show how the
Immunochip data can be used to infer new biological insights on both coding

and non-coding associations at this locus.

4.6.1 Characterising coding mutations in NOD2

There are 24 polymorphic missense mutations in NOD2 on the Immunochip.
Six of these have been previously established as associated with IBD (Rivas
et al., 2011). By performing stepwise logistic regression, I found that eight
of these coding mutations show independent associations that are significant
after correcting for the number of coding variants tested (i.e. p < 0.002), in-
cluding the six known mutations and two that have not been reported before
(Asn289Ser and Ala918Asp). With 8/24 mutations showing association, it
is clear that a large proportion of the NOD2 mutation space is associated

with IBD. However, the Immunochip data can allow us to investigate in more
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Figure 4.17: Functional characterisation of coding signals at NOD2. 17 coding
variants are shown on a plot of their position in the protein and their Condel score,
with colouring used to show their odds ratio. The LRR domain (responsible for
bacterial sensing) is also shown.

detail what drives certain mutations to increase CD risk, while others appear

to be benign from the point of view of IBD.

I took 17 of the highest frequency (MAF > 0.0005) non-synonymous
variants and calculated independent odds ratios for each (conditioning on
the six established NOD2 coding mutations, plus the common regulatory
signal discussed below). I also produced a Condel score (Gonzalez-Perez and
Lopez-Bigas, 2011) for each mutation, which combines various measures of
conservation and protein structure to estimate the probability that the muta-
tion is pathogenic. Figure 4.17 shows the relationship between Condel score,

position in the protein, and odds ratio. We can see a striking relationship:
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Figure 4.18: Fine-mapping and functional characterisation of a common regu-
latory signal at NOD2. Variants in orange are candidate causal variants. The
coloured spikes under at the bottom of the plot show H3K27Ac histone modifica-
tion levels in various tissues, with red being lymphoblastoid cell lines. Grey blocks
are open chromatin and black blocks are transcription factor binding sites, with
binding sites within 20bp of the candidate causal variant named in panel b).

mutations with a high Condel score, towards the end of the protein, almost
invariably increase the risk of IBD. However, variants towards the start of
the protein, or with a low Condel score, are rarely associated. It is likely
that this “CD sensitive region” of NOD2 represents mutations that disrupt
the Leucine-Rich Repeat (LRR) domain. The LRR domain is responsible
for detecting the bacterial product MDP, and is known to play a key role in
Crohn’s disease risk (Abraham and Cho, 2006).

4.6.2 Characterising a common regulatory signal at NOD2

Once we condition on the coding mutations mentioned above, a genome-wide
significant signal remains around 50kb upstream of NOD2 (Figure 4.18a).
This signal is the same signal (but in the opposite direction) as the common

NOD2 association with leprosy susceptibility (Zhang et al., 2011), and is also
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associated with expression of both NOD2 and SNX20 in monocytes (Zeller
et al., 2010). However, the association with IBD has not been reported before,
as it can only be detected at genome-wide significance after conditioning on

the coding variants.

Again, we are interested in the function of this association. The first step
is to establish the set of SNPs that could plausibly be causal. To do this,
we test the association statistics for the hit SNP conditional on each variant
in LD with it, and rule out all SNPs that still show conditional association
(p < 0.01). After performing this test, a total of 5 SNPs remain that could

plausibly be the causal variant.

The next step is to establish what functional impact these candidate
causal variants may have. Establishing the function of non-coding variants
is difficult, but we can make some headway by using epigenetic sequencing
data from the Encyclopaedia of DNA elements (ENCODE) (The ENCODE
Project Consortium, 2012; Myers et al., 2011). In Figure 4.18b, I have over-
laid H3K27Ac histone modification levels in various tissues: this is known to
be an indicator of active enhancers (Creyghton et al., 2010). We can see that
one of the candidate causal variants overlaps a peak that is specific to the lym-
phoblastoid cell line, suggesting an immune-tissue specific enhancer region.
Looking closer at this region, we can see multiple sites of open chromatin and
transcription factor binding (Figure 4.18b), with the candidate variant lying
within one of these. The variant is nearby to binding sites for transcription
factors involved in erythropoiesis (GATA2, PAX5 and BCL11A), as well as

the protein NFxB, which regulates inflammation.

Taken together, this evidence points towards the existence of a common
Crohn’s disease risk variant in an upstream enhancer of NOD2. The upstream

enhancer is active only in immune tissues, and appears to regulate expression
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of both NODZ2 and the neighbouring gene SNX20. This risk variant may act
by interfering with a transcription factor binding, possibly a transcription

factor involved in haemopoiesis.
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4.7 Conclusions

The majority of this chapter has been focused on the use of the Immunochip
to discovery new IBD loci in Europeans. The scale of the project has ne-
cessitated new approaches to both data handling and results interpretation,
requiring a greater range of both techniques and expertise than previous I1B-
DGC analyses. Overall this has been a successful project, delivering both
many new loci and biological information.

However, this project is only the first of many Immunochip analyses. At
the time of writing we have just produced a new release of IBD Immunochip
data, including over 86 thousand samples from both European and East
Asian sample collections. This dataset will be used in a range of projects,
including those that will fine-map existing loci, to study the contribution of
IBD loci across different populations, and investigate the genetics of IBD sub-
phenotypes. It will also be combined with Immunochip datasets from other
diseases, in order to make a detailed investigation into the shared genetics of
immune-mediated disease.

The results described in this chapter have taught us a number of lessons
that will aid these future projects. Some of these are important, but perhaps
uninteresting matters of quality control and data handling. For instance,
the large manual inspection effort described in section 4.3.2 has given us
many insights into the behaviour of Immunochip intensity readings, as well
as setting up a framework for large, collaborative cluster plot inspection.
Other lessons will have wider ranging consequences. For instance, the joint
analysis of CD and UC demonstrated that two diseases can have an extremely
high degree of genetic overlap (110 of 163 loci shared), but remain genetically
distinct due to a high degree of effect size heterogeneity. We have learned that

the relative balance of contribution of each locus can be just as important as



4.7. Conclusions 219

the overall degree of locus sharing.

One of the strongest lessons to emerge from this analysis is the potential
for integrating functional datasets into genetic studies. Gene expression,
protein-protein interaction, canonical pathways and literature networks all
added a great degree of value to the locus discovery effort. Most striking,
the NOD2 pilot fine-mapping project demonstrated the power of functional
sequencing data in aiding the identification and understanding of non-coding
causal variants. As a result of these successes, ongoing Immunochip projects
are integrating, and in some cases specifically generating functional datasets

as an integral part of their respective studies.






Chapter 5

High-throughput genomic studies

of multiplex families

5.1 Introduction

The previous two chapters have discussed methods for mapping and in-
terpreting disease associations in unrelated case/control cohorts. This has
proven extremely successful at discovering common risk loci, including a
large number of risk alleles for inflammatory bowel disease (IBD). However,
case-control studies, using genotyping chips, are far from the only method of
studying genetic risk.

As I discussed in the introduction, there are many types of risk variant
that case-control GWAS studies are not well suited to study. In particu-

lar, the tag SNP approach is poorly powered to detect very low frequency

221
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variants, even if they have large effect sizes. The rise of next-generation se-
quencing, however, gives us the opportunity to directly assay such variants
via whole genome or whole-exome sequencing. The question is how to dis-
tinguish the (very small) number of causal risk variants from the (very large)

number of low-frequency variants that have no effect on disease.

One potentially powerful tool is the study of multiplex (or multiply af-
fected) families. Multiplex families have long been a staple of human disease
genetics, and are the starting point for both the heritability and linkage stud-
ies that underlie much of our knowledge of complex disease. In recent years
family studies have fallen out of favour in complex disease genetics as a re-
sult of the relatively poor performance of linkage studies and the success of
GWAS. However, as we will see, multiplex families are more likely to harbour
rare, high penetrance causal variants than unrelated cases. Furthermore, the
fact that these variants are shared across multiple affected individuals gives
us information that can allow us to whittle down the list of candidate vari-
ants by focusing only on those that are shared by many affecteds within the

family.

I will start this chapter with a brief discussion of the history of multiplex
family studies in complex disease (section 5.2). This section will also outline
the approach to studying multiplex families that I describe in this chapter, in
the context of the studies that have come before. I will then introduce some
statistical models for analysing multiplex families in terms of high penetrance
and polygenic risk factors (section 5.3). This will lead to the introduction of
a new method for prioritising multiplex families that are most likely to carry

a high penetrance mutation, using GWAS risk variants.

Section 5.4 will discuss a large multiplex family with over 40 family mem-

bers suffering from IBD, collected with the aim of identifying rare causal mu-
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tations. We have performed a detailed genetic investigation into this family,
using targeting and whole-genome genotyping, as well as whole-exome and
whole-genome sequencing. I will discuss the known risk in this family, and
explore the linkage and haplotype evidence for association. I will then de-
scribe the analysis of the sequencing data, calling SNPs, indels and structural
variants, and combining them with the linkage information. Finally, I will de-
scribe a filtering procedure designed to identify candidate causal variants on
the basis of their frequency, function and segregation within the family. This
identifies a total of 120 candidate variants, including coding and regulatory
SNPs and indels, and structural variants.

In the final section (section 5.5) I will describe a validation and replication
experiment designed to discover which of these candidate variants may be
causal. I will describe the error modes that can create false candidates, and
how they can be counteracted. Finally I will describe three methods for ge-
netically replicating these associations, including using case-control cohorts,
unaffected siblings and other multiplex families, and explore the power of

these approaches.
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5.2 A history of multiplex family studies in complex

disease

It was the existence of multiply affected families that first led scholars to
begin investigating what we now call disease genetics. At the turn of the
19th century John C. Otto published an extensive pedigree analysis of a
haemophilic family in New Hampshire, tracing it back for three generations
(Raabe, 2008). He also hypothesised that haemophilia may be traceable to
only a few pilgrim families, the first description of what would now be called
a founder effect. It is this very concept of family and population specific

causal mutations that underlies the research in this chapter.

Studies of disease families were a focus of many Victorian scientists. Both
French physician Paul Broca, and the English surgeon James Paget doc-
umented many multiplex cancer families, leading to the first studies into
familial aggregation in what is now called complex disease (Schneider et al.,
1986). While we may see the roots of the modern concept of family history
in these developments, in other fields the recognition of familial clustering
took a darker and more ideologically driven form. For instance, the hered-
itary degeneracy theories of psychiatric disease in late 19th century France
fed rapidly into contemporary prejudices about the mentally ill that lay far

from modern concepts of medical care (Dowbiggin, 1991).

Paget specifically argued that these cancer families were the result of a
hereditary factor, but both he and Broca noted that the high (and not pre-
cisely known) prevalence of cancer made it difficult to rule out these families
as merely chance occurrences. The reality of familial clustering was only
established with the rise of systematic epidemiological studies, and the sta-

tistical frameworks required to analyse them, at the start of the 20th century.
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As in the 19th century, studies of cancer lead the way (Schneider et al., 1986),
and these studies came of age when the pioneering epidemiological studies of
Janet Lane-Claypon (Lane-Claypon et al., 1926) conclusively demonstrated
an enrichment of familial clustering in cancer. Even at this stage the genetic
studies were informing biological knowledge: familial clustering was shown to
occur strongly in cancer at a single location (in particular breast cancer), but
only weakly in cancers from distinct locations, highlighting the importance

of considering cancers of different tissues as distinct diseases.

Despite having (as we know now) a higher heritability, the study of mul-
tiplex families in inflammatory bowel disease developed later. This is partly
because the current diagnostic landscape of IBD solidified later: while di-
agnoses of IBD stretch back to the 19th century, the distinct diagnoses of
ulcerative and Crohn’s colitis emerged only at the beginning of the 20th
century (Kirsner, 1995). The existence of families with multiple affected
individuals was noted from 1906, and nuclear families with three or more
affecteds were documented from the 1930s (Kirsner, 1995). However, it was
not until the 1960s and the advent of twin studies (Kirsner, 1973) that a
hereditary role for IBD was widely accepted. Around this time the existence
of very large IBD families in the Jewish population began to be noted, with
a particularly striking family with seven affected members being reported in

1963 (Sherlock et al., 1963).

In the latter half of the 20th century, family history was recognised as
the single strongest known predictor of IBD (Satsangi et al., 1997). Many
collections of multiplex families were made during this time: in 2004 Russell
and Satsangi (2004) reviewed studies of 19 distinct multiplex IBD family
collections. These studies were important in establishing the broad strokes

of IBD genetics. They gave the first indication that CD and UC were genet-



226 Chapter 5. High-throughput genomic studies of multiplex families

ically distinct, yet related, diseases. Furthermore, they hinted at significant
substructure within IBD aetiology, by demonstrating a genetic effect on dis-
ease location, and suggesting a genetic role in disease progression. Overall,
family studies established IBD as a complex genetic disease, comparable in
heritability to other immune-mediated diseases such as type 1 diabetes and

multiple sclerosis.

Around the turn of the 21st century, linkage studies of multiplex IBD
families led to the identification of the major IBD susceptibility loci NOD2
(Hampe et al., 1999; Hugot et al., 2001) (in CD) and HLA (Williams et al.,
2002) (in UC). However, large meta-analyses of linkage studies, including
nearly 2000 families, failed to identify further genome-wide significant loci
(van Heel et al., 2004), and even had difficulty consistently replicating the (by
then fine-mapped) NOD2 locus. This ultimately led to the replacement of
family-based methods with genome-wide association studies (a phenomenon

reviewed in Chapter 1).

The failure of linkage meta-analysis in IBD showed that IBD is not caused
solely by high penetrance alleles at a small number of loci. However, it does
not imply that high penetrance alleles do not exist; only that, if they do exist,
they are individually at low frequency and are located in a number of different
loci (so-called locus heterogeneity). Indeed, many of these multiplex families
are likely to harbour high penetrance mutations, which can potentially be
detected via their co-segregation with disease status within that family. It
was this approach that identified mutations in the IL10 receptor subunits as

an important contributor to early onset IBD (Glocker et al., 2009a).

Recent developments in whole-genome and whole-exome sequencing have
opened up new avenues for the discovery of high penetrance causal variants.

