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Abstract

The complexity of human cancer genomes complicates the identification of those
mutations that drive the tumourigenic process. Integrative analyses, particularly cross-
species comparisons, provide a means of distinguishing likely driver mutations from the
background of passenger mutations that arise in unstable cancer genomes. This thesis
describes the analysis of human and mouse experimental datasets to identify human

cancer gene candidates.

In mice, candidate cancer genes can be ‘tagged’ using insertional mutagens such as
retroviruses and transposons. The analysis of more than 1,000 mouse tumours generated
by insertional mutagenesis is described. Insertion sites are mapped to the mouse genome
and are used to identify candidate cancer genes. The distribution of insertions within and
around candidate genes is analysed to predict the likely mechanisms of mutagenesis and,
therefore, the possible structure and function of the mutated gene products. Candidates
are also characterised by comparison with other human and mouse cancer-associated
mutation datasets, and co-operating cancer genes are identified in an attempt to better

understand cancer gene pathways.

The mouse insertional mutagenesis results are then compared to genome-wide copy
number data for human cancers. The Wellcome Trust Sanger Institute has generated
comparative genomic hybridisation (CGH) data for ~700 human cancer cell lines using
the Affymetrix 10K SNP array and, more recently, for ~600 human cancer cell lines using
the high resolution Affymetrix SNP 6.0 array. Regions of copy number change in human
cancers often encompass many genes, and it can be difficult to determine which genes
contribute to the cancer phenotype. In this thesis, the human CGH data are processed into
regions of copy number change and the mouse candidate cancer genes identified by
retroviral insertional mutagenesis are used to narrow down the candidates in amplicons
and deletions. The over-representation of mouse candidate oncogenes in regions of copy
number gain suggests that a significant proportion of genes contributing to retrovirus-
induced tumourigenesis in the mouse are also amplified in, and contribute to the
development of, human cancers. Candidate oncogenes and tumour suppressor genes that
are recurrently mutated in both human tumours and murine lymphomas are identified as

strong candidates for a role in tumourigenesis.
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Chapter 1

Chapter 1 Introduction

1.1 Outline of introduction

This introduction presents the foundations of the work described in this thesis. Section
1.2 focuses on the importance of studying the genetic basis of cancer, beginning with an
overview of the burden of cancer. This is followed by a synopsis of the major
contributions to the current understanding of how cancer develops, and a description of
the main classes of genes and some of the genetic pathways known to be involved in
cancer development. The section concludes with a discussion of the contribution of
cancer genetics to the development of drugs for cancer treatment. Section 1.3 discusses
the use of genome-wide approaches in the identification of cancer genes in humans. Prior
work on the analysis of mutations, gene expression and epigenetics in cancer genomes is
outlined, and research into the analysis of copy number changes is described in greater
detail. Methods to identify transcription factor binding sites, and therefore to elucidate
regulatory pathways, are also discussed. Section 1.4 describes the role of the mouse in
cancer research and focuses on the use of retroviral and transposon-mediated mutagenesis
in the genome-wide discovery of novel cancer genes and collaborations between genes
involved in cancer. A significant portion of the work presented in this thesis relates to the
comparison of human and mouse datasets for cancer gene identification, and previous
studies of this kind are discussed in Section 1.5. Finally, the aims and rationale of this

thesis are presented in Section 1.6.

1.2 An introduction to cancer
1.2.1 Definition and classification

Cancer is a class of diseases manifesting as uncontrolled cell division that leads to
invasion of surrounding tissues and spread to distant sites (metastasis). These malignant
properties of cancers differentiate them from benign tumours, in which abnormal cell
proliferation is usually confined locally. Most cancers are classified according to the
tissue of origin. There are over 100 distinct types, and 4 broad categories: carcinoma,

arising in epithelial cells; sarcoma, arising in connective or supportive tissue and soft
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tissue; leukaemia, arising in blood-forming tissues; and lymphoma, arising in cells of the

immune system. See Pelengaris and Khan (2006).

1.2.2 Epidemiology

Cancer is a leading cause of death worldwide, accounting for 13% of all deaths in 2005
(WHO, 2008). In developed countries, it is the second greatest cause of death after
cardiovascular disease, while in less developed countries, it is the third greatest after
infectious and cardiovascular diseases. In 2002, 24% of all deaths in the UK were caused
by cancer, compared with 12% in Asia and just 4% in Africa (CRUK, 2008; Ferlay et al.,
2004). Economic growth in Asia is expected to cause a rise in the proportion of deaths
from cancer, and yet, due to its population size, more than half of all deaths from cancer
already occur in Asia (Ferlay ef al., 2004). The global population is growing and ageing
and, as cancer is predominantly a disease of older people (CRUK, 2008), the number of
cancer deaths is expected to increase by 45% between 2007 and 2030 (WHO, 2008).

