
 

 2. Methods 
2.1 Samples 
The following protocol and design were carried out by Dafni Glinos, a PhD student in               

the lab and Dr. Natalia Kunowska, a Senior Research Assistant in the lab. 

 

1. Setup: The ChIPmentation-seq (ChM-seq) protocol (Schmidl et al. 2015) was          

performed on 100,000 sonicated Treg cells. After sorting and isolating Treg           

cells, those same cells were resuspended in full medium (IMDM, 10%FCS) at            

1-2 million cells per ml.  

2. ChIP-seq protocol:  

a. ChIP-seq libraries were generated using Illumina TruSeq index tags,         

while ChM-seq libraries were generated using the Nextera dual index          

tags.  

b. They cross linked cells by resuspending in a 1% formaldehyde          

solution. 

c. Following a 5 minute incubation at 37 the cells were quenched with            

glycine for 5 minutes to achieve a 125 mM concentration. 

d. They lysed and sonicated cells using the iDeal ChIP-seq kit for           

histones (Diagenode) as instructed by the manufacturer. 

e. They performed immunoprecipitation (IP) using the same kit. For this          

step, they used ChIP-seq grade antibodies against the histone marks          

H3K27ac (Diagenode), H3K27me3 (Abcam), H3K4me1 (Active Motif)       

and H3K4me3 (Active Motif). 

 

f. They prepared sequencing libraries as instructed by the iDeal         

ChIP-seq protocol. When doing ChIPmentation-seq, the two previous        

steps were combined by adding the Nextera Tn5 transposase after the           

IP step. 
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3. Sequencing: Samples were loaded for sequencing on a HiSeq 2500          

instrument and V4 chemistry using standard 75 bp paired-end reads. In total            

there were 14 ChIPmentation-seq libraries that averaged 62 million reads per           

sample. 

4. Data pre-processing: After data acquisition, the Sequencing Facility at the          

Wellcome Sanger Institute demultiplexed the sequencing data and mapped it          

to the human genome. Sequencing files were released in CRAM format. 

 

2.2 ChIP-seq data processing 
I re-mapped the reads from build 37 (GRch37) to the human reference genome build              

38 (GRCh38) using bwa mem algorithm (Li 2013), and converted the aligned reads             

into BED (Kent et al. 2002) format. Only uniquely mapped reads were kept and              

duplicates were removed using samtools version 1.3.1 (H. Li et al. 2009). 

 

The mapped reads were built into a signal track in bedgraph format using MACS2              

(Zhang et al. 2008). The method uses input data i.e. control data, which is generated               

by treating samples the same way in the ChIP-seq protocol but without the addition              

of the antibody against the target epitope. The method then computes if the local              

average read coverage is statistically different compared to the control background.           

This data is referred to as observed data. This step is meant to render the output                

signal tracks to correct for any biases in the different samples.  

 

2.3 Imputation reference panel  
ChromImpute takes the information from the reads as input and converts it into             

smaller fragments, in the Convert step. Specifically, during the Convert step the            

software takes the signal track and averages the read coverage over 25 bp bins              

across the genome. 

 

The construction of the reference panel was performed in two steps. First I built the               

reference panel with the Roadmap (Bernstein et al. 2010) and ENCODE data            
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(ENCODE Project Consortium 2012; ENCODE Project Consortium 2004) as         

specified in the ChromImpute paper (Ernst & Kellis 2015). For that I used 129 cell               

types and 8 histone marks: DNase, H3K27ac, H3K27me3, H3K36me3, H3K4me1,          

H3K4me3, H3K9ac, H3K9me3. Second, I added the BLUEPRINT (Adams et al.           

2012) data to the reference. For that I selected cell types within the general T cell                

population: CD4+ Effector Memory, CD4+ Central Memory, CD4+ Regulatory T cell,           

CD3+ Thymocyte, CD3- Thymocyte, CD4+ Alpha Beta T cell. I used any given mark              

that was available, and the marks that I used were: H3K27ac, H3K27me3,            

H3K36me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3.  

 

The number of reads for each of the cell types varied greatly; most of the reads

came from CD4+ Alpha Beta T cells as these represented the vast majority of the               

total samples. I aimed to have between 100 to 160 million reads per mark per cell                

type as that was the general baseline required to prevent any bias towards a specific               

cell type/mark combination. If there were more than 160 million reads available, I             

would randomly subsample the different read files to reach the total of 160 million              

reads. For example, the CD4+ Alpha Beta T cells had 31 samples with over one               

billion reads. Thus the percentage of reads sampled was far less than for other cell               

types (Figure 2.1.A). Overall, I constructed the reads based on what was available;             

many cell types had a lower number of reads (Tregs, Effector Memory). If there were               

less than 160 million reads in the entire cell type, I used them all in the reference                 

(Figure 2.1.B).  
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A) Percentage of reads used 

 
 

B) Number of reads sampled 

 

Figure 2.1 Reads assembly broken down by cell type and histone mark The             

Blueprint reference panel reads were assembled using downloaded FASTQ (Cock et al.            