The power of this approach was demonstrated with the discovery of the gene
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underlying the previously unsolved Mendelian disease Miller syndrome (Ng
et al., 2010). This study used whole-exome sequencing of four patients, com-
bined with filtering based on databases of common variation and software for
predicting the severity of coding mutations, and identified candidate causal
mutations in the gene DHODH. Over recent years, this approach has become
the dominant means of solving Mendelian diseases (Bamshad et al., 2011),
and has even been used to identify mutations that underlie syndromic forms
of IBD (Worthey et al., 2011a; Fiskerstrand et al., 2012).

Given the success of this sequencing approach, we would like to also use
it to identify penetrant mutations in multiplex families with complex IBD.
However, there are a number of challenges in generalising this approach.
Firstly, there is no guarantee that any given affected individual, and even any
given multiplex family, will carry a penetrant mutation. Ideally we would
like to sequence families that are likely to carry such mutations, and thus we
require methods to decide which families to select for study. Secondly, even
if a causal mutation is present in a family it is unlikely to be fully penetrant.
Likewise, because the disease is relatively common compared to Mendelian
diseases some family members may have the disease despite not carrying the
mutation (so-called “phenocopies”). We thus need methods that can discover
such mutations in families that may include both affected non-carriers and
unaffected carriers. Finally, as we saw in Chapter 4 many common IBD risk
variants lie in regulatory rather than coding regions, and it is possible that
this will also be true for rare risk variants. We would thus like to generalise
the variant prioritisation procedure to include potential non-coding candidate

risk variants.
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5.3 Modelling and controlling polygenic risk in mul-

tiplex families

There are many potential factors that can lead to familial aggregation in a
disease without leading to families suitable for locus mapping. An obvious
reason (and one that has been discussed since the 19th century) is chance
co-occurrence: the large number of families in the world makes it likely that
there exist families that have a large number of affecteds despite the absence
of an underlying genetic risk factor. This effect can be additionally con-
founded by uncertainty in the prevalence, or population stratification, both
of which could inflate the chance of seeing multiplex families by chance. For
instance, the higher prevalence of IBD in individuals of Ashkenazi Jewish
individuals will lead to a larger number of multiplex families in the Jew-
ish population, even if the increased risk in this group was entirely due to

environment.

Additionally, a shared exposure to an environmental risk factor can lead
a family to develop a higher incidence than would be expected by chance.
Diagnostic bias can also lead to familial clustering, as a strong family history
may lead to more vigilant screening or overdiagnosis (this is particularly
likely to occur for diseases with a high rate of undiagnosed cases, such as
prostate cancer (Fleshner, 1995)). These non-genetic causes all highlight the
importance of careful screening of multiplex families to establish a genetic

cause.

Furthermore, for the purposes of mapping loci an excess of familial aggre-
gation as a result of genetics may not be enough to make a family useful for
study. It is now becoming clear that a substantial portion of the heritabil-

ity of complex traits is due to highly polygenic risk. Williams et al. (2002)
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estimated the contribution of polygenic risk in three complex diseases in the
Wellcome Trust Case-Control Consortium data, by applying a linear mixed-
model method. This gave lower bounds on the liability-scale variance due to
polygenic risk from common loci of 22% for Crohn’s disease, 31% for Type I
Diabetes and 38% for Bipolar Disorder. In many cases a significant minority
of this polygenic risk has already been characterised, for example via the 193
independent IBD risk factors identified via the IIBDGC Immunochip study

(see Chapter 4), but much still remains undiscovered.

The risk variants that make up this polygenic risk each have a small effect
size, and thus are unlikely to individually co-segregate with affection status
in multiplex families. They are therefore outside of the scope of what can be
studied by sequencing families. However, it will contribute to familial aggre-
gation of cases within multiplex families, creating another class of families

that need to be excluded from family sequencing studies.

A good first stage in understanding the impact of polygenic and penetrant
risk on multiplex families is to construct and examine theoretical models of
risk in families. Recent theoretical studies have investigated models of high
penetrance mutations (Al-Chalabi and Lewis, 2011), as well as models of con-
tinuous polygenic risk (Yang et al., 2010) in multiplex families. However, to
answer questions about the relative contribution of penetrant and polygenic

risk, we need to construct a model that contained both elements.

In this section, I will develop a model of genetic risk that combines a
polygenic risk with the presence of dominant, high penetrance alleles, and
study how different parameterisations of this model (corresponding to differ-
ent heritabilities, prevalence and balances of polygenic/penetrant risk) alter
the distribution of affecteds in multiplex families. I will also develop and

test a method for performing genetic risk prediction in a partially genotyped
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pedigree, and using such risk prediction to prioritise multiplex families that
are likely to carry high penetrance mutations over those that are likely to

carry only polygenic risk.

5.3.1 A combined polygenic/penetrant model of multiplex

families

To describe the combined polygenic/penetrant model of genetic risk, I will
first lay out the two components: a liability threshold model for polygenic risk
due to common variants of low effect, and a dominant Mendelian model for
higher penetrance variants. I will then combine these two models together to
produce a general model of which both component models are special cases.

Throughout this section I will consider a nuclear family, with two parents
denoted by subscripts m and f (for mother and father, treated as inter-
changeable), and O offspring denoted by subscripts ¢; : i = 1,...,0. I will
use indicator variables d; to denote the affection status of individuals. I use

a parameter K to denote the disease prevalence in the population.

The polygenic model

We model the polygenic component of the disease using a liability threshold
model (as described in Chapter 2). To recap, each individual in the family
is given a liability L; = A; + E;, where the genetic liability A; ~ N(0, h?)
is an additive polygenic component of risk, and the environmental liability
E; ~ N(0,1 — h?) is an (individual-specific) environmental component. h?
is called the heritability of liability, and measures the proportion of liability
that is shared by identical twins: as this model assumes additive polygenic

risk, h? is also the narrow-sense heritability. An individual is affected (i.e.
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d; =1)if L, > T, where T is the liability threshold "= ®~'(1 — K) and ®
is the cumulative distribution function of the standard normal distribution.

The liabilities for each family member are

L, = A,+E, (5.1)

Lf = Af+Ef (52)
1

L., = Aci+Eci:§(Am+Af)+Mci+ECi, (5.3)

where M., ~ N(0,h?/2) is a Mendelian segregation term. We can reformulate

these equations in terms of 4 + O standard normal variables Z;,

L, = hZi+V1—h2Z, (5.4)

Ly = hZy+V1—-h%Z, (5.5)
h h?
The probability of an individual having disease state d; given a genetic

liability a; is given by

P (L if d; = 1;
pagay <4 P .

1—®(J5%) ifd; =0

(5.7)

We can write down a similar expression conditional on parental genetic

liabilities

T—(Am+A7)/2 e
P(d.|An, Ay) = 2 ¢mmg) if d; = 1:
1 — o(T-UntAn/2y g

\/1-h2/2



232 Chapter 5. High-throughput genomic studies of multiplex families

The probably mass function for a set of affection statuses

—

d= (dm,ds,dc,, ..., de,) is thus given by

P(d) = // " P(dulhn) P(dy hz)é(21)b(22)

X P(dci|h21, hZQ)ledZQ. (59)
1

i=

Because siblings are interchangeable and independent conditional on
parental genetic liabilities, we can model the number of affected offspring
using a binomial distribution. The joint probability of observing parent

genotypes (d,,,dy), and also observing a total of y. affected offspring is thus

P(dmadfy chl - yc) -
JIZ5 P(dim|hz1) P(dy|hz)d(21)6(2) ()
XP(d = 1|h21, hZQ)yCP(d = 0|h21, hZz)O_ycd,ZleQ. (510)

Finally, because parents are interchangeable, we can write down the prob-
ability of observing y total affecteds in the family (including parents and

children) as

PO d=y)= Pldn=1,d;=1,Yd,,=y—2)
+2P(d,, = 1,dy = 0, de, =y—1)
+P(dy, = 0,df = 0,3 d., = ). (5.11)
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The dominant penetrant model

The dominant penetrant model assumes that a large number of individually
rare variants exist in the population, each of which has a dominant effect
with intermediate penetrance. Certain diseases are known to show such a
heterogeneity of genetic architecture, for instance in diabetes (Molven and
Njelstad, 2011) and breast cancer (Chen and Parmigiani, 2007), and it is
possible this is true for other diseases.

This model assumes that a proportion R of cases have a dominant mu-
tation with a penetrance of 7 > K. The total combined frequency of these
mutations is thus K R/7 (and therefore 7/R > K): note that this is the pro-
portion of people who carry at least one mutation, not the allele frequency.
We will use the indicator variable r; = 1 to denote that individual 7 carries
a mutation, and assume that each individual carries at most one mutation.

The disease probabilities, conditional on genotype, are given by

P(d;=1r;=1) == (5.12)
P(d; = 1|r; = 0) = %, (5.13)

and transmission probabilities from parents to child are given by

P(re, =1lr,, =0,7,=0) = 0 (5.14)
1

P(re, =1lrp, =1,r,=0) = 5 (5.15)
3

P(re, =1lrp, =1r;=1) = 7 (5.16)

We can combine these two together to give disease probabilities condi-



234 Chapter 5. High-throughput genomic studies of multiplex families

tional on parental genotype

K- KR

Pld. =1 — - = — 1
(d,, 7 = 0,77 = 0) I KER/x (5.17)
K+nm—-2KR
Pld. =1 =1 = = 1
K+3r—4KR
Plde, =lrp =11, =1) = - KRn) (5.19)

As with the polygenic model, offspring are interchangeable and indepen-
dent conditional on parental genotype, so again we model the number of

affected offspring binomially:

P> ode, = yYelrm = 1,1y =0) =
(OV[P(de; = Urpnyr)]” [1 = P(de; = 1|rm, 74)]7 7% (5.20)

Ye

We can then incorporate parental affection status, conditional on geno-

type, into the total count of affecteds y

P di = ylrm,ry) =
P(d,, =1,dy, = 11y, 7)) P> de; =y — 2|1, 7y)
+P(dy,, =1 or df = 1ry,,rp) PO de; =y — 1rm, 7y)
+(1 = P(dm = 1rm))(1 = P(df = 1rp)) P(3_ de, = ylrm, rr), (5.21)

where



5.3. Modelling and controlling polygenic risk in multiplex families 235

P(d, =1ords =1|rp,rs) =

P(dm = 1|T’m) + P(df = 1|7“f) — 2P(dm = 1|T’m)P(df = 1|7’f). (522)

Finally we marginalize out parental genotypes using the population fre-

quency

PO di=y) = (BB P(Cdi=ylrm =1, =1)
+2KR(1 — KRYP(S dy = ylr,, = 1,7y = 0)

™

+(1 = EE2P(3"d; = y|rm = 0,75 = 0). (5.23)

The combined polygenic/dominant penetrant model

The combined model takes into account both polygenic risk and the presence

of penetrant dominant risk alleles. To do this we set two thresholds, one for

K-KR

non-carriers for the dominant risk alleles 7,,;, = ®~! (1 ~ KR/

), and one
for carriers Tyy, = @' (1 — 7). We then model transmission of both the
penetrant risk alleles and a continuous liability.

The continuous liability is again given as L; = A; + E;, where the genetic
liability A; ~ N(0,h2) only includes heritability due to common variants,
excluding the rare penetrant mutations. This polygenetic heritability is given
by hg = h? — h3, where h? = % is the variance explained on the liability

scale by the penetrant risk alleles, where

KR )

02 = = [Tyom — T)* + (1 — —) [T =TV (5.24)

Note that h3 — 1 as 7 — 1 and as R — 1.
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We now specify the disease probability conditional on both the polyge-

netic liability (A;) and the presence of absence of a penetrant mutation (r;)

Pld — o @<Td°{”__hfi) ifdi=1andr=1;
(d; = 1A, ;) = A . (5.25)
(=) ifdi=1landr=0

Again we can give a child’s disease probability conditional on the genetic
liability and presence of penetrant mutations in the parents, by taking into

account the multiple thresholds with different transmission probabilities

P(dcl = 1|Am,Af,’f‘m,Tf) =
th_(A7n+Af)/2
(s )

Tdomf(Am+Af)/2 l th*(Am+Af)/2 : — —1-
O( i )+ 2@(—1%2/2 ) if rp, =1 xor rp =1; (5.26)
(I)(Tdom—(Am+Af)/2) 4+ 1 (th—(Am+Af)/2

i i o ) ifr,=1landr;=1

if v, = 0 and ry = 0;

N

(oY)

As before, we can write down the probability of observing y,. affected
offspring given parental genotypes by modelling the number of affecteds as

a binomial

P(dmadfazdci = yclrm,rf) =
fffooo P(dm|hpz1, rm) P(dg|hpze, 7r)9(21)9(22)
X (yOC)P(d - 1|h/p21, hpZQ’Tm’rf)yc

X (1 — P(d = 1)hypz1, hpza, T, 77)¥ )0~ Yedz1d 2. (5.27)

We then include parental affection status to give the probability mass
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function for the total number of affecteds y given parental genotypes

P(Zd:y‘rmarf): P(dmzladlevzd%:3/_2‘Tm7rf)
+2P(d,, =1,df =0, d., =y — 11y, ry)

+P(dy, =0,df =0,> de, = ylrm,7), (5.28)

and finally we marginalize out parental genotypes using the population fre-

quency to give the final probability mass function

PO di=y) = (BB P(Cdi=ylrm =1, =1)
+2KR(1 — KRYP(S™d; = ylr,, = 1,7y = 0)

™

+(1 = EE2P(3"d; = y|rm = 0,75 = 0). (5.29)

Results

[ have implemented the above combined model using R, and used it to explore
how the expected number of affecteds in multiplex families for a relatively
uncommon disease (K = 0.01) varies depending on model and model param-
eters.

Figures 5.1a and 5.1b show the results of this multiplex model to families
of 8 (O = 6), with dominant penetrance of 7 = 0.5. The solid lines give
the purely polygenic model R = 0, the black lines give the purely penetrant
model h? = 0, and other lines give various parameterisations of the combined
model.

The first thing to note is that multiplex nuclear families can be very

common given only a moderate degree of polygenic risk. Families with 5 or
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Figure 5.1: The results of the combined multiplex family model. a) Distribution
of number of affecteds per nuclear family with 6 children, for different values of
h? and R. b) A zoomed in view of the same model c) The probability that a
nuclear family harbours a penetrant mutation, for different values of h? and R d)
Comparison of sibships (O = 6) and cousinships (k = 2,0; = 2,02 = 2), with
h? = 0.5 (generated by simulation). In both cases I used K = 0.01 and 7 = 0.5.
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more affecteds, an occurrence that is virtually impossible under the null (less
than one family in 200 million) become possible (one family in 500 thousand)
for a moderate polygenic heritability of 0.25 and positively common (one
family in 30 thousand) for strong heritability of 0.5. Multiplex families are

likely to be relatively common, even without high penetrance mutations.