More than a quarter of a million new cases of cancer are diagnosed each year in the UK,
and the four most common cancers - breast, lung, colorectal and prostate - account for
half of these. In 2004, the most common cancers in men and women were breast and
prostate, respectively. However, in both sexes, lung cancer was the biggest killer,

accounting for 22% of all cancer deaths in 2005 (CRUK, 2008; Figure 1.1).

It is estimated that around 35% of all deaths from cancer are preventable, and 9 main
modifiable risk factors have been identified (Danaei et al., 2005). The leading risk factor
is smoking, which is thought to contribute to 21% of all preventable cancers. Others
include alcohol use, diet, and physical inactivity. Environmental risk factors account for
much of the striking geographical variation in the incidence of certain cancers, and
migration studies indicate that reducing exposure to these factors could eliminate a high
proportion of deaths from cancer. There is, for example, a heightened risk of developing
stomach cancer in Japan (Parkin ef al, 2005), where risk factors include infection by
Helicobacter Pylori (IARC, 1994) and a diet rich in salted foods (Tsugane, 2005).
However, within one generation of settling in Hawaii, the incidence of stomach cancer
among Japanese immigrants declines to levels comparable with the surrounding

population (Peto, 2001).
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Figure 1.1. Summary of cancer incidence in 2004 and deaths from cancer in 2005
for the most common sites of cancer in males and females in the UK Cancer
incidence and mortality among males are shown in Figures A and B, respectively. Cancer
incidence and mortality among females are shown in Figures C and D, respectively. The
statistics for this figure were obtained from the Cancer Research UK CancerStats resource

(CRUK, 2008).
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While prevention could significantly reduce the burden of cancer, improvements in early
diagnosis and treatment are also essential. Screening procedures that have reduced cancer
mortality rates include the identification and removal of polyps in the colon (Weir ef al.,
2003) and pre-cancerous cells in the uterus (Misra et al, 1998), and widespread
mammography screening for breast cancer (Shapiro, 1997). However, effective screening
has been developed for only a handful of cancers, and advances in cancer treatment have
been slower than for other chronic diseases, such as cardiovascular disease (Danaei et al.,
2005). A greater understanding of the genetic basis of cancers is essential for the

development of effective treatments and diagnostic techniques.

1.2.3 The multi-stage theory of carcinogenesis
1.2.3.1 The somatic mutation theory

The theory that cancer is caused by somatic mutation can be traced back to Boveri (1926,
1914), who, extending the views of Hansemann (1890) and through his own work on
aneuploidy in cancer cells, postulated that tumours originate from a single cell that has
acquired chromosomal abnormalities. 35 years later, the multistage theory of
carcinogenesis was borne, first postulated as two-stage carcinogenesis, in which an
initiator and a promoter agent were proposed to be required for malignancy (Berenblum
and Shubik, 1949), and later in the Armitage-Doll model, which suggested that six or
seven independent, sequential, events were required (Armitage and Doll, 1954). Nowell
(1976) proposed a model of clonal evolution, in which tumours evolve from a single cell
through a series of stepwise genetic alterations within the original clone. He postulated
that as the tumour progresses, genetically variant sublines emerge and the most
favourable sublines, i.e. those with the greatest growth advantage, are selected (Figure

1.2).

An alternative theory for carcinogenesis, the tissue organisation field theory, proposes
that rather than a cell acquiring the ability to proliferate uncontrollably through mutation,
proliferation is in fact the default state of cells and cancer is caused by disruption to
interactions between cells and tissues (Soto and Sonnenschein, 2004). There is, however,

overwhelming support in favour of the somatic mutation theory for most cancer types.
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Figure 1.2. The clonal evolution of cancer. Tumours evolve from a single cell through
a series of stepwise genetic changes within the original clone. Cells containing mutations
that confer the greatest growth advantage are selected and become the dominant clone.
Adapted from a figure supplied by D.J. Adams.
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1.2.3.2 The cancer stem cell hypothesis

