
 

 3. Results 
3.1 Overview 
In this study I focused on understanding how imputation can augment different            

experimental ChIP-Seq assays. In this chapter, I will explore the results of the global              

structure of chromatin when ChromImpute is applied to Treg data, over various            

histone marks. I will then examine the impact of ChromImpute on the technical             

variability of the ChIP-Seq assay. Additionally, I examine the best MACS2 peak            

parameters to use when working with imputation data. Finally, I describe the effects             

of imputation on genotypic variance when analyzing a selection of peaks with eQTL             

effects.  

 

3.2 Imputation preserves ChIP-seq data structure globally 
To determine whether ChromImpute preserves the global structure of chromatin data           

in addition to reducing noise, I examined ChIP-seq data from 3 samples of regulatory              

T cells generated by the Trynka lab. The histone mark assayed was H3K27ac. I              

used the H3K27ac mark as the basis for our evaluation as this mark was the most                

complete and had the best recovery for Tregs in the BLUEPRINT and the Trynka              

Lab samples (Figure 3.1). Peaks called with a p-value lower than 10-5 were analyzed              

using ChIPseeker. I use the term “observed” when referring to the data before any              

imputation had been performed on it.   
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A) Recovery of base pair bins in Blueprint samples 

 
B) Recovery of base pair bins in Trynka Lab samples 

 

Figure 3.1 Imputation accuracy This metric evaluates the top one percent of signal bins              

in the imputed data that is also in the observed data. The Blueprint samples, A) showed the                 

highest recovery in H3K27ac and H3K4me3 marks reads used in the reference. Similarly,             

the Trynka lab samples B) showed the most recovery in H3K27ac, H3K4me3 and H3K4me1              
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marks. Recovery is defined as how much of the top observed signal track is preserved in the                 

imputed signal track. 

 

I found that more peaks overlap with transcription start sites (TSS) in imputed             

compared to observed data (Figure 3.2). Observed samples showed significant          

variability in read count frequency. For example, D170 had the highest read count             

frequency and the lowest sequencing depth. However, upon imputation all samples           

showed a similar distribution around the TSS.  

 

Next, I investigated the location of imputed and observed peaks. I performed this             

analysis on sample D176, which had the highest sequencing depth. I observed an             

increase in peaks located in proximal promoters (within 1kb of the TSS) in imputed              

compared to observed data (Figure 3.3).  
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Figure 3.2 Peak overlap with TSS I overlapped peaks to the nearest TSS position within               

+/- 3kb window. The imputed peaks overlapped closer to the TSS. Results correspond to              

each respective sample (color code) for the H3K27ac mark. The top panel contains the              

imputed peaks, while the bottom contains the observed peaks. 
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Figure 3.3 Peak annotation relative to gene features. Peaks were annotated by            

distance to a TSS using UCSC HG 38 known genes (Hsu et al. 2006). When there were                 

multiple peak annotations, the annotation within closest distance to the TSS was chosen.             

This distribution was able to capture more promotor peaks in the imputed data, but in doing                

so neglected to capture as much enhancer data. This may clean up spurious peaks, but in                

the process re-align them with promoter regions. 
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A) Pathway enrichment for H3K27ac comparing imputed vs observed peaks
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B) A set of randomly associated peaks for H3K27ac 

 

Figure 3.4 KEGG Pathway Enrichment analysis Genes within 3kb to ChIP-seq peaks            

were annotated via pathway enrichment analysis using the Kyoto Encyclopedia of Genes            

and Genomes (KEGG) database. Circle areas represent the gene ratio, which is proportional             

to the number of genes that overlap a specific pathway. Colors represent the adjusted              

p-value of enrichment for the respective gene set. The KEGG pathway in A) highlights the               

Treg specific pathways found in contrast to B) a set of random peaks that were picked. This                 

was analyzed for the H3K27ac mark. The imputed pathways seemed to be more focused to               

the biology of the T cell. 
 