However, the flip-side of this is that a high degree of familial aggregation
can be seen even for not particularly heritable diseases given a small con-
tribution of dominant alleles. A disease with no polygenic liability, but 5%
of cases caused by penetrant mutations, will show as many families with 4
affecteds as a disease with 50% heritability (despite the former case having
a heritability of less than 1%). This seems to lead to the somewhat coun-
terintuitive conclusion that families multiply affected by a weakly heritable
disease will be easier to map than equivalent families with a strongly heritable
disease, though this may be confounded by correlations between polygenic

and penetrant heritabilities.

We can turn these results around and instead ask what proportion of mul-
tiplex families of a certain size harbour a penetrant mutation (Figure 5.1c).
In the absence of polygenic risk, the vast majority of nuclear families with
more than 4 affecteds harbour a penetrant mutation, even if such mutations
explain a very small proportion of the total disease burden (R > 0.001).
However, this becomes progressively less true as the heritability rises, and
for highly heritable diseases penetrant mutations only become common in
multiplex nuclear families if they already explain a non-trivial amount of all
cases to start with (greater than 1% for h? = 0.5, and greater than 5% for
h? =0.75).

Figure 5.1d compares the results of the combined model for nuclear and

extended families of the same size. Specifically, I have compared a nuclear
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family with eight individuals (two parents and six children, i.e. O = 6 off-
spring) to an extended family with eight individuals (two siblings, their part-
ners, and their two children each, i.e. k = 2,0; = Oy = 2, with grandparental
state disregarded). I consider only a heritability of h% = 0.5.

As we have already seen, under the polygenic model with h? = 0.5, ob-
serving five or more affected nuclear family members is not unlikely (1 in
30 thousand). However, Figure 5.1d shows that for an extended family of
the same size this is a relatively rare even (1 in 400 thousand). This gap
between nuclear and extended families is reduced if the presence of high pen-
etrance mutations is considered. Introducing a small number of penetrant
mutations (R = 0.05, 7 = 0.5) increases the number of families with at least
5 affecteds 9-fold for the cousinship (to 1 in 42 thousand), but only 4-fold for
the nuclear family (to 1 in 7200). This corresponds to a 93% of cousinships
with 5 affecteds carrying a penetrant mutation, compared to 83% for nuclear
families.

From these analyses we can draw a number of lessons for studying mul-

tiplex families

e Even if only a minority of variance is explained by rare variants, these
rare variants can still result in the occurrence of a relatively large num-

ber of multiplex families.

e However, relatively large numbers of multiplex families are also ex-
pected given the levels of polygenic risk (h? = 0.2—0.5) that have been
shown to exist for many complex diseases. Thus the presence of strong

familial clustering is not alone evidence of a penetrant mutation.

e Extended multiplex families, with aggregation occurring across cousins

as well as siblings, is stronger evidence of a penetrant mutation.
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e Using additional methods to decrease or factor out the contribution of
polygenic risk will be valuable in identifying families that are likely to

harbour penetrant risk variants

5.3.2 Risk prediction in multiplex families
An outline of risk prediction in families

As we have seen in the above section, the presence of polygenic risk can lead
to a high frequency of multiplex families even in the absence of penetrant
mutations. However, for many diseases we already have a grasp on this poly-
genic variation via the results of GWAS. For instance, the 193 independent
associations to Crohn’s Disease explain 12.7% of variance in disease liability
(see Chapter 4). Using the upper bound of 84% (calculated in Chapter 1)
and a lower bound of 22% (from Williams et al. (2002)), we know that we
have discovered somewhere between 15% and 58% of the polygenic risk for
Crohn’s disease.

We can use these GWAS loci to produce estimates of polygenic risk, and
use this polygenic risk to prioritise those families that are more likely to
harbour penetrant mutations. Assume that a given family has N members,
of whom y are affected. We wish to select families for which y is significantly
larger than what would be expected given the observed genotypes, G, i.e.

those that minimize:

P(§>y|N,G) (5.30)

If G is known for all family members then disease probabilities for each
individual can be calculated directly from the odds ratios as described in

Chapter 2, and then used to calculate equation (5.30) by sampling. How-
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ever, most family based experiments will not generate genotype data across
all members of the pedigree for a variety of reasons, including cost, DNA
availability, consent, or death. A solution is to sample disease status as in
the complete information case, conditional on a set of unobserved genotypes

Gunobs that are themselves sampled from the conditional distribution

P(Gunobs|f7 T; Gobs); (531)

where f is the population allele frequency, T is the family structure, and G,
are the known genotypes. Sampling from this distribution is not trivial, but
is possible via a modified Inside-Outside algorithm (Baker, 1979) (itself a
generalisation of the forward-backwards algorithm used in Hidden Markov
Models). The Inside-Outside is used for inference on tree-like data struc-
tures, and has been applied to certain multiple sequence alignment problems
(Durbin, 1998). Here, we instead use Inside-Outside to sample from the pos-
terior distribution of genotypes across a family. Briefly, we decompose the
marginal genotype posteriors into inside and outside probabilities, similar to
the forward and backward probabilities from an HMM. The inside proba-
bility accounts for information from each individual and their descendants,
whereas the outside probability accounts for the individual’s other relatives

(including ancestors, siblings and cousins).

These values can be computed recursively via the standard Inside-Outside
approach (Section 5.3.2), which enables the sampling of one individual’s geno-
types. When sampling an entire family, however, we must sample down the
tree from the root, with each individual’s genotypes conditioned on their par-
ents’ sampled genotypes (Section 5.3.2). We accomplish this by modifying
the outside probability to include parental genotypes (Section 5.3.2).
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Description of the Inside-Outside algorithm in trees
Definitions

The Inside-Outside algorithm is a generalisation of the Forward Backward
algorithm, originally designed to extend parameter estimation from Hidden
Markov Models to stochastic context-free grammars (Baker, 1979). Here we
reformulate the Inside Outside algorithm as a method of performing param-

eter estimation and sampling on a directed tree.

A directed tree is a directed acyclic graph in which all nodes have a unique
path originating from a single node. We will denote nodes by subscripts i,
j, k. Each node i may have a parent p;, offspring o; and/or siblings s;. A
node without parents is called a “root node” or “root”, and a node without

children is called a “leaf node” or “leaf”.

Each node i has an associated emission d; (e.g, an observed genotype), as
well as a hidden state x; (e.g. an unobserved genotype) with statespace S;.
The values of hidden states will be denoted a, b, ¢ etc, e.g. (x; = a) denotes

that node ¢ has hidden state value a.

The tree defines a graphical model that specifies the probability density
functions for all the variables (hidden states and emissions) as conditional
probabilities. Specifically, the probability density function of emission d; is
specified conditional on hidden state z; taking value a by the likelihood

Li(a) = P(d;|x; = a). (5.32)

The probability density function for a non-root hidden state variable z; taking
on value b is specified conditional on the parent’s hidden state z,, taking on

value a by the transition probability
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Ti(bla) = P(z; = blx,, = a). (5.33)

The probability distribution of the hidden state associated with the root ..
is given by the root prior

m(a) = P(Zroot = a). (5.34)

We will refer to all emissions associated with node 7 and nodes descended from
node 7 as D;, and all emissions not associated with node 7 or its descendants

as Dy;. Note that these can both be expressed recursively

D; = {d;, D,,} (5.35)

for non-leaves and D; = d; for leaves, and

Dy, = {DSND!pi?dpi} (536>

for non-roots and Dy; = @ for the root. All emissions associated with all
nodes can be expressed as D, and D = {D;, Dy;} for any i.
We will use the Inside-Outside algorithm to deduce the probability density

functions of hidden states x; conditional on observed emissions associated

with all nodes D.

The Inside Probability

The inside probability «;(a) is defined as the probability of observing emission
associated with node ¢ and all its descendants, given that the hidden state

xz; takes on value a
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a;(a) = P(D;|x; = a). (5.37)

For leaves, D; = d;, and hence a;(a) = L;(a). For non-leaves we have

a;(a) = P(Djlz; =a)

J€Eo;

= P(djle;=a) [] Y P(Djla = b)P(a; = blz; = a)

j€oi beS;

= Li@ [T Y as01 (bl (5.39)

Jj€o; bGSj

Because we require the inside probabilities of all offspring of a node to cal-
culate its own inside probability we calculate the inside probabilities first for
the leaves, and then propagate them recursively up the tree. The overall

likelihood of all emissions D is
P(D)= Y aroula)(a). (5.39)

The Outside Probability

The outside probability §;(a) is defined as the joint probability of observing
emissions not associated with node ¢ and its descendants, and the node ¢

being in hidden state x; = a is

Bi(a) = P(Dy,z; = a). (5.40)

For the root node, Dy = 0, 80 Bro0t(a) = P(Zyoot = a) = w(a). For non-root

nodes, we can calculate the outside probability recursively as
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Bi(a) = P(Dy,z; =a)
— Z P(z,, = ¢,x; = a, Dy)

c€Sp,
= Z P(x,, = c,x; = a, Dy,)P(d;|z,, = HP (Dj|zy, = c)
CESpi ]esz
= Z P(xpz‘ =6 D'pz>P<xl = a|xp¢ = C)P(dllwm = C)
cE€Sp,
<[> P(Djlz; = b)P(a; = blay, = c)
JES; bESj
= D Bu(OTilale)Ly (o) [T > as)T;(ble). (5.41)
CESp,L. JES; bESj

The outside probability for each node requires the outside probability of the
node’s parent. We thus calculate it first for the root, and then propagate
recursively down the tree. The outside probabilities are also dependent on

the inside probabilities, which are therefore calculated first.

Conditional sampling across the tree

We can calculate the posterior distribution of hidden state x; conditional on

all emissions D in terms of the inside and outside probabilities as

P(xi = a|D) = %. (5.42)

We can sample from this posterior distribution for each node. However,
this approach cannot jointly sample hidden states across the entire tree. To
do this we need to propagate sampled states down the tree, starting with
the root. The hidden state for the root can be sampled from the posterior

distribution
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Qroot(@)T(a)

P(Zyoot = a|D) = P(D)

(5.43)

To sample non-roots, we must first calculate the partial outside variable,

which includes the hidden state ¢ of the parent, and can be calculated as

B (a,c) = P(x; =a,z, =c, Dy)

= B, ()T, () TT D e (®)T, (]c). (5.44)

JEs; bES;

The hidden state of node 7 can then be sampled from the posterior conditional

on the sampled state of the parent ¢

pi (a, c)i(a)
2acs, Bi (@, c)ai(a)”

Like the calculation of the outside probabilities, the samples are propagated

P(x; =a|D,x, =c)= 5.45
pi

down the tree.

Application of the Inside-Outside algorithm to family trees

A family is not strictly a directed tree, due to the addition of new founders
(via marriage) in each generation. However, we can make a family into a di-
rected tree by treating parent couples as a single node, consisting of a founder
and a non-founder individual. The root node of this directed family tree con-
sists of the top pair of founders. While I have currently only used this method
for family trees with only one founder-founder couple, in fact any family re-
lationships that do not include inbreeding (i.e. any that take the form of a
polytree) can be modelled if the polytree is transformed to a directed tree

by reversing the transition matrix (using 7}, (a|b) = T;(bla)P(z,,)/P(x;)).
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We use the Inside-Outside algorithm to sample unobserved genotypes
conditional on all other genotypes for a single biallelic polymorphism with
allele frequency f (although this is readily generalised to an arbitrary number
of independent polymorphisms). We model individuals as nodes, and geno-
types as hidden states for each node. For non-parent couples the state-space

18

and for parent couples it is

z; = («f,27) € {AA, AB, BB)?, (5.47)

177

where :L’{ is the founder’s genotype state and x?f is the non-founder’s geno-
type.

Genotype calls for each individual are modelled as emissions, and we
assume that these genotypes are certain and thus for genotyped individuals x;
and d; are identical (though genotype error can be included by modifying the
likelihoods below). Genotypes can also be missing (N). Thus the emissions

for a non-parent couple node is

and for parent couples is

di = {g!, 9} (5.49)

Likelihoods for non-parent couples are
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Li(a) 1 ifa=g;org =N; (5.50)
i\a) = ) :
0 otherwise.

and for parent couples are

1 ifal =g/ and o}/ = g/,

1 ifal =g/ and ¢ = N or ™ = g and ¢/ = N;

Li(a) = I v g . (5.51)
L ifgl =g = N;

0 otherwise.

Transitions can only occur from a parent couple to a non-parent couple, or
from a parent couple to a parent couple. For a parent couple to a non-parent

couple, transmission is simple Mendelian inheritance

Tii(alb) = P(C = a|P1 = b', P2 = b)), (5.52)

where C' is the child’s genotype, and P1 and P2 are parental genotypes.
For parent couple to parent couple transmission, we need to include the

probability density on the founder genotype

Ti(a|b) = P(C = a™|P1 = b, P2 = ") P(a’|f), (5.53)

where P(a’|f) is the population frequency of the founder’s genotype, assum-
ing Hardy-Weinberg equilibrium. Finally, the prior on the root node is given

by the population frequency

w(a) = P(a! | f)P(a™ | ): (5.54)

Using this formulation, marginal posteriors can be calculated for each unob-
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served genotype, and joint genotypes for the entire family can be sampled

from the joint posterior distribution.