In the original model of clonal evolution, events in all tumour cells can participate in the
evolution of the tumour. However, the cancer stem cell hypothesis proposes that only
cells that are capable of self-renewal, i.e. stem cells, contribute to tumour evolution and
that these give rise to most of the cells with a more differentiated phenotype (for review,
see Shipitsin and Polyak, 2008). The theory has some inconsistencies, but it is clear that
putative cancer stem cells exist in most, if not all, cancer types, and xenotransplant assays
have shown that stem cell-like tumour cells have a significantly higher potential to form
tumours in irradiated NOD-SCID mice than do other cells from the same human tumour
(Shipitsin and Polyak, 2008). Compared with well-differentiated tumours, poorly
differentiated tumours overexpress genes that are normally enriched in embryonic stem
(ES) cells (Ben-Porath et al., 2008). These genes include the transcriptional targets of
NANOG, OCT4 and SOX2, which are key regulators of pluripotency and self-renewal in
ES cells (see Loh et al., 2006). Wong et al. (2008) constructed a “module map” of stem
cell genes, and showed that a subset of adult tissue stem cells shares a core gene
expression program with ES cells, and that the ES cell-like program is frequently
activated in human epithelial cancers. Other recent research has shown that the epithelial-
mesenchymal transition, which is often activated in tumour metastasis, is linked to the

acquisition of epithelial stem cell-like properties (Mani et al., 2008).

1.2.3.3 Rate-limiting events in tumourigenesis

While it is widely accepted that cancer is caused by stepwise mutations, there are
conflicting theories about how these mutations arise. The Armitage-Doll model suggests
that mutations arise gradually over time, and that the number of rate-limiting events
required for carcinogenesis can be inferred from the age-specific incidence of cancer and
the rate of successive mutations in cells (Armitage and Doll, 1954). Cancers will not fit
the model if the mutation rate is not constant, e.g. in smokers, where the mutation rate
increases at the onset of smoking, or if the incidence does not increase with age, e.g. in
childhood cancers (for review, see Knudson, 2001). However, the estimate of 5 to 7
mutations in colorectal cancer is compatible with the genetic model for colorectal
tumourigenesis, in which at least four or five genes were proposed to be required for

malignancy (Ashley, 1969; Fearon and Vogelstein, 1990).
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More recent research suggests that a single rate-limiting step may be required for
epithelial carcinogenesis, and that telomere crisis is one of the processes responsible for
this step (Frieboes and Brody, 2005). The telomere crisis hypothesis proposes that
mutations occur suddenly in cells with telomere dysfunction (Chin et al., 2004; Maser
and DePinho, 2002). In cells without active telomerase, telomeres erode and eventually
cease to function. At this point, cells show massive genomic instability, including end-to-
end fusions, non-reciprocal translocations, amplifications and deletions (Artandi et al.,
2000; O'Hagan ef al., 2002). This results in rapid cell senescence but some cells may
escape by reactivating telomerase, and further mutations accumulate, leading to tumour
progression (Maser and DePinho, 2002). Genomic instability is discussed in further

detail in Sections 1.2.5.1.3 and 1.3.

1.2.4 The hallmarks of cancer

Hanahan and Weinberg (2000) proposed that all genetic alterations in cancer can be
represented by six essential changes in cell physiology. These are “self-sufficiency in
growth signals, insensitivity to antigrowth signals, evading apoptosis, limitless replicative
potential, sustained angiogenesis, and tissue invasion and metastasis”. The authors
suggest that all tumours must acquire the same six capabilities, but that different genes
may be mutated, and in a different order, even within cancers of the same type. The
review by Hanahan and Weinberg is considered a seminal work, and the six “hallmarks of

cancer” appear to be shared by most, if not all, malignancies.

1.2.5 Cancer genes
1.2.5.1 Classification

The term “cancer gene” will be used throughout this thesis to describe a gene for which
mutations have been causally implicated in cancer. Cancer genes are often divided into 3

classes known as oncogenes, tumour suppressor genes and caretaker genes.

1.2.5.1.1 Oncogenes

In general, oncogenes play a role in accelerating cell growth and proliferation, but they

may also contribute to loss of differentiation, avoidance of apoptosis, cell motility and
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invasion (see Pelengaris and Khan, 2006). The normal counterparts of oncogenes, known
as proto-oncogenes, mainly encode growth factors, growth factor receptors, signal
transducers, transcription factors and regulators of cell death. Proto-oncogenes may
become oncogenes through increased protein activity resulting from intragenic mutations
that affect critical residues; increased protein concentration resulting from gene
amplification, misregulation of gene expression or an increase in protein stability; or
chromosomal translocations that increase inappropriate gene expression or produce a
constitutively active fusion protein (Vogelstein and Kinzler, 2004). Oncogenes are
dominant at the cellular level. One of the best known oncogenes is MYC, which appears
to be activated in most human cancers at some stage during their development (see

Pelengaris and Khan, 2006).