In order to understand if imputed peaks were relevant to the biology of Treg cells, I                

performed pathway enrichment analysis using KEGG (Figure 3.4). I observed          

noticeable additions in the imputed Treg peaks, including Th17 differentiation.          

Pathways that were dropped included Oocyte meiosis, Sphingolipid and HIF-1          

signaling pathway, and Phosphatidylinositol signaling system. However, the majority         

of pathways are preserved between the two datasets. I concluded that imputation            
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eliminated noisy peaks, while preserving the inherent characteristics of active          

chromatin in Tregs. The noisy peaks annotate to pathways that are not necessarily             

specific to T Cells and those false peaks are removed based on the distribution of               

the peaks on the specific gene annotations.  
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3.3 Imputation reduces technical variability in ChIP-seq data 
I was interested in understanding the effect of ChromImpute on the technical            

variability of ChIP-seq assays. Thus, I imputed ChIPmentation data from 11 Treg            

samples and two histone marks: H3K4me1 and H3K27ac. My assumption was that,            

since samples were from the same cell type and chromatin mark, they should be              

similar in signal track structure and contain a similar set of peaks. I observed that the                

observed and imputed data had on average 10,100 and 13,600 number of peaks,             

respectively. However, imputation markedly reduced the variability in number of          

peaks compared to observed data (Figure 3.5). I performed Bartlett’s test for equal             

variances which returned a statistically significant value to indicate that the variances            

between the number of peaks were indeed different. 

 

Figure 3.5 Comparison of variance in imputed and observed data.The total           

number of peaks per sample called across 11 ChIPmentation samples for the observed and              

imputed data. Bartlett’s test for equal variance revealed a p-value of 3.18 x 10-5. 
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I then asked if the imputed and observed data contained the same set of peaks, as                

well as how much signal intensity varied in observed and imputed peaks. I             

intersected the 11 imputed samples and the 11 observed samples using an overlap             

threshold of 20% between two features. This resulted in a common set of peaks,              

detected in both observed and imputed data. Since each peak had an associated             

signal intensity, I then calculated the variance in peak signal intensity across            

biological replicates in both data sets. I sorted each of the peaks by variance to               

visualize the differences between the two sets of peaks. To control for outliers I              

analyzed, 80% of the shared peaks (Figure 3.6). I observed that signal intensity             

varied 50% less in imputed than it did in observed peaks. 
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A)  

 

  

 
 
 
 
 

38 



 

B)  

 

 

 

Figure 3.6 Distribution of variance for imputed and observed peaks. I identified            

peaks that were shared between observed and imputed data by intersecting peaks from 11              

samples (minimum overlap of 20 percent). A) The distribution of peak variance for signal              

intensity for 80 percent of the peaks. B) I analyzed the variance of signal intensity to provide                 

mean, standard deviation and variance. * indicates a p-value < 0.05 and ** indicates a               

p-value < 0.005 using a two sample t-test to calculate the p-values.   
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A)  

B)
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C)  

  

Figure 3.7 Variance between imputed and observed signal track I decomposed           

observed and imputed signal intensity tracks into 100,000 base pair bins and calculated the              

variance in observed and imputed signal intensity across the 11 biological replicates.            

Variance was calculated using the same bin at the same genome position for the observed               

and imputed samples (y- and x-axis respectively) A). The zoomed in plot B) captures the               

variance difference between imputed and observed. Marginal density plots C) display           

regions of high density within the observed and imputed data for the zoom in.  

 

I wanted to understand what was driving the differences between observed and            

imputed signal tracks. In order to answer this question, I decomposed the observed             

and imputed signal track for each sample into 100,000 base pair bins. The imputed              

signal tracks varied far less than the observed tracks  (Figure 3.7).  
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A) Observed 

 
B) Observed without D177 
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C) Imputed 

 
Figure 3.8 Heatmaps of Unweighted Pair Group Method with Arithmetic Mean           

clustered imputed and observed data. To visualize the similarity between the           

observed and the imputed data I performed Unweighted Pair Group Method with Arithmetic             

Mean (UPGMA) clustering on signal intensity in 100,000-bp bins throughout the wholeɸ            

genome. A) All observed samples, including the low quality sample (D177, most left outlier              

sample); B) Observed samples excluding the low quality D177 sample; C) Imputed samples             

including the low quality D177 sample, which after imputation is no longer an outlier and               

clusters closely with the D109 sample. 
 