Mangrove: An R package for risk prediction in families

To summarise the above approach, we can calculate the probability of seeing
at least y affected families members in a family given known GWAS risk loci

P(y|Gops, B, f) using the following process:

1. Convert the family tree with genotype data into a true directed tree

with emissions as described in section 5.3.2

2. Calculate oy, 8; and (Y statistics using the Inside-Outside algorithm as

described in section 5.3.2

3. Sample N sets of genotypes for ungenotyped family members using the
method in 5.3.2

4. Sample affection status for each individual conditional on samples geno-

typed, using standard risk prediction (Chapter 2)

5. Count the number of families with more than y affected family members

These stages have all been implemented in the R package Mangrove,
which is available from the Comprehensive R Archive Network (CRAN).
Mangrove is specifically designed to use genetic risk prediction to prioritise
individuals or families for sequencing. As well as risk prediction in families,
Mangrove can also perform both risk prediction and quantitative trait pre-
diction in unrelated individuals. I have provided detailed documentation,
and a vignette containing usage examples for both families and unrelated

individuals, with the package.
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Figure 5.2: Ability to predict the presence of a high penetrance mutation (mea-
sured by AUC) in multiplex families using a polygenic risk score. We assume a
disease with a prevalence of 1%, a heritability of 50%, and a genetic risk score
that captures 12.5% of variance. All families have three affected individuals, and
the AUC is shown for families of different total size and dominant mutations of
varying penetrance.

Assessing the efficacy of risk prediction in families in prioritising penetrant

mutations

The aim of the risk prediction prioritisation described above is to increase the
chance that a family selected for sequencing carries a high penetrance muta-
tion. To investigate how powerful this approach is I performed simulations
of families with and without a high penetrance mutation.

Consider two families both subject to polygenic risk for a disease and one
additionally containing a high penetrance dominant mutation. We would
like to be able to identify the latter family for the type of family sequencing

experiment described above. To evaluate the ability of the above method
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to identify families containing such high penetrance mutations I simulated
nuclear families with between 2 and 8 offspring, where three total family
members were affected by a disease having 1% prevalence and heritability of
50% (these values correspond approximately to immune mediated diseases
such as Crohn’s disease). Half the families contained a dominant mutation
with a penetrance from 10-100%, and the other half arose simply from poly-
genic risk and chance.

For each family, we computed the value of equation (5.30) based on a
GWAS risk predictor explaining 25% of heritability (again by analogy to
Crohn’s disease). Figure 5.2 shows the area under the ROC curve (AUC),
which in this instance can be interpreted as the probability of correctly dis-
tinguishing between one family with a penetrant mutation and one without.
For a low-penetrance mutation in a small family AUC is only ~0.6, but for a
medium-penetrance mutation in a large family, AUC is ~0.85, which would
provide a substantial advantage over simply selecting the family with the

largest number of affected individuals.
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5.4 Linkage and sequence analysis of a multiplex

IBD family

We have seen how multiplex families are likely to show an enrichment for
rare, high penetrance risk variants. This is particularly true for multiplex
families that span extended pedigrees, and in pedigrees with a low predicted
risk given common variants. Via linkage and haplotyping methods, these
families can also be analysed for candidate regions that may harbour such
mutations. The falling cost of sequencing means that whole-exome or whole-
genome sequencing can then be used to attempt to identify causal candidates
in the family using linkage data and functional information.

To attempt to discovery such high penetrance mutations, we collected
samples from extended families with multiple members affected by inflam-
matory bowel disease (IBD). Here I discuss the analysis of one such family.

Note that some non-important details of the family have been altered in
this chapter to ensure anonymity. These include the gender of subjects, the
number of offspring and the details of family relationships. In no case does
this affect the conclusions drawn, though it may lead to small inconsistencies

in the precise details of results.

5.4.1 Description of the family

The family comprises over 800 individuals of Ashkenazi Jewish descent, span-
ning four generations connected via a founding couple born at the turn of the
20th century (Figure 5.3). The family is characterised by its large number
of offspring per parental couple, with an average of 9. The founding couple
had seven offspring (including two identical twins), six of these have at least

two descendants with IBD.
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Figure 5.3: A pedigree for the family under study, showing affecteds and parents
of affecteds. The top figure shows how the founders of the six subpedigrees (a-f)
are related. The founders of subpedigrees a) and b) are identical twins.

A total of 41 individuals have been diagnosed with IBD, including 35 with
a diagnosis of Crohn’s disease and 7 with a diagnosis of ulcerative colitis. We
were able to independently confirm the diagnosis via medical records in all
but five cases. The location of disease in the bowel was variable. The average
age of onset was 18.8 years (95% CI: 16-22, n=30) and at the time of sample

collection, one-quarter of the patients had undergone surgical resections.

This family is a good candidate for discovering a high penetrance mu-
tation. They have a wide geographic distribution, with affected individuals
present in seven cities around the world, making an environmental cause of
the disease less likely. Additionally, because the affecteds are spread across
first and second cousins, polygenic risk is far less likely to explain the large

number of affecteds.
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5.4.2 Segregation analysis

Before looking at any genetic data, we can use the structure of the family to
make a plausible guess at what sort of genetic risk factors we may be looking
for. We will look specifically at subfamilies (a) and (b) as the identical twin

founders make the analysis significantly easier.

Suppose we take the most optimistic view of the genetics of this family,
i.e. that all cases are explained by a single dominant mutation. Together,
the two identical twins have 18 offspring, of which 10 are either affected, or
have affected children (or both). The most favourable model would be to
suppose that these 10 individuals all inherited a causal mutation from these
identical twins, and the rest did not. Furthermore, we will assume that all

affected family members carry this mutation.

Under this favourable model, 9 parents and 18 affected children, as well as
approximately half of their 66 unaffected siblings, will carry the mutation, of
which 21 have the disease. This gives a penetrance of 35% (21 out of 60). In
fact, as discussed in section 5.5.2, unaffected siblings are less likely to inherit
a causal mutation. If we correct for this, the estimated penetrance in the

highly favourable model is 41%, with a 95% confidence interval of 24-48%.

This model is almost certainly overly optimistic, as in a family of this size
many of the cases are likely to be phenocopies, and likewise causal mutations
may be segregating in parts of the family with no affecteds. It is also possi-
ble that the mutation is recessive, interacts with another risk factor (either
genetic or environmental), or is only one of many undiscovered risk factors
in the family. However, the model does illustrate how, even in the best-case

scenario, we are looking for a mutation with incomplete penetrance (<50%).
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Family N |y | E(ylK) E(y|G) o | P WIG)
Whole family | 806 | 41 | 6.04 (1 - 11) | 10.24 400 | <107*
Subfamily (a) | 112 | 6 | 0.84 (0-3) 1.02 (0-4) |5.90 | 0.0012
Subfamily (b) | 112 | 15 | 0.84 (0-3) | 0.97 (0-4) | 15.42 | <107*
Subfamily (c) | 140 | 14 | 1.05 (0-3) | 1.56 (0-5) | 8.97 | <107
Subfamily (d) | 147 | 2 | 1.10 (0-3) 1.24 (0-4) | 1.62 | 0.352
Subfamily (e) | 81 |3 | 0.61(0-2) | 1.63(0-5)|1.84 |0.243
Subfamily (f) | 138 |2 | 1.04 (0-3) |3.11(0-7)|0.74 | 0.706

Table 5.1: A Mangrove analysis of the IBD family, including analyses of the
six subfamilies. N is the total number of individuals in this subfamily, y is the
number of affected individuals, F(y|K) is the expected number of affected given
the prevalence alone, E(y|G) is the expected number given genotyped common

variants. % is the enrichment of cases over that predicted by common variants,

and P(y|G) is the probability of observing y or more affected in this pedigree given
common variation. Numbers in brackets are 95% confidence intervals.

5.4.3 Known IBD risk variants in the family

We successfully genotyped 38 CD and UC risk variants in 152 family members
across the entire family in order to assess the extent to which the increased
incidence may be explained by known genetic risk factors. I used odds ratios
and frequencies taken from the IIBDGC GWAS meta-analysis data (using
only Jewish samples), except for the 3 NOD2 variants for which I used the
Immunochip data (described in Chapter 4). Together, these variants explain
7.8% of variance in CD liability and 2.0% in UC liability.

I used the R package Mangrove (described in Section 5.3.2) to assess the
number of cases we would expect in the family given these common variants.
I used population prevalence of CD and UC of 0.6% and 0.15%, collected
by Adam Levine from Jewish patients in GP surgeries in North London
(personal communication).

Compared to the baseline prevalence, the family shows a 6.8-fold enrich-

ment in IBD. While the family does show a marked increase in risk (1.7-fold)
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SNP ORper | ORpom | P-value
rs2066844 1.83 8.65 1.6 x 107
rs2066845 1.90 11.61 2.1x10™*
rs2066847 2.56 29.8 1.8 x 10716
Compound heterozygous x3.46 | - 2.0 x 107
(Excess odds ratio over additivity)

Table 5.2: Odds ratios for NOD2 mutations under a non-additive model, fitted
from the IIBDGC Immunochip data described in Chapter 4. The p-values give
the significance of the full model compared to a model with this term replicated
with a purely additive term.

due to common risk variants, there is still a 4-fold enrichment in IBD even
given these common variants (Table 5.1).

We can further break this down by subfamily (Table 5.1). Subfamilies (d)-
(f) show a particularly marked enrichment in common risk variants, which
would predict a 2.2-fold increase in prevalence. The expected number of af-
fected given common risk variants (5.98) is remarkable close to the observed
number (7), suggesting that there is unlikely to be any high penetrance mu-
tations in this area of the family. By contrast, subfamilies (a)-(c) show a very
large gap between the predicted and actual number of affecteds (9.9 times
that predicted by common variants), suggesting that these subfamilies are

good candidates for harbouring high penetrance mutations.

Modelling non-additivity in NOD2 risk variants

One complication is that the above analysis assumes an additivity genetic
architecture. While this model fits most of the IBD risk variants well, it
does not accurately model the NODZ2 risk variants, which show significant
evidence of both recessive effects at single coding variants and epistatic in-
teraction between coding variants (Table 5.2).

In subfamilies (a) and (b) NOD2 mutations are relatively uncommon,
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Figure 5.4: The distributed of cases expected in subfamily (c¢) under an additive
and a non-additive model of NOD2 risk.

and no individuals were homozygous or compound heterozygous for NOD2,
suggesting that the non-additive model will only decrease the total number
of predicted affecteds. However, in subfamily (c¢) seven individuals are either
homozygous or compound heterozygous for one of the three classical NOD2
mutations, suggesting that the contribution of known genetics in this family
could be larger than an additive analysis suggests.

[ used data from the IIBDGC Immunochip dataset (described in Chap-
ter 4) to fit a non-additive NOD2 model by logistic regression (Table 5.2),
and used the Mangrove method to perform risk prediction in subfamily (c)
using this model. Non-additivity increases the expected number of affecteds
slightly, from 1.56 to 1.88 (p = 5.5 x 10~'!). However, the real increase is on
the extremes (Figure 5.4), where the probability of seeing 6 or more affecteds

increases by a factor of three (from 0.4% to 1.3%). Despite this increase, the
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Figure 5.5: A principal component analysis of the family, using HapMap popu-
lations (TSI=Italian, CEU=Northern European) and Ashkenazi Jewish (AJ) ref-
erence populations.

probability of seeing 14 affecteds in subfamily (c¢) given common variation

remains very small (<< 107%).

5.4.4 Linkage and haplotype analysis of the family
Genotyping data

A total of 60 individuals (30 affected and 30 unaffected) from subfamilies
(a)-(c) were genotyped on an Illumina CytoSNP 12 BeadChip array. Geno-
types were called using BeadStudio. Genotypes inconsistent with Mendelian
segregation were set to missing, and SNPs with greater than 1% missing-
ness, minor allele frequency less than 1% in founders or Hardy-Weinberg

Equilibrium p-value less than 10~ in founders were removed.
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Figure 5.6: Non-parametric linkage results for the family.

As a reference population, we used genetic data from a study of 471
Ashkenazi Jewish individuals genotyped on the Affymetrix Human SNP Ar-
ray 6.0 (Bray et al., 2010), obtained via the NCBI's Gene Expression Om-
nibus (GEO) database (Barrett et al., 2011). Principal component analysis
confirmed that the family members clustered with the Ashkenazi reference
population (Figure 5.5).

We created a 1cM maximally informative genetic map by taking all SNPs
present in both the reference set and the family, and for which there was
no missing data in the family. We performed LD thinning in the reference
dataset (such that r? < 0.2 for all SNPs). We then selected the SNP with
the highest heterozygosity in the family founders in every 1cM block. Allele

frequencies for these SNPs were calculated from the reference set.

Linkage analysis

We performed non-parametric linkage using Merlin (Abecasis et al., 2002)

(v1.1.2). As we expect large increases in allele sharing due to high pene-
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trance mutations, the standard linear approximation used by Merlin is too
conservative, so we used the more accurate Kong and Cox exponential model
(Kong and Cox, 1997). We used the maximally informative map and allele
frequencies described above.

We ran linkage separately on the three subfamilies (a)-(c). We also used
Fisher’s method to combine the results for subfamilies (a)-(b) (i.e. the off-
spring of the identical twins), and for all subfamilies (a)-(c). The results are
shown in Figure 5.6. None of the results meet the criteria for genome-wide
significance (a LOD score of 3.3 (Lander and Kruglyak, 1995)). A number
of linkage peaks reached the level of significance that Lander and Kruglyak
(1995) suggest can be interpreted as “suggestive evidence” (a LOD score of
1.9). These are shown in Table 5.3.

The linkage peaks inferred are broad, and contain many genes. Even if
we reduce this down to genes that are expressed in the immune or digestive
systems, there are still between 7 and 89 genes in each linkage peak (Table
5.3). Low-throughput sequencing of exons in some of these candidates did

not produce any likely candidate causal variants.

Haplotype analysis

As well as using the genotype data to find evidence of significant linkage,
we can also use it for the related purpose of inferring the flow of haplotypes
within the family. This can allow us to identify regions of the genome that
are widely shared across subfamilies, and identify which family members do
and do not share a candidate mutation on a particular haplotype. It can be
used to inform the analysis of sequence data.