1.2.5.1.2 Tumour suppressor genes

In contrast to oncogenes, tumour suppressor genes act to limit the growth of tumours and
inactivating mutations in these genes can lead to tumour development. Tumour
suppressors inhibit cell proliferation by inducing growth arrest or apoptosis in response to
DNA damage or hyperproliferative signals induced by oncogenes (see Pelengaris and
Khan, 2006). They may be inactivated by missense mutations that alter sites required for
protein activity; nonsense mutations that result in an inactive truncated protein; intragenic
deletions and insertions; or epigenetic silencing (Vogelstein and Kinzler, 2004). Most
tumour suppressor genes follow Knudson’s “two-hit hypothesis”, which proposes that
both copies of the gene must be inactivated to confer a selective growth advantage on the
cell (Knudson, 1971). Knudson applied his hypothesis to the identification of the first
tumour suppressor gene, RBI. Compared with sporadic retinoblastoma, the hereditary
form of this rare eye cancer arises earlier and is more often bilateral because cells already
harbour one germline RB/ mutation and require only one additional somatic “hit”
(Knudson, 1971). Some tumour suppressor genes are haploinsufficient, i.e. the loss of
only one allele is required to confer a growth advantage. Haploinsufficiency of PTEN is
sufficient for prostate cancer development, but progression is faster when both copies are

inactivated (Trotman et al., 2003).

1.2.5.1.3 Caretaker genes

Caretakers maintain DNA integrity and their inactivation results in an increased tendency
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to acquire mutations in other genes, including oncogenes and tumour suppressor genes
(Vogelstein and Kinzler, 2004). Mutations in genes involved in repairing subtle mistakes
during replication can cause microsatellite instability, which manifests as alterations in
the length of short (1-4 bp) repetitive sequences called microsatellites (Loeb et al., 2003).
Cells with microsatellite instability are particularly prone to mutation in the TGFBR2
tumour suppressor gene, and this is a common mechanism of disease in hereditary
nonpolyposis colorectal cancer (HNPCC), in which patients have a germline mutation and
a second, somatic, mutation in a mismatch repair gene, most often MSH2 or MLH]
(reviewed in Knudson, 2001). Much more common than microsatellite instability is
chromosomal instability, which is caused by mutations in genes that are involved in large-
scale processes such as recombination and double-strand repair (Lengauer et al., 1998;
Loeb et al., 2003). Chromosomal instability is characterised by gross chromosomal
alterations, such as duplication or deletion of entire chromosomes (aneuploidy) or parts of
chromosomes, and chromosomal rearrangement. Microsatellite and chromosomal

instability are collectively known as genomic instability.

1.2.5.1.4 Genes with dual roles in cancer

The terms oncogene and tumour suppressor gene will be used to characterise genes
described in this thesis. However, it should be noted that these terms are somewhat
simplistic as the role of a protein may be dependent on the cellular context. Some
mitogenic proteins have an intrinsic tumour suppressor activity such that inappropriate
activation of the protein results in apoptosis of the mutated cell (Cobleigh et al., 1999).
Activation of Myc in the pancreatic f§ cells of transgenic mice induces f cell proliferation
but also induces apoptosis, which rapidly overwhelms the cell mass (Pelengaris et al.,
2002). Likewise, the NOTCHI receptor plays both oncogenic and tumour suppressive
roles that reflect the pleiotropic effects of NOTCHI1 signalling in different tissues (for
review, see Radtke and Raj, 2003). NOTCHI1 signalling is essential for maintaining
haematopoietic stem cells and for committing haematopoietic progenitors to the T-cell
lineage (Radtke et al., 1999). Aberrant NOTCHI expression contributes to over 50% of
cases of human T-cell acute lymphoblastic leukaemia (Weng et al., 2004). The
involvement of NOTCHI was established through the discovery of a translocation
between chromosomes 7 and 9 that brings the dominant active cytoplasmic domain under
the control of the TCRf locus (Ellisen et al., 1991), but point mutations and deletions are

also implicated (Weng et al., 2004). In mice, Notchl induces lymphomas by suppressing
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p53 (Beverly et al., 2005). However, Notchl also functions as a tumour suppressor in
mouse skin, where it participates in terminal differentiation by inducing Wafl and

repressing Shh and Wnt signalling (Radtke and Raj, 2003).