2010) files from: https://www.ebi.ac.uk/ega/user/login. The files were then converted into          
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BAM (H. Li et al. 2009) format and combined and added to the existing consortium. A)                

describes the percentage of reads used in the reference and B) illustrates the total number               

of reads sampled in each histone mark.  

 

2.4 Imputation 

There are four steps in the imputation pipeline. The first step is to compute the global                

distance between each of the observed data signal tracks and the reference signal             

tracks for the same histone mark, using a genome wide signal correlation between             

the imputed and observed tracks. For this, I used the ComputeGlobalDist method in             

ChromImpute. The obtained output was a list of samples ranked by the correlation             

with the observed sample signal track in the reference panel for the given histone              

mark. The second step, GenerateTrainData, generates training data by using the           

signal tracks from the same sample with different marks. This step is meant to              

capture any specific sample information and requires that at least 2 histone marks             

are assayed for any given sample. The training data is then combined with the most               

similar samples, up to ten samples, based on the same histone mark. In the third               

step, the model is trained using regression trees, this corresponds to the Train             

command. Each of the different signal tracks are transformed into a regression tree             

that is used to compute imputed signal at a given position. Finally in the fourth step,                

the different trees are then applied, Apply, onto the observed signal track and using              

an ensemble approach, the information from each tree is combined and averaged.            

The final result is a signal track with imputed signal. There is no correction for read                

depth or any biases, and samples that may be deeply sequenced may impute in a               

different way than samples with low sequencing depth.  

 

2.5 Evaluating reference panel  
In order to understand the effectiveness of the reference panel, I performed a signal              

track recovery analysis to evaluate which marks performed best during imputation.           

The marks with the best recovery were H3K27ac, H3K4me3 and H3K4me1 as there             

is the most reference data for these marks. For that I use the Eval tool, provided by                 
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the ChomImpute. The output of this analysis are several metrics for each sample             

and histone mark combination, including: the fraction of the observed top x percent             

signal track in the imputed top x percent signal track and vice versa; the genome               

wide correlation between the observed and imputed signal tracks; the area under the             

ROC for predicting the top x imputed signal with the observed signal; and the area               

under the ROC for predicting the top x observed signal with the imputed signal. Here               

x represents a value that a user can specify for ChromImpute.  

 

2.6 Downstream computation of observed and imputed peaks 
In order to call peaks, and generate the initial signal track, I used the MACS2 (Zhang                

et al. 2008) software. To generate signal tracks I used the commands: macs2 callpeak              

-t <index_file> -f BEDPE -n <temp_peaks_file> -g hs --nomodel -B --SPMR along with             

macs2 bdgcmp -t <bdg_reads> -c <bdg_input> -o <bedgraph_output> -m ppois -S           

<s_value>. In order to call narrow peaks I used this command: macs2 bdgpeakcall -i              

<bedgraph_input> -c <cutoff> -l <min_length> -g <max_gap> --outdir <output_dir> -o          

<output_peak_file>. To call broad peaks use the same command but swap bdgpeakcall with             

bdgbroadcall.  

 

I used BEDTools (Quinlan & Hall 2010) to analyze the generated peaks. To compare              

which peaks were shared as well as unique to the imputed and observed datasets I               

used the intersect, command. An example command to find 20 percent overlap in             

two sets of peaks is: bedtools intersect -a Observed.bed -b Imputed.bed -f 0.2 -r -wo >                

20percentInBoth.bed. To convert BAM files to BED format I used the following            

command: bedtools bamtobed -bedpe -i <bam_file> > <bed_file>. 

 

I used ChIPSeeker (Yu et al. 2015) to provide gene annotations and follow up with               

functional analysis on the different peak files. I also used the UCSC known genes              

version 3.4.0 to annotate genes (Hsu et al. 2006). Exentensive documentation can            

be found here:   

https://bioconductor.org/packages/release/bioc/vignettes/ChIPseeker/inst/doc/ChIPs

eeker.html. 
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I used several Python libraries for analysis: Pybedtools (Dale et al. 2011) as an API               

for BEDTools, Pandas (Mc Kinney n.d.) for data table manipulation, matplotlib           

(Hunter 2007) and seaborn (Waskom et al. 2014) for plotting and graphs, PyPlink to              

handle PLINK (Purcell et al. 2007) files with respect to genotype data, Pathos             

(McKerns et al. 2012) for multiprocessing and code optimization, NumPy (Oliphant           

2006) and SciPy (Millman & Aivazis 2011; Oliphant 2007) for statistics and general             

mathematics. I used iPython (Perez & Granger 2007) and Jupyter Notebooks           

(Kluyver et al. 2016) for quick code prototyping as well. I used Pandas to handle all                

of my data, which allowed for ease to use relational database concepts with tables              

loaded in RAM (Random Access Memory). I used SKlearn (Pedregosa et al. 2011)             

to perform a Linear Regression as well as normalization within the generated            

Pandas dataframes. 

 

I used the UCSC Genome Browser (Kent et al. 2002) to manually verify peak overlap               

and compare and contrast observed and imputed peak information. 

 

The code for the ChromImpute pipeline along with every Python script I developed 

for analysis is available at: 

https://gitlab.internal.sanger.ac.uk/TrynkaLab/ChromImpute. 
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