The computing resources required to carry out a full haplotype analysis

grows exponentially with the number of samples. As a result, directly infer-
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Chr | Pos in Mb | LOD score P-value Genes
(subfamilies) (expressed)

Subfamily (b)
18 ]6.989.71 | 2.62 | 2.54x 107 | 10 (7)
Subfamily (c)
10 | 72.59-82.39 | 2.81 | 1.62 x10~* | 81 (23)
Subfamily (a)+(b)
13 | 89.61-96.75 | 2.23 (0.95, 1.58) 6.78 x 107* | 24 (8)
18 | 6.98-9.71 2.05 (0.01, 2.62) 1.05 x 1073 | 10 (7)
Subfamily (a)-(c)
10 | 19.17-81.96 | 2.72 (1.80, 0.12, 1.49) | 2.01 x 10~* | 256 (89)
18 | 6.99-9.71 2.49 (0.01, 2.62, 0.69) | 3.57 x 10~* | 10 (7)

Table 5.3: Suggestive linkage peaks (LOD > 1.9) in the family. Positions are
given as the region in which markers have LOD > MAXLOD - 1. Numbers in
brackets are LOD scores of the individual subfamilies that went into the analysis.
The number of genes expressed in either the immune or digestive systems in the
linkage peak is calculated from the expression datasets described in section 5.4.7

Affecteds sharing haplotype
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Affecteds sharing haplotype

1 2 3 4 5 6 7 89

11 13 15 17 19 22

(b) Subfamilies (a)-(c)

Figure 5.7: Haplotype sharing in affecteds across the genome for subfamilies
(a)+(b) (of 18 total) and subfamilies (a)-(c) (of 31 total).
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ring haplotypes across subfamilies using Merlin was not possible. Instead,
we developed a method for parallelising the calculating of haplotypes across

subfamilies, involving the following steps:

1. Perform haplotype analysis in two subfamilies separately

2. For each pair of individuals across the two subfamilies, produce a small
pedigree consisting of siblings of these individuals, and ancestors that
connect them together. Use this to perform genome-wide identity-by-

descent estimation in these two individuals.

3. For every possible set of haplotype assignments at every point in the
genome, calculate the difference between the calculated identity-by-
descent value and the value predicted by the haplotypes generated in

step 1, summed across all pairs of individuals.

4. At each position in the genome, pick the haplotype assignment that

minimises this value

We carried out this analysis on subfamilies (a)+(b) using this method,
and on subfamilies (a)-(c) by then matching up haplotypes between subfam-

ilies (a)+(b) and (c).

Haplotype sharing in subfamilies (a) and (b)

The maximum number of affected family members sharing the same haplo-
type across the genome for subfamilies (a) and (b) is shown in Figure 5.7a.
The most widely shared haplotype is on chromosome 18 (corresponding to
the suggestive linkage peak in Table 5.3), and is shared by 14 of the 18 geno-
typed affecteds. This haplotype is present in all five affected nuclear families
in subfamily (b), and two of the four in subfamily (a).
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Using the same approach as described in section 5.4.2, we can use this
haplotype information to estimate the potential penetrance of a dominant
mutation that lies on this haplotype. This model produces an estimate of
the penetrance of 39% (95% CI 27-56%). It also implies between 4 and 7
phenocopies, corresponding to a phenocopy rate of 2.6% (95% CI 1.0-6.3%).
While this is elevated compared to the population prevalence, this may be
partly explained by ascertainment bias: this family, and in particular this
subfamily, was selected for investigation due to the large number of affecteds,
and this is likely to slightly inflate the number of affecteds due to winner’s

curse.

Haplotype sharing in subfamilies (a)-(c)

The maximum degree of haplotype sharing in subfamilies (a)-(c) is found
on chromosome 2 (between 13.3Mb and 14.3Mb). This does not correspond
to any of the suggestive peaks in the linkage analysis. This haplotype is
shared across 10 of the 16 affected nuclear families, and affects 20 of the 31

genotyped affecteds in this part of the family.

A dominant causal mutation on this haplotype could have a relatively high
penetrance (48%, 95% CI 36-64%). However, it would also imply between
11 and 14 phenocopies, corresponding to a phenocopy rate of 4.2% (95% CI:
2.4%-7.1%). This is more than 5-fold higher than the population prevalence,
and 4-fold higher than the rate predicted from common risk variants in this
part of the family, suggesting that a dominant mutation on this haplotype

alone would be insufficient to explain the incidence of IBD in this family.
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Figure 5.8: The founder subpedigree used for whole-genome sequencing.

5.4.5 Whole-genome sequencing in the family
Samples chosen for sequencing

Whole-genome sequencing allows a complete survey of variation within a
family. It allows us to characterise structural variation, as well as SNPs and
indels in non-coding DNA that may have a regulatory function. However, the
cost is substantially higher, and thus we can only perform sequencing on a
limited number of individuals. We decided to concentrate on subfamilies (a)
and (b), as they are descended from two identical twins. This both increases
the chance that a shared mutation is acting in both families, and reduces the
cost of sequencing (because two founders can be sequenced for the price of
one).

Figure 5.8 shows the 8 samples that we decided to sequence. These sam-
ples have been picked to capture the shared haplotypes introduced by the
identical twins who founded subfamilies (a) and (b). Additionally, we in-
cluded enough offspring to allow us to assign mutations to haplotypes, and
thus allow us to impute variants on shared haplotypes into all affected mem-

bers of subfamilies (a) and (b).

Generating and quality controlling raw sequence

We performed whole-genome sequencing using the Illumina HiSeq 2000, gen-

erating 2x100bp reads. A total of 407.5Gb of sequence was generated, and



266 Chapter 5. High-throughput genomic studies of multiplex families

Call set SNPs | % dbSNP | Ts/Tv
Union 7.46M | 79.5% 1.76
Intersection | 6.09M | 90.2% 2.07

VQSR (99%) | 5.86M | 92.2% 2.04
VQSR (90%) | 5.16M | 94.7% 2.12

Table 5.4: Summary statistics for various whole-genome sequencing call sets

aligned to build 37 of the human genome using BWA (Li and Durbin, 2009)
v0.5.9. The mapping rate was 95.49% (range 94.07-96.35%), and the average
coverage across the eight individuals was 16.1X (range 12.3 - 23.6X).

QC of the sequence data was performed using the BAMCheck pipeline
developed by Petr Danecek, and all sequencing lanes passed. Samples were
checked against their CytoSNP12 genotyping data (described above) to as-
sure that samples swaps had not occurred. GATK (McKenna et al., 2010)
v1.2 was used to perform local realignment around known indels, and to

recalibrate base pair quality scores.

Calling SNPs and indels

Raw lists of SNPs and indels were generated using the GATK UnifiedGeno-
typer and samtools mpileup (Li et al., 2009) (v0.1.17). A total of 7.46M
SNPs and 1.50M indels were called, of which 82% and 53% respectively were
called by both approaches. This union SNP set is relatively poor: over 20%
of SNPs are not seen in dbSNP, and the transition to transversion ratio
(which should be above 2) is only 1.76 (Table 5.4). To improve the dataset,
we carried out Variant Quality Score Recalibration (VQSR) using GATK.
This technique fits a mixture model of true and false positive variants using
QC metrics and a truth set of known polymorphic variants, and uses this to

produce a calibrated quality score (the VQSLOD) for each variant.
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Statistic Call sets Description

QD SNP/Indel | Variant quality divided by depth
HaplotypeScore SNP/Indel | Data consistency with exactly two
haplotypes per individual

MQ SNP RMS mapping quality of reads map-
ping to site

MQRankSum SNP Test statistic for bias in MQ

DP SNP Total depth of reads at site

FS SNP /Indel | Test statistic for bias in strand

ReadPosRankSum | SNP/Indel | Test statistic for bias in position in
read

Table 5.5: QC statistics used for VQSR. In all cases “bias” refers to a difference
in reference and non-reference reads. RMS stands for “root-mean-square”, i.e.

/ N

We used a variety of QC statistics as input for VQSR (Table 5.5). For SNP
truth datasets, we used HapMap3 and 1000 Genomes Omni2.5 polymorphic
sites, and for an indel truth dataset we used indels observed twice in the Mills
and Devine (Mills et al., 2011a) dataset. A total of 5.86M SNPs and 1.22M
indels passed the basic VQSR filter (VSQR99, equivalent to VQSLOD >
2.52 for SNPs and > 0.13 for indels), and these call sets had very favourable
statistics (Table 5.4). A more stringent level of filtering (VQSR90, equivalent
to VQSLOD > 5.18 for SNPs and VQSLOD > 3.20 for indels) provides a
very high quality dataset at the expense of calling fewer variants.

We can use the CytoSNP 12 genotype data to test the sensitivity of the
SNP call sets. Figure 5.9 shows this sensitivity as a function of non-reference
allele count. As well as showing good quality statistics, the VQSR datasets
have a very high sensitivity: the basic VQSR99 set has a 99.7% sensitivity for
variants present in at least two individuals, and the stringent VQSR90 set,
while less sensitive, still has a very high sensitivity (99.0%). A caveat to this
analysis is that the CytoSNP 12 was designed late in the [llumina BeadChip
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Figure 5.9: The sensitivity of the various WGS call-sets compared to array
genotyping, as a function of non-reference allele count (AC).

line (in 2008) in order to genotype low concentrations of DNA, and as such is
strongly biased towards “genotypeable” (i.e. complex, well-behaved) SNPs.
The sensitivity values should thus be considered the sensitivity to detect

“easy” SNPs.

Calling structural variants

Unlike for SNP and indel calling, there is no single well-established method
for calling structural variants (SVs) from sequence data. Instead, most SV
calling efforts combine information from a range of different complementary

calling methods (Mills et al., 2011b).

To call SVs from the whole-genome sequencing data I used six different
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Method Insertions | Deletions | Inversions | Complex
BreakDancer 0 4630 517 0
CNVnator 2816 17371 0 0
Pindel 2573 2574 165433 0
RDXplorer 491 335 0 0
SECluster 1347 0 0 0
Genome STRiP 0 1377 0 0
SVMerge confirmed | 814 3519 19184 8355

Table 5.6: Summary statistics for the different whole-genome sequencing struc-
tural variant callsets, along with the combined SVMerge set

calling methods to generate candidates. These included two methods that
call SVs based on read-depth (RDXplorer (Yoon et al., 2009) and CNVnator
(Abyzov et al., 2011)), two that call based on paired end reads (BreakDancer
(Chen et al., 2009) and SECluster (Wong et al., 2010)), one that uses a
combined read-length and paired-end method (Genome STRiP (Handsaker
et al., 2011)) and one that calls based on split reads (Pindel (Wong et al.,
2010)). We used the program SVMerge to combine these candidates together
into a single set. We used the recommended SVMerge settings for filtering
candidate sets, and removed calls that overlapped centromeres, teleomeres or
gaps in the reference. The merged list of variants was then checked by local
assembly (using the assembly program Velvet (Zerbino and Birney, 2008)) to
confirm breakpoints. A breakdown of the number of variants called is shown
in Table 5.6. Note that a very large number of inversions and complex events
are called, coming almost exclusively from Pindel. As Pindel already uses
local realignment, the 19,184 inversions could not actually be confirmed by
an independent method, and should thus be considered suspect.

A total of 1210 SVs had at least a 50% reciprocal overlap with known
structural variants (taken from Zhang et al. (2006), Conrad et al. (2010) and
Mills et al. (2011b)). Of these, 179 of the 814 insertions had been previously
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Figure 5.10: The distribution of deletion size in our call set, combined with the
proportion observed (with >50% reciprocal overlap) in at least one of the three
external datasets.

discovered, and 968 of the 3519 deletions. However, only 23 of the inversions
and 37 of the complex events were previously known, suggesting again that
these classes of variants are unreliably called. We decided that the likely
very high false positive rate in inversions and complex events made them

unreliable, and discarded them.

Looking in detail at the deletions, the number of called mutations also
seen in the databases varies widely with the size of deletion (Figure 5.10) .
88.8% of deletions sized between 100 and 1000bp are novel, compared to only
9.6% of deletions greater than 1000bp. This likely represents a combination

of false negatives in the database (for instance, Conrad et al. (2010) only
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examined SVs larger than 443bp), and false positives in our call set.

5.4.6 Whole-exome sequencing in the family
Samples chosen for sequencing

Whole-exome sequencing is a more limited approach than whole-genome se-
quencing, and only allows the assessment of small-scale variation in coding
regions. However, the substantially lower cost means that many more sam-
ples can be sequenced, potentially allowing a far more extensive study of
coding variation than can be afforded by whole-genome sequencing.

All affected individuals from the family with DNA available (a total of
40) were sequenced, along with 13 unaffected family members to allow phas-
ing. Additionally, we sequenced 26 control exomes, taken from unaffected
members from the same ethnic group and geographic region as the family,
to allow us to identify population-specific variation that may otherwise be

mistaken for risk variants.

Processing of whole-exome sequencing data

We performed whole-exome sequencing, using a SureSelect Human All Exon
50 Mb kit for target enrichment and the Illumina HiSeq 2000 for sequenc-
ing. We used the same pipeline for quality control, mapping, realignment,
recalibration and variant calling that was developed for the whole-genome
sequencing (sections 5.4.5 and 5.4.5). The samples had a mean coverage of
154.0X in the target region (range 131.2X - 186.4X).

The VQSR99 set contained 128410 SNPs (87% known, Ts/Ts = 2.84),
of which 105243 were also in the VQSRI0 set (89% known, Ts/Tv = 2.96).
The indel dataset contained too few indels to apply VQSR, so instead we
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used the default GATK hard-filters to create a high-quality indel set. This
included 9906 indels (52% known).

5.4.7 Identifying candidate variants in the family
Identifying candidate mutations

Between the whole-genome and whole-exome sequencing we have called over
7.5 million SNPs, indels and structural variants. Given the analyses reported
above, we can be nearly certain that there exists, somewhere in this list, at
least one mutation that causes a substantial increase in risk of inflammatory
bowel disease. To identify such mutations, we need to filter out the vast
majority of variants that do not contribute to IBD risk.

We have developed separate filtering procedures for the three different
classes of variants: coding SNPs and indels, non-coding SNPs and indels and
structural variants (laid out in detail in Table 5.7). Each filtering procedure
begins with a platform-specific quality filter to remove poorly performing
variants, followed by the removal of high-frequency variants using various
databases of common variation.

Our next stage is to filter out any variants that are not present in at
least half of the family members being considered. In the case of the data
deriving from whole-genome sequencing we infer this from the haplotype
flow information discussed in Section 5.4.4. For the SNPs and indels, we
examine the consistency of the genotypes with what would be expected if
the variant lay on the maximimally shared haplotype at that point in the
genome. If the genotypes are consistent with this haplotype (given at most
one genotyping error), and the haplotype is shared by at least half of affecteds

in subfamilies (a)+(b), we include the variant. This approach has the notable
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Filter \

Description

Filters for coding variants:

High quality
Uncommon coding
variant

Affected sharing

Coding conse-
quence
Deleteriousness

Genotype quality > 10 in at least 60% of samples
Frequency <2.5% in ESP?, and less than <5% in our 26
AJ controls (annotated using ANNOVAR?)