1.2.5.2 Cancer Gene Census

In 2004, a census of genes in which mutations have been causally implicated in human
cancer was compiled from the literature (Futreal et al., 2004). It lists genes that are
mutated by insertions, deletions or base substitutions in the coding region or splice sites,
or by chromosomal translocations or copy number changes. Stringent criteria were
applied to exclude genes in which reported mutations could be “passenger” mutations that

do not confer any growth advantage.

The census indicates that mutations in more than 1% of human genes are implicated in
cancer. Of the 291 genes listed in the original census, 90% have somatic mutations in
cancer, 20% have germline mutations, and 10% have both. Chromosomal translocations
are the most common class of somatic mutation in human cancer and almost all are
dominant at the cellular level. Excluding translocations, there are equal numbers of
recessive and dominant somatic mutations within the census list. The protein kinase
domain is the most common domain encoded by genes in the census. Domains in
proteins involved in transcriptional regulation and DNA maintenance and repair are also

over-represented. See Futreal ef al. (2004).

The Cancer Gene Census is frequently updated and the working list can be downloaded
from http://www.sanger.ac.uk/genetics/CGP/Census/. It represents a valuable source of

“known” cancer genes that will be utilised in this thesis.

1.2.6 Pathways in cancer

It is often more sensible to focus on the pathways that have been disrupted in cancer,
rather than on individual genes. The p53 and RB1 pathways are thought to be inactivated
in most, if not all, cancers. However, while 7P53, which encodes p53, and RB/ are often
mutated, the same effect can be achieved by mutating a different gene in the pathway (see

Vogelstein and Kinzler, 2004 and Figure 1.3).
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Figure 1.3. Mutations in different genes in the same pathway can have an equivalent
effect. The figure shows a simple representation of the p53 and RB1 genetic pathways.
The pathways are coupled through the /INK4A4/ARF locus, which encodes p16™K4A and
pl14ARFshown here in black boxes, and through p21¢™!, which is activated by p53 and
inhibits Cyclin E-CDK2 complexes in the RB1 pathway. Genes that are frequently
inactivated in cancer are shown in blue; genes that are frequently activated in cancer are
shown in pink. Adapted from Figure 1 in Lowe & Sherr (2003).
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p53 is a transcription factor that inhibits cell growth and induces apoptosis in response to
cellular stress, such as DNA damage or hyperproliferative signals induced by oncogenes
(for review, see Vogelstein et al., 2000). Many p53-responsive genes are involved in
arresting cell proliferation at the G1/S and G2/M cell cycle transitions so that cells with
DNA damage can be repaired before proceeding to DNA replication or mitosis
(Vogelstein et al., 2000). p53 is inhibited by the binding of HDM2 (known as Mdm?2 in
the mouse) to its N-terminal transactivation domain (Momand et al., 2000). HDM2 also
acts as an E3 ubiquitin ligase that targets itself and p53 for degradation by the ubiquitin-
dependent proteasome pathway (Momand et al., 2000). Overexpression of HDM?2 may
have an equivalent effect to underexpression of 7P53, and amplification of HDM?2 has
been observed in a variety of tumours, including breast, lung and gastric cancers (Gunther

et al., 2000; Marchetti et al., 1995a; Marchetti ef al., 1995b).

The RBI1 pathway regulates cell proliferation by repressing the transcription of genes
required for progression through the G1 phase of the cell cycle and for entry into S phase
(Figure 1.3 and for review, see Weinberg, 1990). In mid-G1 phase, mitogenic signals
from the RAS/MAP kinase pathway activate transcription of D-type cyclins, which bind
to the cyclin-dependent kinases CDK4 and CDK6 and initiate phosphorylation of RB1.
This results in the release of E2F transcription factors and their subunit partners, DP, from
complexes with RB1, and the E2Fs activate transcription of genes required for cell cycle
progression. Cyclin E-CDK2 complexes complete the phosphorylation of RB1. A
further level of regulation is provided by cyclin-dependent kinase inhibitory (CDKI)
proteins, which consist of the INK4 and CIP/KIP protein families. The INK4 proteins
(p16™K4A p15MNKIB 518™KC and p19™ 4Py inhibit CDKs, whereas the CIP/KIP proteins
(p27°™" and p21°™") stimulate assembly of the cyclin D-CDK4-6 complexes and inhibit
cyclin E-CDK2 (for review, see Sherr, 2001). Inactivating p16™%* p18™&% p21"" or
p275"" has a similar effect to inactivating RBI (Sherr, 2001; Vogelstein and Kinzler,
2004). pl16™* is inactivated by homozygous deletion, promoter methylation or, to a
lesser extent, point mutation, in a large number of tumours (for review, see Liggett and
Sidransky, 1998). Likewise, activation of CDK4 and cyclin DI has an equivalent effect
on the RB1 pathway, and these oncogenes are frequently amplified and overexpressed in

cancer (Vogelstein and Kinzler, 2004).