Finally, I asked if imputation preserved inter-individual variability. I organized          

observed and imputed signal tracks into heatmaps which included the 11 Treg            

samples previously analyzed (Figure 3.8). The tracks were ordered by hierarchical           

clustering of Euclidean distances. I found that signal intensity varied more in the             

observed samples than it did in the imputed samples (Figure 3.8.A). This            

inter-individual variation in observed samples was evident even after removing the           
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outliers (D177) (Figure 3.8.B). Moreover, the dendrogram of samples obtained using           

the observed signal intensities showed a completely different order to the           

dendrogram of imputed samples (Figure 3.8.C). Thus, I concluded that when           

ChromImpute is applied to a set of signal tracks from different individuals, the             

imputed tracks are much more alike and the inter-individual variation is lost.  

 

3.4 Imputation corrects for experimental biases and missing data 
Often times experimental errors can hinder different experimental assays, and often           

generate false results. I asked whether ChromImpute could help correct for these            

false results and prevent any type of introduced errors or missing data. When             

visualising the data, I noticed that two Treg ChIP-seq samples had lost any read             

pileup spanning the PTPRC gene (Figure 3.9.A). Furthermore, other ChIPmentation          

samples processed did show signal over this gene (Figure 3.9.B). When the data             

was imputed, ChromImpute was able to recover this signal (Figure 3.9.A). The file             

was corrupted and did not include the expected signal. Thus, ChromImpute is able to              

fill in missing information and ultimately build strong reference signal tracks for any             

further analysis downstream. 
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A) Recovery of signal via imputation

 
B) Expected signal without any errors  

 

Figure 3.9 Recovery of signal through imputation. Samples D170 and D176 are two             

individuals for which I observed a loss of intensity signal over a Treg critical CD45 gene,                

PTPRC for histone mark H3K27ac. The location of this gene is at chromosome             

1:198,639,040-198,757,283. A) Upon imputation the signal was recovered in both the           
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replicates. Moreover, when other Treg samples are processed, the signal is very evident B)              

indicating the error likely stemmed from a mishap in the assay. 

 

3.5 Imputation data should be assessed with a broad peak caller 
Peak calling provides a critical basis for evaluating regions of importance in various             

sequencing protocols. I wanted to evaluate how well the MACS2 peak caller            

performed on observed and imputed ChIPmentation data. In particular, I set out to             

evaluate the difference between narrow and broad peaks.  

 

When calling peaks, generally two types peaks can be obtained according to the             

cut-off stringency. Narrow peak calling identifies peaks at a higher significance           

threshold and hence has implications with signal tracks that do not meet certain             

thresholds. Imputation often times attempts to clean up any noisy signal within 25             

base pair bins and dampens the over signal intensity. This can affect the             

downstream peak calling analysis if the signal track has many peaks and troughs             

over a short distance. When visualising our signal tracks, I noted that narrow peak              

calling operates at such a high stringency level, that many peaks become            

fragmented into smaller regions. This is because the stringency criterion for several            

bins is not satisfied (Figure 3.10). 

 

 
Figure 3.10 Imputation disarranged narrow peaks The sample has been called with            

narrow peaks, which are the bands below the signal tracks. The imputed peaks have been               
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broken into many small pieces in comparison to the observed track, and was observed in all                

the different histone marks. The location is chromosome 2:105,744,897-105,894,274. 

 

 
Figure 3.11 Comparing imputed and observed peaks with a narrow peak caller            
Narrow peaks were called for both H3K4me3 histone marks for the same sample (D176).              