Is shared by at least 50% of sequenced affecteds in either
subfamilies (a)+(b), subfamily (c), or the entire family
Is a missense, nonsense, essential splice, stop or
frameshift mutation (annotated using Ensembl VEP€)
Predicted to be deleterious to protein function (measured
using Condel?).

Filters for non-coding variants:

Haplotype consis-
tency
Uncommon variant

Haplotype sharing
Conserved

Regulatory  func-

tion

Genotypes are consistent with maximally shared haplo-
type in linkage data (given at most one genotyping error).
Has an non-reference allele frequency <2.5% in 1000
Genomes Phase 1 Europeans®

Variant is predicted to lie on a haplotype shared by at
least 9 affected members of subfamilies (a) and (b)
GERP/ score > 2 or phastCons? score > 0.5, using UCSC
vertebrate alignments”

Within an Ensembl regulatory region (via VEP¢) or
within both a transcription factor binding site (TFBS)
and a region of open chromatic (DNasel) in at least one

ENCODE cell line! (via UCSCY)

Filters for structural

variants:

Novel

Not a CNV region
Haplotype sharing

Potential function

Does not have >50% reciprocal overlap with a variant in
Conrad et al*, 1000 Genomes! or HGV™.

Overlaps no more than 5 variants in HGV™

Variant overlaps a haplotype shared by at least 9 affected
members of subfamilies (a) and (b)

Overlaps at least one coding base

Filters for all variants:

Genic variant
Expressed gene

Overlaps a gene region in GenCode release 7"

Gene is expressed in at least one immune or gut tissue
type, either in the Gene Expression Barcode® or our gene
expression datasets.

Table 5.7: Filters used to identify candidate causal variants. “NHLBI GO Exome
Sequencing Project (ESP) (2012). ®Wang et al. (2010) “McLaren et al. (2010)
IGonzalez-Perez and Lopez-Bigas (2011) ¢Project (2012) /Davydov et al. (2010)
9Siepel et al. (2005) "Dreszer et al. (2012) ‘The ENCODE Project Consortium
(2012) /Rosenbloom et al. (2012) ¥Conrad et al. (2010) ‘Mills et al. (2011b) ™Zhang
et al. (2006) "Harrow et al. (2006) °McCall et al. (2011)
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advantage of allowing us to assess the variant in more affecteds than were
sequenced. However, if a causal variant has been introduced to the family
multiple times on separate haplotypes, this variant will be missed (in the
family this is true for the NOD2 mutations, for example). Thus for the
exome sequencing, where data is available for nearly all affecteds, we did
not use the haplotype information, instead directly counting the number of
affected individuals carrying each haplotype.

The next stage involves removing variants that are unlikely to have a func-
tional impact. Coding SNPs and indels are filtered based on their predicted
impact on protein function. Non-coding SNPs and indels from the whole-
genome sequence are filtered based on their level of evolutionary conservation
and their presence in putative regulatory features. Structural variants are
filtered based on whether they delete coding sequence.

The final stage is to remove variants that, while possibly functional, are
unlikely to be functionally relevant to IBD risk. We use two sets of gene
expression data (one public reference set, one dataset generated by us) to
identify genes that are expressed in tissues relevant to IBD (tissues of the
immune or digestive systems). All mutations are filtered out if they do not
overlap a gene identified as expressed in a relevant tissue.

In the next three sections I will describe the results of this filtering on the
three different classes of variant, and discuss some of the candidate variants

that this analysis uncovers.

Coding SNPs and indels

Across the entire family there were 7,626 protein-changing mutations that
are at low frequency in the general population. Of these, 223 were shared by

at least 50% of affecteds in at least one subfamily, and 36 were implicated as
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Filter SNPs | Indels
Low frequency protein mutations | 7462 | 164

Shared by 50% of a subfamily 220 3
Deleterious 72 3
Expressed 35 1

Table 5.8: Summary of the filtering procedure for exome variants

functional in a relevant tissue (Table 5.8).

Ordering by the maximum frequency in affecteds in either subfamily, or
across the entire family, the NODZ2 frameshift mutation ranks second in
the list of candidates (Table 5.9). This mutation is a the strongest known
risk factor for Crohn’s disease, and acts as a reassuring positive control,
demonstrating that this method can prioritise mutations with relatively low
penetrance. This is particularly reassuring as the NOD2 region was not
identified as a suggestive linkage peak or widely shared haplotype, due to
it being introduced by multiple founders: this shows that the sequencing
and prioritisation approach can identify true associations that the linkage

approaches cannot.

The most widely shared novel candidate mutation across the family was a
missense mutation in the gene PDE4FIP, encoding the protein Myomegalin.
This gene has not previously been implicated as having a role in immunity.
Next down, a mutation in the gene PIK3C2A was found to be widely shared
in subfamily (c): this gene is relatively poorly understood, but may play
a role in autophagy (Vanhaesebroeck et al., 2010). Towards the top of the
list we also find a missense variant in NLRP2 (a protein known to regulate
inflammation in macrophages (Fontalba et al., 2007)) that is shared across

subfamilies.
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Chr:Pos Alleles | Affected carriers | Gene Mutation

(a+b) | (c) | All
1:144871738 C/A 16 11 | 27 | PDE4DIP | Akal742Ser (0.73)
16:50763778 | G/GC | 0 10 | 15 | NOD2 LeulO07F's
11:17191207 | T/C 0 10 | 10 | PIK3C2A | Lys28Glu (0.55)

11:64527189 | C/T 14 0 14 | PYGM Arg61His (0.82)
19:55481394 | C/T 4 13 | NLRP2 SerdLeu (0.74)
3:148601439 | G/C 1 11 | CPAS Arg273Pro (0.70)
11:5536759 | G/A 0 10 | UBQLNL | GIn305X
3:136664737 | C/T 1 15 | NCK1 Alal80Val (0.50)
11:5424701 | T/C ) 15 | OR51B5 | T1e292Thr (0.86)
11:64854223 | C/A 0 8 ZFPL1 Prol147His (0.55)

3

o 00 = © © ©

Table 5.9: Top 10 SNP protein coding candidate mutations. The number after
the amino acid change is the Condel score on the canonical transcript.

Filter SNPs | Indels
Low frequency mutations on maximal haplotype | 125189 | 38290
Shared by at least 9 affecteds 26993 | 8501
Conserved base 3143 584
Regulatory function 110 12
Expressed in relevant tissue 74 7

Table 5.10: Summary of the filter procedure for non-coding variants

Non-coding SNPs and indels

A total of 35,494 SNPs and indels were at low frequency in the population,
and were shared by at least 9 affecteds in subfamilies (a)+(b) (Table 5.10).
Further filtering produced 81 candidate variants, which were both conserved

and lay in putative regulatory regions (Table 5.11).
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Filter SNPs | Indels
Novel insertions or deletions >100bp | 2332 | 262
Shared by at least 9 affecteds 645 80
Delete coding sequence 5 0
Expressed 3 0

Table 5.12: Summary of the filtering procedure for structural variants

No single candidate stood out as both clearly functional and widely
shared. Only one potential regulatory mutation was on the maximally shared
haplotype (i.e. shared by 14 individuals). This was a novel mutation in a
putative regulatory region of TWSG1 (a gene implicated in BMP signalling
and B cell differentiation). However, of the 4 cell lines the regulatory feature
was detected as active in, none was related to the immune or digestive sys-
tem, and there was no clear evidence of transcription factor binding at this

position.

There were some promising candidate mutations that were shared by a
reduced number of affecteds. A mutation in a B- and T-cell active regulatory
region near PRKCH (involved in T-cell activation (Fu et al., 2011)) is shared
by eleven affecteds. This gene has previously been implicated in susceptibility
to atrophic gastritis by a candidate gene study (Goto et al., 2010). Another
strong candidate is ILI8RAP, a receptor for interleukin-18 (known to be
important in Crohn’s disease (Maerten et al., 2004)), and a candidate causal
gene in the IBDGC Immunochip analysis (Chapter 4). The mutation itself is
in a binding site for STAT?2, a transcription factor known to be downregulated

in IBD (Mudter et al., 2005), though only 10 individuals share this mutation.
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Chrom:Pos Alleles Affected | Gene (bases
deleted)
7:142494034-142495142 | 1108bp deletion | 12 TRBJ2 (50bp) to
TRBJ6 (48bp)
13:95363645-95363829 | 184bp deletion | 10 SOX21 (184bp)
4:84221936-84222193 257bp deletion | 9 HSPE (77bp)

Table 5.13: The three candidate structural variants

Structural variants

725 novel structural variants lay within regions of the genome with haplotypes
shared by at least 9 individuals (Table 5.12). Because of the difficulty in
genotyping structural variants we were not able to test whether these variants
fell on the maximally shared haplotype. Of the 725 mutations, 5 deleted
coding sequence, and 3 of these lay within genes expressed in the digestive

or immune system (Table 5.13).

The functional structural variant that is most widely shared lies in the
T-cell receptor 8 (TCRB) locus, and appears to delete seven TCRBJ genes
(including all the most commonly used ones (Freeman et al., 2009)). At first
glance, this makes it an excellent candidate. However, the TCRB region
undergoes VDJ recombination during T cell development, and the deletion
may well have occurred during normal somatic development. Furthermore,
parts of the TCRB region are known to be copy number variable in healthy
individuals (Mackelprang et al., 2002), meaning that even a germ-line mu-
tation may be benign. The other two candidate SVs are not particularly

widely shared, and do not lie in any obvious candidate genes.
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New NOD2 variants

I mentioned above that the well-established NOD2 frameshift mutation
ranked second in the list of coding candidate variants in the family. The
importance of this mutation in the genetics of Crohn’s disease led us to
specifically investigate NOD2 variants that our above prioritisation analysis
may have missed. Doing so uncovered two new NODZ2 mutations that are
likely increasing the risk of IBD in this family.

One mutation was carried in a heterozygous state by one of the spouses
that underwent whole-genome sequencing. This mutation (Arg791Gln) is
present in dbSNP (rs104895464), but is at very low frequency in the general
population (0.1%). It has a high Condel score (0.997) and lies in the middle
of the LRR domain: this places it in the “CD sensitive region” described in
Chapter 4, section 6.1, and thus is very likely to increase the risk of Crohn’s
disease. However, the mutation is not very common in the family: It was
observed once in the sequencing, and from the haplotype flow we can infer
that it was only passed on to one affected offspring.

A second novel NOD2 mutation is found in the exome sequencing, and
occurs at the same base pair as one of the traditional NOD2 mutations
(Gly908Arg). This mutation, Gly908Cys, is not present in 1000 Genomes
or ESP datasets, though it has been observed twice (in 662 individuals)
in the NIH ClinSeq project (Biesecker et al., 2009; Biesecker, 2012). This
allele has an even higher Condel score than the established variant (0.999 vs
0.997), suggesting that it too will increase the risk of Crohn’s disease. This
mutation was introduced by a spouse, and was passed on to two affected
children (both of whom are thus discovered to be compound heterozygous
for this and a second NOD2 mutation). Because of the striking nature of this

mutation and the fact that it had (at the time) never been reported before,
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we performed capillary sequence validation to confirm its existence.

While both of these mutations likely increase the risk of IBD, both were
introduced by spouses and thus are not carried on a haplotype shared across
nuclear families. Additionally, as they are together only carried by three af-
fected individuals, they can only explain only a small fraction of the affecteds

in the family.



282 Chapter 5. High-throughput genomic studies of multiplex families

Sample set N Reason

Affecteds and parents 74 Validation of sites and genotypes
Jewish controls ~100 | Validation of allele frequency
Case/control cohort ~600 | Replication via association
Unaffected siblings ~250 | Replication via transmission
Other multiplex families | ~200 | Replication via additional families
Total ~1200

Table 5.14: Summary of the samples used for in the replication and validation
effort. The columns give the name of the sample set, the number of samples
included, the reason for their inclusion.

5.5 Follow-up of candidate causal variants

In the previous section I described a number of candidate variants (120)
that could be driving the prevalence of IBD in a multiplex family. The vast
majority of these are not associated with IBD: instead, they are likely to
be a combination of technical errors and variants that have risen to high
frequency in the family by chance.

To reduce the number of candidate causal variants, we have designed a
validation and replication exercise to identify erroneous and non-associated
candidates. This involves genotyping approximately 1200 samples using 8
Sequenom plexes (around 220 variants). These will consist of candidates
from the IBD family discussed above, as well as candidate variants from
other families and other important known risk variants (such as the NOD2
mutations). The samples to be used, as well as the reasons that they are
included, are shown in Table 5.14. In this section I will describe the intended
validation and replication tests, and discuss their power to confirm or falsify

candidate causal variants.

Once these tests have been carried out, and if candidate variants still

remain, these variants will be carried forward into functional studies to iden-
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tify likely causal mechanisms. I will not discuss these functional experiments

here.

5.5.1 Technical validation of causal variants

During the 1000 Genomes loss-of-function project described in chapter 3,
we learned that LoF variants are greatly enriched for technical errors com-
pared to other classes of variations (MacArthur et al., 2012). This was not
due to any particular property of the variants themselves, but instead due
to the fact that loss-of-function variants are extremely rare. In essence, be-
cause the number of true loss-of-function variants is depleted relative to other
categories, while the number of technical errors is approximately constant re-

gardless of functional category, the proportion of errors is much higher.

The list of candidate variants from the family suffers from a similar effect.
We have picked these candidates based on a number of criteria that will
diminish the pool of true variants and increase the relative number of errors.
The classes of functional variants that we have selected for are known to be
under negative selection: coding SNPs predicted to be damaging to protein
structure are under strong negative selection (Barreiro et al., 2008), and
mutations inside non-coding regulatory regions are also known to be rarer
than in the genome as a whole (The ENCODE Project Consortium, 2012).
We have also selected variants that are common within the family, but rare

in the general population, which itself will inflate the error rate.

In this section I will discuss some sources of technical error in the candi-

dates, and discuss validation strategies that can overcome these problems.
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Figure 5.11: The VQSLOD scores for the exome call sets after various sequential
filtering steps.