Cancer pathways are not standalone entities. As well as regulating the RB1 pathway,

]CIP[

p2 is one of the major transcriptional targets of p53 (Vogelstein et al., 2000). In

12
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addition, the p53 and RBI1 pathways are coupled through the INK4A4/ARF (or CDKN2A)
locus, which uses alternative reading frames to encode two tumour suppressors: p16™ <A,

4"RF (also known as p19**F or ARF), which activates p53 by

described above, and pl
sequestering HDM?2 (Quelle ez al., 1995; Sherr, 2001; Figure 1.3). The INK4A/ARF locus
is frequently mutated in human cancer but mutations in 7P53 and INK4A/ARF are often
mutually exclusive, e.g. in human glioblastoma (Fulci et al., 2000). This suggests that
inactivating both loci may not provide any additional growth advantage. However,
expression and genotypic analysis of Trp53, Arf and Mdm2 in Myc-induced murine
lymphomas showed that Mdm2 was overexpressed in a significant proportion of Arf-

deficient tumours, while loss of both Arf and Trp53 in primary pre-B cells results in a

greater growth advantage than the loss of one gene alone (Eischen et al., 1999).

1.2.7 Treatment of cancer

The main forms of cancer treatment, often used in combination, are surgery, radiotherapy
and chemotherapy. Some cancers respond well to these treatments, e.g. testicular cancer
has a high cure rate following chemotherapy, but others, such as lung cancer, show a
much lower response (CRUK, 2008). Radiotherapy and chemotherapy can have

considerable side effects as neither specifically targets cancer cells.

A greater understanding of the genetic basis of cancer has initiated the development of
more effective therapies that specifically target deregulated gene expression and
signalling pathways in cancer cells. Gleevec (imatinib) targets the BCR-ABL
oncoprotein, which causes 95% of cases of chronic myelogenous leukaemia (CML) and
~20% of cases of acute lymphoblastic leukaemia (ALL) (Deininger and Druker, 2003;
Faderl et al., 1999). Gleevec stabilises a catalytically inactive form of BCR-ABL (Nagar
et al., 2002). It also inhibits four other tyrosine kinases (KIT, PDGFRA, PDGFRB and
ARG) but shows minimal side effects (Buchdunger et al., 1996; Druker et al., 1996;
Okuda et al., 2001). Treatment has an 89% response rate in chronic CML after 5 years
(Druker et al., 2006), and an initial, but not durable, response rate of 52% in patients who
have progressed to blast crisis, the terminal phase of the disease (Sawyers et al., 2002).
Gleevec has also proved effective in the treatment of gastrointestinal stromal tumours
(GISTs) by targeting KIT (Joensuu ef al., 2001; van Oosterom et al., 2001) and PDGFRA
(Apperley et al., 2002). Other tyrosine kinase inhibitors include Herceptin (trastuzumab),
which targets the HER2/ERBB2 receptor in breast cancer (Cobleigh er al., 1999), and

13
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Iressa (gefitinib), which targets the epidermal growth factor receptor (EGFR) in lung

adenocarcinomas and non-small cell lung cancers (Fukuoka et al., 2003).

As with traditional therapies, there is evidence that cancer cells can develop resistance to
targeted therapies (Balak et al, 2006; Engelman et al., 2007; Gorre et al., 2001;
Kobayashi et al., 2005; Nagata et al., 2004; Shattuck et al., 2008), necessitating the
development of new drugs for targeted combination therapy (Baselga, 2006). However,
the results outlined above demonstrate that targeting a single, critical gene in a complex
tumour can elicit a dramatic response. Success of such a treatment depends on the
targeted kinase being required for growth and survival of the tumour throughout its
evolution (a notion known as “oncogene addiction” (Weinstein, 2002)). The mutation
status of other genes can also influence drug response. For example, breast tumours that
harbour an amplification of HER2/ERBB?2 are less responsive to trastuzumab if they also
harbour an oncogenic PIK3CA mutation or have low PTEN expression (Berns et al.,
2007). Likewise, lung cancers that contain KRAS mutations are resistant to treatment
with EGFR inhibitors because KRAS acts further downstream in the EGFR pathway (Pao
et al., 2005). Due to huge variation in the genetic basis of different cancers, each targeted
therapy will be effective against only a subset of cancers. This necessitates the
identification of many different drug targets, and fundamentally relies on the

identification and characterisation of mutated genes in cancer.