After calling, peaks were intersected if the overlap between the peaks was larger than 20               

percent. Each of the peaks for the mark would have observed peaks shattered into multiple               

smaller peaks after the imputation. 

 

Next, I asked if this phenomenon was observed genome wide. I overlapped imputed             

and observed peaks called with a narrow peak caller. The overlap was done by              

genomic coordinate. I found that larger observed peaks tended to get fragmented            

into smaller peaks after imputation, regardless of the histone mark (Figure 3.11).  
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Figure 3.12 Comparing imputed and observed peaks with a broad peak caller            
Broad peaks were called for both H3K27ac and histone marks for the same sample (D176).               

After calling the broad peaks, the imputed peaks would either increase in length or decrease               

in length. Namely, the shattering seems to disappear when using the broad peak caller. 

 

I then performed the same analysis using a broad peak caller, and intersected the              

observed and imputed peaks. Peaks obtained in this way seemed to gain length in              

the imputed data as well as have similar characteristics to the observed peaks             

(Figure 3.12). It is therefore recommended to use a broad peak caller when             

analyzing imputed data. 

 

3.6 Imputation disrupts genotypic variability 
I was interested to see if ChromImpute would preserve or disrupt genotypic            

variability in a ChIPmentation data set. I tested both histone QTLs and eQTLs that              

were initially selected based on their p-values which correspond to the probability of             
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their effects on gene expression (which are different from 0). I only test those SNPs               

within a window from the gene (+/- 500kb). Next, I found which eQTLs had a minor                

allele frequency of at least 30% in our 11 ChIPmentation samples before getting a              

list of 947 eQTLs. Thus, I picked significant eQTLs that had previously been found              

as strongly correlated to peaks in a given region. Following the collection of these              

eQTLs, I then calculated the average signal intensity for those eQTL and the             

corresponding peaks. The signal intensity was normalized using a Min-Max          

normalization (Appendix 2), which scaled the signal intensities between 0 and 1. This             

was done on both observed and imputed tracks for every sample. The values were              

then associated by genotype value where 0 indicates homozygous dominant, 1           

represents heterozygous and 2 represents homozygous recessive. I used linear          

regression to estimate the effect size (beta) for each eQTL and genotype. The effect              

sizes were plotted for imputed and observed signal intensities (Figure 3.13). I            

observed that effect sizes were less variable for the imputed compared to the             

observed data.  

 

A)  
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B)  
Figure 3.13 Comparison between observed and imputed beta values calculated          

for eQTLs Investigation of the genetic effects are maintained by the imputation. A selection              

of 947 peaks that showed strong histone QTL effects (p-value < 0.05) with common minor               

alleles (minor allele frequency > 0.3). The effects were estimated for Treg samples. Plots              

here compare the effect sizes of this selection of QTLs for a subset of 11 ChIPmentation                

samples for the observed and the imputed data. Plot A) represents the entire plot while plot                

B) represents the zoomed in plot. The low correlation between the betas indicates that upon               

imputation the genetic effects are significantly reduced. 

 

There were a few outlier points (Figure 3.13) where the signal intensity had varied              

between the observed and imputed beta’s. I picked any points with a beta value              

larger than 0.2 to visualize the difference in signal intensity between observed and             

imputed. The signal intensity between the observed and imputed genotypes were           

fairly random in nature. I observed that many times the imputed signal would either              

reverse the beta trend or generally lose any genotype specificity, whereas the            

observed data would have very clear trends and effect sizes (Figure 3.14). 
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Figure 3.14 eQTL distributions of beta values between observed and imputed           

signal intensity values Distribution of the signal intensity values from 11 individuals for             

selected examples of QTL effects after the imputation. In the first example the outlier is not                

very strong, however the latter examples signify where the beta values significantly differ             

from the observed. Each of the given violin plots represents the outlier beta from linear               

regression. Each x-value corresponds to the allele type, with the y-value representing the             

signal intensity. Imputation does not strengthen any type of genotypic correlation and in fact              

seems to bear no resemblance to the observed data. 