False positive variants

Some of the candidate variants will be false, the result of systematic errors in
sequencing. The VQSR calibration will have given us a degree of robustness
to such errors, but it is likely that at least some will remain. Figure 5.11 show
the VQSLOD score for the exome variants after various stages of filtering.
There is a difference in score of approximately 0.8 between the entire exome
dataset and the shared, low-frequency coding variants. This shows that
systematic errors of the type measured by VQSR are more common in our
datasets. More specifically, it corresponds to an estimated 2.2-fold increase

in false positive rate in filtered variants (95% CI: 1.6-3.1).

Ideally, all candidate variants should be validated using an independent
technology. Capillary resequencing is perhaps the most accurate form of vali-
dation (for example, we use this technology to validate the novel NOD2 vari-
ant discussed above), but it is low throughput. PCR amplification is another

low-throughput method that can be used to validate structural variants. A
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more high-throughput validation technology is the Sequenom (Bradic et al.,
2011) mass spectrometry method (the main method used for validation of
LoF variants in the 1000 Genomes project). This requires processing a large
number of samples to accurately validate sites, but can be combined with

the various genotyping efforts described below.

Poorly genotyped variants

Another potential source of false candidates is genotype error. A variant
may be real, and present in the family, but some samples have been assigned
the wrong genotypes. This can lead a variant that is present only in a
small number of individuals to seem to be present in a larger number. This
is particularly likely to be a problem in the whole-genome sequencing data,
where the coverage is much lower, and incorrect genotypes in a small number
of individuals can lead to a variant being incorrectly inferred to lie on a shared
haplotype. Again, the most reliable method of detecting these problems is to
perform genotyping on the same samples using an independent technology.
This can be combined with the site validation described in the previous

section.

Common variants

Some of the candidate variants may in fact be at high frequency in the gen-
eral population. While we have filtered these datasets based on population
frequency, there are two factors that may lead a high-frequency variant to
remain in the list. Firstly, the variant may be absent from the reference
set used, either because it was not detected in the original call list, or was
filtered out as poorly performing. Secondly, the variant may be at high fre-

quency exclusively in the Ashkenazi Jewish population. For instance, of the
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35,191 exome variants that were below 2.5% in Americans of both European
and African descent, 222 were detected at above 10% in the Ashkenazi Jew-
ish control exomes. For the whole-genome sequencing no Jewish controls
were available, meaning many of our non-coding candidates may be at high
frequency in the Jewish population.

The solution to this problem is to genotype all candidate variants in a
control population taken from the same ethnic group and geographic region

as the family.

5.5.2 Independent replication of causal variants

Even if the variant is real, is truly low frequency and has been correctly geno-
typed, it still may be present in a large number of affected family members
merely by chance. This is especially true in our case, where we know that
this family does not show a genome-wide significance linkage peak, and many
of our candidate variants do not lie within even suggestive linkage peaks. To
demonstrate that a variant is causal, we need to provide independent replica-
tion of the association. In this section I will discuss three different methods

of replicating a candidate mutation by genotyping in further samples.

Validation in a case-control cohort

While we filtered out variants with an allele frequency of above 2.5%, many of
our candidate variants are still polymorphic in the general population. Such
variants may well not be well tagged in GWAS, but case-control cohorts well
powered to detect them if genotyped directly. For variants at intermediate
frequency (between 0.1% and 1%) we can attempt to replicate these variants
in standard case-control cohorts of IBD.

Assuming a risk allele frequency of f, a prevalence of K and a dominant
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Figure 5.12: The same size required to have 80% power to replicate a mutation
with a given penetrance with p < 0.01, assuming a prevalence of K = 0.0075. The
colours of the lines represent the allele frequency in the general population. The
dashed line represents a small replication effort (300 cases and 300 controls), and
the dotted line represents a large effort (3000 cases and 3000 controls).

penetrance of 7 (such that 7 < ﬁ), the proportion of affecteds in the

general population who carry this mutation is

Pir=1ld=1) = - (5.55)

(5.56)

Similarly, the proportion of unaffected carriers is
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1l—m
1—- K’

Pir=1d=0)= f(2—f) (5.57)

The sample size required to detect a difference in the number of carriers
between cases and controls, for a given penetrance and allele frequency, is
shown in Figure 5.12. A small genotyping effort (300 cases and 300 con-
trols) is well powered to detect (and therefore also to rule out) medium
penetrance mutations (>10%) with an allele frequency of greater than 0.1%.
A large genotyping effort (such as the whole-genome sequencing experiment
described in Chapter 6) would have a power to detect and rule out medium
penetrance mutations with a population frequency of greater than 0.01%.

Replicating truly rare mutations is extremely difficult using case-control
cohorts, though datasets on the scale of the International IBD Genetics Con-
sortium’s replication cohort (discussed in chapter 4) would be well powered
to replicate intermediate penetrance mutations with allele frequencies as low

as 1 in 200,000.

Validating using unaffected siblings

A standard way to validate a potential causal variant is to track its co-
segregation with affection status within the family it was discovered in. In
the approach described above, we have prioritised variants for follow-up based
on their presence in a large number of affecteds. However, the unaffected sib-
lings of these affected individuals have not been tested, and these unaffected
individuals can provide an additional validation set. Where a parent is het-
erozygous for the candidate mutation, we can test for evidence of causality
by testing whether it is transmitted to less than half of unaffected children.
Here I will consider what allele frequencies we expect in unaffected siblings

as a function of penetrance, and what power these unaffected siblings can



5.5. Follow-up of candidate causal variants 289

10000

Affected children

—— 0% missed diagnoses

-- 5% missed diagnoses

1000

100

Mutation frequency in children of het parents

Number of children of het parents required for 80% power

Unaffected children

0.0
1
1
L

T T T T T T r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Penetrance Penetrance of mutation

Figure 5.13: a) The frequency of a dominant mutation in affected and unaf-
fected children of an individual heterozygous for this mutation. b) The number of
unaffected children of parents heterozygous for the mutation required to validate
causality with p < 0.01 by a binomial hypothesis test, as a function of the pen-
etrance of the mutation. The solid line represents the case where all unaffected
individuals are correctly diagnosed, whereas the dashed line represents a scenario
in which 5% of unaffected siblings in fact are (or will become) affected. In both
cases [ assume K = 0.0075.

provide to validate causality.

We will assume that one parent caries the mutation, and there is therefore
an even chance that a child will inherit it, i.e. P(r =1) = P(r =0) = %

The overall disease prevalence in the children is thus

P(d=1) = P(d=1|r =0)P(r=0)+ P(d=0r = 0)P(r =1)

K
_ ;”. (5.58)

The proportion of unaffected children who are wild-type is thus
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Pr=old=0) = W= O]Ea(;:())l];(r =0 (5.59)
= L -~ . (5.60)
I—K)+(—m

We can calculate the same value for affected children

Pr=0d=1) = (5.61)

= . (5.62)

These two equations are plotted as a function of 7 (for a fixed K = 0.0075)
in Figure 5.13a. While the mutation frequency in affected children rises very
rapidly with the penetrance, the corresponding frequency in unaffecteds falls
much more slowly. Figure 5.13b shows the number of unaffected children of
heterozygous parents required to validate a candidate mutation at p < 0.05.
For high penetrance mutations (m > 0.7) validation can be performed in
a modest number of unaffected siblings (N < 30), though for intermediate
penetrance mutations (r > 0.4) larger number of unaffecteds are required
(N ~ 100).

This analysis assumes that all individuals who are currently believed to be
unaffected are truly unaffected. However, a proportion of these individuals
are likely to have the disease but not yet have been diagnosed, or will go on to
develop the disease later in life. This could seriously increase the frequency

of the mutation in unaffecteds.

To model this, we assume that a proportion a of the unaffected siblings

are in fact cases. We will denote the true affection status with d”, such that
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P(d" = 1|d = 0) = a. The proportion of individuals classified as unaffected
who are wild-type is given by

P(r=0/d=0) = P(r=0[d" =0)P(d" =0|d=0)

+P(r = 0[d” = 1)P(d” = 1|d = 0) (5.63)
1- K

a (1‘0‘)(1_K)+(1_7r)+a1(+7r‘

(5.64)

This diagnostic uncertainty can seriously reduce the power of validation
using unaffected siblings. The dashed line in Figure 5.13b shows how many
more siblings are needed to account for this diagnostic uncertainty. For
instance, to validate a mutation with a penetrance of m = 0.4 requires N =
115 siblings under perfect diagnostic conditions, but N = 190 when there is
a 5% underdiagnosis rate.

For the candidate variants in the family we are studying, the number
of unaffected offspring of carrier parents varies from 50 to 250, depending
on the number of subfamilies the mutation is segregating in. We thus will
have power to replicate mutations with a high penetrance (>60%) for most

mutations, down to about 30% for more widely shared mutations.

Replication in other multiplex families

Perhaps the gold standard for replicating a causal mutation found in a family
is to show that it segregates with disease status it in a second family. As
we saw in section 5.3.1, multiplex families are more likely to carry more
penetrant mutations, and thus screening a large enough number of multiplex
families is likely to turn up other instances of the mutation even if the allele

frequency in the population is low. For instance, a 0.1% variant with a
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penetrance of 50% will be present in 1.3% of cases, but will be present in
approximately 10% of patients with at least 2 affected first degree relatives
(calculated using the model described in section 5.3). Once such families
are identified, affected children of mutation carriers can be tested for an
over-inheritance of the mutation.

As we saw in Figure 5.13a, providing that penetrance is above around
20%, affected children of heterozygous parents should be carriers at least
95% of the time. If 8 such affected children can be collected from additional
families, and the mutation is causal, more often than not (>65% of the time)
all will carry the mutation. However, if the mutation is not causal, there
is only a 0.4% chance of all children carrying this mutation. Even for a
disease with a 10% penetrance, only 12 children are required to produce the
same effect. Thus, identifying less than a dozen affected children in families

carrying the mutation is often sufficient to demonstrate causality.
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5.6 Conclusions

Discovering high penetrance mutations in multiplex families is, unsurpris-
ingly, a more complex endeavour for complex diseases than for Mendelian
disease. We have seen how a large number of multiplex families can arise
as a result of polygenic risk alone, and great care must be taken to select
families that are likely to carry penetrant mutations. Even if an affected
family is detected, a combination of phenocopies, incomplete penetrance and
less obviously severe mutations can make correct identification of the causal
variants difficult.

Given this, it is not surprising that the above approach did not pro-
duce the single, clearly highly damaging mutation shared by all affecteds
that would be expected from a Mendelian disease family. Instead, a detailed
genotyping, sequencing and filtering experiment produced a series of over
a hundred plausible candidates. One of the most valuable resources in the
identification of these variants has been tools for inferring both coding and
non-coding function, including variant effect prediction, information on reg-
ulatory regions, and tissue specific gene expression data. This has allowed us
to drastically reduce the list of candidates on the basis of putative function.

A list of multiple candidate variants is likely to be the standard out-
put for family sequencing studies in complex disease. As has been the case
with common associations, the key to turning these candidate variants into
established associations will be independent replication. I have shown, for
certain variants there is potential for replication with unaffected siblings, and
within case-control cohorts. However, the most valuable form of replication
is likely to be the detection of evidence of co-segregation with affection status
in other multiplex families. This highlights the value of collecting samples

from many multiplex families, and of collaboration between different research
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groups studying multiplex families.

From these observations, I believe that we can identify the two most
important developments that will drive forward the study of multiplex fam-
ilies in coming years. The first will be the integration of increasingly de-
tailed functional datasets, and in particular datasets that can assess regula-
tory function. The second will be collaboration, and in particular reciprocal
replication, between research groups in order to establish causal variants in

multiple families.



Chapter 6

Conclusions

6.1 Connections and themes

The projects described in this thesis, while all focused towards locus discov-
ery, have been more or less distinct. I have investigated the historical and
statistical foundations of complex disease genetics in chapters 1 and 2, stud-
ied the utility of genotype imputation in Chapter 3, described the discovery
of new inflammatory bowel disease (IBD) risk loci via custom genotyping in
Chapter 4, and investigated genetic risk factors in a multiplex IBD family
in Chapter 5. Each chapter contained a unique dataset, and in each case |
investigated this dataset using the methods most relevant to that data type.

Despite this, certain topics have come up multiple times throughout the
chapters. For instance, the importance of the Crohn’s disease NOD2 locus

has come up in almost every chapter: as an important development in the his-
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tory of disease genetics in Chapter 1, one of the few common loss-of-function
risk variants in Chapter 3, as a pilot locus for fine-mapping in Chapter 4,
and as an important contribution of risk in the family discussed in Chapter

D.

However, beyond specific topics like this, certain wider themes have
emerged as relevant to all the individual projects, and possibly to the field

of complex disease genetics as a whole.

One of the major themes has been the economics of experimental design
in disease genetics. In this field we do not design the “ideal” experiment,
we design the experiment that has the highest power or utility given the
availability of datasets, technology, samples and statistical methods. Some-
times the driving considerations have been explicitly financial: the design of
the Immunochip was born from economic arguments about the relationships
between sample size, power, unit cost and bulk buying. Other experiments
have been driven by the exploitation of unique sample resources, such as the
relatively low-cost sequencing of very large multiplex families. Still others
have been about leveraging external datasets: genotype imputation using se-
quencing datasets is a prime example of statistical methods, combined with
external datasets, adding substantial value to existing studies. Success in
complex disease genetics is largely dependent on being able to recognise the

potential for such “high-value” studies as new resources become available.

A related theme is the appearance of “next-generation” datasets that
can add value to the genetic data used in locus discovery. The studies in
Chapters 3 and 5 would have been essentially impossible without the use of
genome-wide external datasets of population sequencing and genome func-
tion respectively. While the list of 163 loci in Chapter 4 would probably

have been obtainable without external datasets, the transformation of this
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locus list into biological hypotheses would have been essentially impossible.
In essence, these datasets allow a quantitative understanding of biological
function throughout the genome, and as they improve and become more in-
tegrated with the genetic datasets, our ability to discover and characterise

disease associations can only grow.

Another theme has been the role of theory in complex disease genetics.
The statistical techniques described in Chapter 2 have been used throughout
this thesis. The scale of data generated in modern complex disease genetics
means that these techniques are the only way to analyse this data, making
understanding the assumptions and models implied by these methods espe-
cially important. However, we have also seen the role of biological theory
in the analysis of this data. In Chapter 5, it was knowledge of biological
function (both genome function and gene expression) that allowed us to re-
duce the number of candidate causal mutations to a manageable number.
This union of statistical and biological theory was particularly important in
Chapter 4, where both bioinformatic interrogation and biological insight were
required to transform a long list of loci into a set of more concrete biological
hypotheses. I believe that this integration between biological and statistical
theory will be increasingly important as the field moves forward, as I will

discuss later in this chapter.