1.3 Genome-wide approaches for human cancer gene discovery

The elucidation of the human genome sequence and developments in high-throughput
techniques for genome-wide analysis have allowed for profiling of entire cancer genomes.
This section discusses the large-scale technologies that are available for detecting

alterations and, ultimately, for identifying cancer genes in human cancer genomes.

1.3.1 Gene resequencing

Advances in DNA sequencing technology have enabled the identification of recurrent
intragenic mutations across multiple cancer genomes. Davies and colleagues (2002)
screened the coding sequence and intron-exon junctions of BRAF for mutations in more
than 900 human cancer cell lines and primary tumours, and found somatic missense

mutations in 66% of malignant melanomas and in a smaller proportion of many other
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human cancers. 80% of BRAF-mutated melanomas were found to contain a V599E
substitution, which is thought to constitutively activate the kinase by mimicking
phosphorylation (Davies ef al., 2002). An inhibitor has recently been developed that
selectively targets the V599E gene product, and so selectively targets BRAF in tumour
cells (Tsai et al., 2008).

As the cost of sequencing has diminished, it has become possible to perform larger scale
screens to look for mutations in multiple genes across multiple tumours. The first
systematic mutational study of a complete gene family was performed by Bardelli and
coworkers (2003), who identified 7 candidate cancer genes in a screen of the tyrosine
kinase gene family in 182 colorectal cancers. A further study of mutations in the tyrosine
phosphatase gene family identified 6 putative tumour suppressor genes that were mutated
in 26% of the colorectal cancers analysed (Wang et al., 2004). Resequencing of the
phosphatidylinositol 3-kinase (PI3K) gene family revealed one member, PIK3CA, that is
frequently mutated in tumours of the colon, breast, brain and lung, with most mutations
clustering within the helical or catalytic domain (Samuels and Velculescu, 2004).
Mutations have since been identified in additional tumour types, such as hepatocellular
carcinomas (Bachman et al., 2004) and ovarian cancers (Campbell et al., 2004; Levine et
al., 2005). A screen of serine/threonine kinases showed that 40% of colorectal tumours
harbour a mutation in 1 of 8 PI3K-pathway genes (Parsons et al., 2005). The PI3K
pathway regulates a wide range of cellular functions that are important in cancer,
including growth, proliferation, survival, angiogenesis and migration (Brugge et al,

2007).

Studies at the Wellcome Trust Sanger Institute have centred around the resequencing of
coding regions from all 518 genes of the protein kinase family. A study of 25 breast
cancers revealed diverse patterns of mutation, with variation in the number of mutations
and in the identity of mutated genes, such that no commonly point-mutated kinase gene
was identified (Stephens ef al., 2005). A study of 33 lung cancers reached similar
conclusions (Davies et al., 2005). While both studies showed an over-representation of
nonsynonymous substitutions, as predicted for “driver” mutations that confer a selective
growth advantage on the cell, most of the mutations are likely to be “passenger”
mutations that do not contribute to tumourigenesis. Protein kinase resequencing at the
Sanger Institute has culminated in the identification of 921 base substitution somatic

mutations in 210 diverse human cancers (Greenman et al, 2007). Putative driver
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mutations were identified in 119 genes but 83% of mutations were predicted to be
passengers. Cancers showed variation in mutation prevalence, with many of the cancer
types with highest prevalence originating from high turnover, surface epithelia that are
most exposed to mutagens (Greenman et al, 2007). Cancers also showed different
“mutational signatures”, which often reflect differences in mutagenic exposure. For
example, most lung cancers have a high proportion of C:G > A:T transversions, which are

caused by exposure to tobacco carcinogens (Davies et al., 2005).