 

I therefore concluded that ChromImpute does not preserve the genotypic variability,           

as the genetic effects are often dampened or non-existent. 
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3.7 Imputation applied to understand Treg biology 
I was interested to see if imputation was able to recapitulate signal specific to Tregs.               

The challenge of capturing specific signal within a rare cell type is acutely felt, and I                

wanted to see if imputation amplified overlap for specific Treg genes, as well as any               

new genes. 

 

I used one of the 3 marks with the best recovery, H3K4me3, to analyze different               

signal tracks for imputed versus observed for two Treg samples (D117 and D176). I              

then compared the signal track intensity between the imputed and observed signals            

where they overlapped a specific Treg gene. I also included a more broad T Cell               

gene to understand how specific the imputation effects would go, to uncover any             

specific biological findings. 

 
A)
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B) 

 
C) 
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D)

 
Figure 3.15 Comparison between observed and imputed signal track for key           

TReg genes Investigation of the key Treg genes are maintained or boosted by the              

imputation. A selection of 2 different Treg samples for the histone mark H3K4me3. Plots              

here compare the signal track of for the two samples with observed and imputed. Plot A) and                 

plot B) evaluate FOXP3 and IL2RA, both highly specific genes to the Treg population,              

displayed a lot less noise, however lost relative signal with respect to the overlap for the                

gene. Plot C) evaluated another important Treg gene, CTLA4, but had dampened effects             

after imputation. The final plot D) was able to find strong signal in the imputed IKZF2 signal                 

track which codes for a specific transcription factor commonly found in T Cells, zinc finger               

protein Helios.  
 
I selected 3 key genes specific to Tregs: FOXP3, IL2RA and CTLA4. After plotting              

the difference peaks in the UCSC genome browser, I noticed that imputation was             

able to amplify the peaks that were surrounding the area (Figure 3.15A-C).            

However, any overlap with the Treg specific genes were reduced relatively in signal             

strength. The gene IKZF2, which is a more general T Cell gene, was amplified and               

the noise surrounding the gene was reduced (Figure 3.15D). I concluded that the             
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ChromImpute software is able to find signal intensity in broader cell populations but             

loses a sense of granularity when it comes to rare and specific populations. 

 
 

4. Discussion and Conclusions 
In this thesis, I evaluated ChromImpute applied to multiple datasets and showed the             

improvements made to histone mark ChIP-seq data as well as potential drawbacks. I             

provided several benchmarks of ChromImpute against various datasets, and applied          

ChromImpute to a standard genotypic evaluation. The results suggest that          

epigenetic imputation improves the quality of epigenetic sequencing information that          

may be lost from errors during any sequencing steps.  

 

I began by addressing the question of whether or not the global structure of ChM-seq               

data was preserved after imputation. I showed that this structure is generally            

maintained when compared to the imputed data as shown by a common set of              

pathways which are enriched in Treg ChM-seq peaks, and by a reduction of noise              

when mapping signal to TSS. I then showed that imputation successfully minimizes            

technical variability, as is evidenced by a reduction in peak variance between            

observed and imputed peaks. Imputation also corrected for missing signal track in            

the observed data; this was clearly the case for the CD45 locus (a gene known to be                 

expressed by all Tregs), which recovered its missing signal intensity after imputation.            

Finally, I found that imputed epigenetic data should generally be analyzed with a             

broad peak caller in order to provide the best results. This is because imputation              

provides a very fine-grained signal correction, which causes narrow peaks to be            

called at every peak and trough, instead of at a global maxima.  

 

One limitation that I explored in this thesis was ChromImpute’s ability to account for              

genotypic variability. ChromImpute generally dampened any differences in intensity         

observed between individuals. Additionally, when testing for genotype differences         

and comparing to acetylation QTLs, the directions of effects were fairly random, with             

some beta’s being reversed for no apparent reason. This could be explained by the              
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