Finally, a continued theme throughout this thesis has been the historical
trajectory of locus discovery. In Chapter 1 I took an unashamedly teleological
view of the field, describing how experiments (if not discoveries) are often
predicted far in advance. While I do not believe that science in general is an
onwards march of progress, there have always been certain discoveries that
have been foreseen long before they came pass. Given sufficient time, the

source of the Nile will be discovered, the moon will be walked on, and the
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genetic differences that lead to disease susceptibility will be identified. The
question is not if but when.

In this spirit of teleology, I will spend the rest of this chapter considering
the future of locus discovery, looking ahead to the next crop of experiments
that are already underway, and those that will appear in the more distant
future. We will see the same themes I have discussed above appear again, in
many cases becoming more important as the scale of the data and the level

of data integration in human disease genetics increases.
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6.2 A next-generation GWAS using low-coverage

sequencing

As T have discussed in this thesis, we can attempt to map low-frequency
and rare disease alleles in a variety of ways. I have presented projects that
use imputation, custom genotyping within known loci and sequencing in
multiplex families to identify low-frequency risk variants. As discussed in
the introduction, other groups are also using exome sequencing, targeting
sequencing of candidate loci and custom genotyping of low-frequency coding
variation to the same end. All of these experiments look at a restricted
class of variants or samples. Sequencing in families can only identify variants
present in those families, and imputation can only identify variants that are
in the reference sets and can be inferred from common variation. Targeted
sequencing or genotyping is only as powerful as the selection of targets, and
any “surprising” variants (e.g. large effect size regulatory variation) will be

missed.

A more “hypothesis-free” way of discovering low-frequency risk variation
is to extend the genome-wide approach that has been so successful in GWAS
using next-generation sequencing. Complete (high-coverage) sequencing is
currently too expensive to produce the sample sizes required, but the impu-
tation framework described in Chapter 3 can be applied to incomplete (or
low-coverage) sequencing data to allow us to infer the genotypes of nearly
all variants in the genome at a fraction of the cost of complete sequencing.
This opens up the possibility of affordable whole-genome sequencing of case
and control cohorts with sample sizes large enough to detect low-frequency

associations.

In order to put this technique into practice, two research groups from the
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Wellcome Trust Sanger Institute, in collaboration with the UK IBD Genetics
Consortium (UKIBDGC), designed a large low-coverage sequencing project
of IBD cases. The project is funded by the Wellcome Trust and the MRC, and
will sequence 5000 cases (3000 CD and 2000 UC). This data will be combined
with the 4000 UK10K cohort controls to produce (to my knowledge) the

largest whole-genome sequencing case-control dataset ever produced.

The cases picked for sequencing underwent a detailed selection procedure
to maximise the likelihood of detecting associations. Samples were selected
for sequencing on the basis of family history (at least three affected family
members, or one affected first-degree relative), age of onset (diagnosed before
age 17) and severity of disease (more than three surgical interventions). Other
samples were prioritised on the basis of having attached functional data,
including gene expression and epigenetic assays, in order to allow functional

studies to be performed using the whole-genome sequencing data.

The aim of the dataset is to identify suggestive (p < 107°) associations to
replicate in a larger cohort. The experiment will have 77% and 55% power
to detect low-frequency (MAF of 1%) associations of intermediate effect size
(OR = 2) that are unique to CD or UC respectively. For shared associations
this power rises to 85%, with 26% power for risk alleles with a frequency
below 0.5%. There are more than 7000 additional UKIBDGC cases (2500
CD and 4500 UC) ready for use in replication, with others to come, which if
combined with a large number of controls will have high power to replicate

associations down to at least 0.5%.

While sequencing for the final dataset is not yet complete, we have run a
small pilot project to test and refine the methodology. This involved sequence
data from 4249 samples with a mean coverage of 3.7X, and focused on a

40Mb region of chromosome 16 that contained the NOD2 locus (a positive



6.2. A next-generation GWAS using low-coverage sequencing 301

100
I
8
1

60
I
x
x

~logio(p)

Dosage * with immunochip
40

20
I

. .
. T el
% hhE R o ‘. -‘ th
b R !
X Raw genotypes )
o A Refined genotypes =7
T T T T T T T T !
<1% 1%-2% 2%-3% 3%-4% 4%-5%  5%-10% >10% Se+07 Be+07 Te+07 Be+07

Population MAF Chromosome 16 position

Figure 6.1: a) The correlation between allele dosage as calculated from the se-
quencing data and from the Immunochip data, before and after imputation geno-
type improvement. b) Manhattan plot of variants with MAF between 1% and
5% for the last 40Mb of chromosome 16 after extensive QC. Association testing
was carried out using SNPTest on the imputation posteriors. The green dots are
variants in the NODZ2 region.

control for low-frequency association). Samples were genotyped, and SNPs
and indels called, using the pipeline described in Chapter 5. We then used
the imputation program Beagle (Browning and Browning, 2007) to refine the
genotype likelihoods, which substantially improved the accuracy of the calls
when measured by concordance with Immunochip data on the same samples
(Figure 6.1a). Overall, the refined genotypes had an r? of approximately 87%
with the true genotypes at sites with a minor allele frequency of between 1%
and 2%. Substantial further QC on both SNPs and samples was required to
produce a clean enough dataset to allow association testing. After filtering,
association tests at low-frequency variants (MAF of between 1% and 5%)
yielded a clean Manhattan plot with the NOD2 region showing clear evidence
of association (Figure 6.1b). This demonstrates that the approach is sound,
that specific low-frequency variants can be detected and that with enough

filtering false positives rates can be controlled
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The analysis of the full dataset will involve numerous methodological chal-
lenges, in addition to the significant computation burden. The probabilistic
genotypes need to be well-calibrated to allow association testing, and false
positive associations generated by countless new error modes will need to be
identified. Standard tests, such as burden tests, will need to be redeveloped
to deal with the uncertainty in the data. However, if these problems can
be overcome, this experiment will allow the first well-powered whole-genome

survey of low-frequency IBD risk variation to date.
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6.3 Towards the ideal locus discovery experiment

I said in Chapter 1 that human disease genetics is a field where future exper-
iments are anticipated relatively far in advance. The genome-wide linkage
studies of the late 1990s and early 2000s were anticipated since at least the
development of RFLP linkage in the 1970s. Likewise, the power of GWAS
was foreseen since at least the 1990s. In both cases the conceptual framework
was present, waiting for the technology and the sample collections to make
them a reality. In the same way, we can now anticipate what the next (and
possibly final) locus discovery experiment may look like in the future.

Much as the original set of GWAS experiments were followed by meta-
analyses and international replication experiments, it seems reasonable that
in the next few years the various international disease genetics consortia will
combine their sequencing data into meta-analyses. These are likely to be very
heterogeneous analyses, combining information from targeted, exome and
whole-genome sequencing across a range of technologies. Doubtless this will
then be followed by replication in tens of thousands of samples. The power
of these projects will depend on the coverage of their component studies, but
it is likely that a large number of low-frequency and rare associations will be
identified at this point.

Beyond this, we start to move towards what disease geneticists refer to
as the “right” or “ideal” locus discovery experiment. The cost of sequencing
has fallen dramatically in recent years, and the speed and ease of sample
preparation seems set to rise dramatically. We are on the verge of the $1000
genome, and it seems likely that the next decade will bring the cost of whole-
genome sequencing down to $100 a sample or below. Within 20 years it is
likely that a WGS experiment including hundreds of thousands of samples

would have a price tag measured in the low millions of pounds, and be as
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technically feasible as GWAS.

Even in the absence of a concerted effort from researchers, it seems likely
that such datasets will become available eventually. Cheap and readily avail-
able genome sequencing is already being used in clinical genetics practice to
diagnose genetic disease (Worthey et al., 2011b; Rios et al., 2010), to guide
cancer treatment (Link et al., 2011), and as a cost-effective form of carrier
testing (Bell et al., 2011). It is likely that a relatively large proportion of pa-
tients will undergo routine whole-genome sequencing in the not-too-distance
future, and many of these patients will consent to their data being used for
research. The cost of the “ideal” WGS experiment may well end up being
covered by the budgets of public healthcare services and private insurance

companies.

Let us imagine that, sooner or later, researchers will have access to high-
quality genome sequencing from 100,000 IBD cases (around a third of the
patients in the UK), including sporadic and familial cases, as well as sequence
data from their parents and an arbitrarily large number of other healthy

controls. What could this ideal dataset tell us about the genetics of IBD?

Firstly, as discussed in Chapter 4, this dataset would have a very high
power to fine-map associations with odds ratios larger than 1.1. If any IBD
loci exist that have not yet been fine-mapped by other projects, a dataset of
this size and completeness would allow the vast majority to have the causal

variant determined.

Secondly, this dataset would allow us to characterise a large proportion
of the common, low-effect size variants that contribute to polygenic risk,
detecting most common risk variants with odds ratios > 1.03. Distinguishing
these variants from the effects of very subtle population stratification may be

difficult, but sequence data is also available on the parents this can be easily
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overcome. These polygenic risk loci are likely to cover a significant proportion
of the genome, and be extremely difficult to fine-map, making them hard to
interpret. However, they could be combined with other external datasets to
perform detailed network and pathway analyses, in the same manner as the

Immunochip loci were used in Chapter 4.

Thirdly, almost all low-frequency risk variants (MAF > 1%) with an odds
ratio of greater than 1.15, and all the rare (MAF > 0.01%) mutations with
odds ratios greater than 3, could be identified via this dataset. Aggregation
tests for rare variants (Neale et al., 2011) would also allow us to identify genes
or other functional units that carry extremely low-frequency risk mutations.
This high power and completeness of data would allow us to ask questions
about the biological properties that lead to some genes, parts of genes or
classes of variation to carry risk variants, while others do not (using the
techniques described for loss-of-function variants in Chapter 3 and NOD2

coding variants in Chapter 4).

Fourthly, the family data would allow us to identify high penetrance fa-
milial mutations in IBD. The sequencing of parents would allow us to detect
the contribution of de novo point, indel and structural mutations to IBD (in
a similar fashion to recent studies of autism (Neale et al., 2012)). It would
also let us identify extremely rare near-Mendelian mutations that are shared

only by a handful of families, using the techniques described in Chapter 5.

Finally, this dataset would allow the full power of genetic risk prediction
to be utilised, via standard risk prediction using established variants, and via
identity-by-state and identity-by-descent methods. Assuming 50% of liability
variance is captured by the risk score, we would be able to define a “high-
risk” group who are more likely to than not to develop the disease (which

would catch 3% of cases), and a “medium-risk” group that have a 1 in 6
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chance of developing the disease (catching another 28% of cases). Even in
these extreme cases genetic risk prediction would not give any guarantees,
and some 10% of cases will still have a lower genetic risk than the population
mean. However, the information provided may still be a significant aid to
diagnosis and prevention, particularly in combination with non-genetic risk
prediction.

While we are dreaming up ideal datasets, we can also imagine what other
functional information that may come attached to our ideal genetic dataset.
Today many IBD patients undergo measurement of certain cytokine and
antibody concentrations, and the battery of tests is always increasing. It
has recently been shown that gene expression data from CD8+ T-cells can
be used to predict disease prognosis in IBD (Lee et al., 2011), and it stands
to reason that such assays will become standard procedure in the future.
Sequencing assays of epigenetic data, such as of methylation, transcription
factor binding or open chromatin, are also rapidly becoming important in
research, and may eventually become clinical tools. It seems likely that our
ideal dataset will be accompanied by at least some data on gene expression,
epigenetic marks and other relevant biological quantities. Combining the
WGS data with this functional data will both allow us to reconstruct how

the genetic risk factors act biologically.
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6.4 Beyond locus discovery

This thesis has largely been focused on methods for discovering disease-
associated loci. In this chapter I have discussed even more ways that we
can discover risk loci, both in the near and more distance future. However,
as I discussed in Chapter 1, risk loci in and of themselves are not inher-
ently valuable to science or society. Despite all the debate about missing
heritability, very few scientists have a deep and abiding desire to increase
the “heritability explained” counter up to 100%. It is only when these loci
can improve our understanding of disease biology, or directly impact patient
care, that they really start earning the investment put into finding them.
It is in the follow-up of these disease-associated loci that the real biological
discovery starts to take shape.

In Chapter 2 I described the field of complex disease genetics as inherently
statistical, and I stand by that statement. However, after disease loci have
been identified, the task of following them up has historically been passed
on to our less statistically, and more experimentally minded colleagues. For
instance, the discovery of the NOD2 loci via linkage was followed up by a
decade of experimental work, establishing and investigating the biological
links between NODZ2, IBD and immunity (Shaw et al., 2011).

However, this is not a sustainable approach. The GWAS era ended the
days when disease loci could be counted on one hand (and numbered in a
universally recognised fashion: “IBD5”, “IDDM2”, “BRCA1”). Now risk
loci are numbered in the hundreds, encompassing thousands of genes. Un-
derstanding the function of these loci has moved from something that can be
established in the lab, and into the domain of statistical genetics described
in Chapter 2. This mirrors developments in other fields, such as the rise of

gene expression profiling and functional sequencing assays that have made
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functional biology into a high-throughput science (The ENCODE Project
Consortium, 2012).

Many of the more striking discoveries that I have described in this thesis
have come from the integration of genetic and functional data. As I hinted
at in the previous section, future genetic studies are likely to become in-
creasingly tied in with functional assays, allowing GWAS-style studies at all
levels of disease biology. This will also be of benefit to purely experimen-
tal scientists following up these experiments, as the unit of follow-up will
change from a gene name to a more detailed biological mechanism, pathway
or hypothesis.

The next great challenge of statistical genetics in the coming decade will
be to take the techniques and philosophy that have driven locus discovery,
and turn them to the task of understanding the biological mechanisms of
disease risk. This will require new models and new methodology, but perhaps
more importantly it will require statistical geneticists to engage with disease
biology, and experimental biologists to engage with statistical models. As
I have seen throughout my thesis, complex disease genetics is an inherently

statistical field, but it is also an inherently biological one.
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