The first study to approach the scale of a genome-wide screen involved resequencing the
coding regions of all (~13,000) consensus coding sequence (CCDS) genes in 11 breast
and 11 colorectal cancers (Sjoblom ef al., 2006). Each cancer was found to harbour an
average of 93 mutated genes, of which at least 11 (189 candidates in total) were thought
to be driver mutations. Many of the functional groups and pathways enriched for
candidate cancer genes were unique to one or other cancer type, suggesting differences in
the tumourigenic process in breast and colorectal cancers (Lin ef al., 2007). There have
been claims that the statistical analysis performed in this screen was flawed, in part
because they used a different dataset to estimate background mutation rates, which can
vary between and within cancer genomes, and because the sample size was small (Getz et
al., 2007). However, the findings of this study are in agreement with those of Greenman
et al. (2007) in suggesting that the genomic landscape of human cancers is more complex
than previously thought (Kaiser, 2006). The study has since been expanded to include all
of the human RefSeq (Pruitt et al, 2007) genes and a larger number of breast and
colorectal cancers (Wood et al., 2007). Each tumour contained an average of 15 potential
driver mutations and most of these were in genes that were mutated in fewer than 5% of

tumours, therefore recapitulating the conclusions of the previous studies.

Although statistical methods can provide a prediction of the likely driver and passenger
mutations within a cancer, there is a strong rationale for using functional assays to test the
predictions. Frohling and coworkers (2007) resequenced the coding exons and splice
junctions of the receptor tyrosine kinase FLT3 in samples from patients with acute
myeloid leukaemia (AML). They found that out of 9 mutants with candidate driver

mutations, only 4 were able to transform cells in culture (for review, see Futreal, 2007).

The Wellcome Trust Sanger Institute Catalogue of Somatic Mutations in Cancer

(COSMIC) collates and displays somatic mutation information relating to human cancers
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(Forbes et al., 2006). At the time of writing (May 2008, COSMIC release 37), the
database contained mutation data for around 4,770 genes from ~260,000 tumours. Gene
resequencing is also a major component of the $50 million 3-year pilot phase of the
Cancer Genome Atlas (http://cancergenome.nih.gov/), a large-scale collaboration between

the National Cancer Institute (NCI) and the National Human Genome Research Institute

(NHGRI).

1.3.2 Gene expression profiling

Gene expression arrays can be used to analyse the transcription of thousands of genes
simultaneously. There are two main types: cDNA arrays, where clones corresponding to
the transcripts to be analysed are spotted onto a matrix, and oligonucleotide arrays, where
oligonucleotides corresponding to the transcripts are synthesised onto a matrix along with
mismatch control oligonucleotides. A new approach has also been developed, in which
the  abundance of transcripts is  measured directly using  Illumina
(http://www.illumina.com) sequencing technology. In two-colour microarray expression
analysis, the sample of interest and a control sample are differentially labelled with
fluorescent dyes and are hybridised onto the array, which is then scanned to determine the
ratio of fluorescence intensities for each gene. The ratio represents the relative amounts
of transcript in the sample. Unsupervised clustering of the expression data for multiple
samples can be used to subcategorise cancers. For example, lung cancers cluster into
known histological subtypes that are predictive of patient survival (Beer et al., 2002;
Bhattacharjee et al., 2001; Garber et al., 2001). Gene expression profiles may also
provide an indication of the genes involved in oncogenesis in a given tumour. Lung
cancers harbouring a mutation in KRAS have a characteristic expression profile that can
be used in their identification (Sweet-Cordero et al., 2005). Analysis of gene expression
does not provide any insights into the underlying genetic changes and it can be affected
by physiological variation, such as the degree of inflammatory response or hypoxia (Eden
et al., 2004). However, it is important as a complementary approach to other methods of
cancer profiling, such as mutational and copy number analysis. Integrative approaches
involving gene expression and copy number analysis are discussed in the following

section.
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1.3.3 Copy number analysis
1.3.3.1 DNA copy number changes

Changes in DNA copy number result from chromosomal aberrations such as deletions
and duplications, non-reciprocal translocations and gene amplifications. Copy number
variations (CNVs) have been identified in all humans studied (Feuk et al., 2006), and a
genome-wide study of 270 apparently healthy individuals from four diverse populations
identified almost 1,500 germline copy number variable regions encompassing 12% of the
human genome (Redon et al., 2006). CNVs accounted for ~18% of the total detected
variation in gene expression between individuals, suggesting that they make a
considerable contribution to phenotypic variation (Stranger ef al., 2007). In the context of
cancer, genomic instability results in the acquisition of somatic copy number aberrations
that may contribute to tumourigenesis through the amplification of oncogenes and/or loss
of tumour suppressor genes. Genomic instability is also referred to in Sections 1.2.3.3

and 1.2.5.1.3.

Chromosome instability, which manifests as alterations in chromosome number
(aneuploidy), seems to arise early in tumourigenesis but increases with tumour
progression (for review, see Lengauer et al., 1998). Fridlyand and coworkers (2006)
found that shorter or altered telomeres were associated with greater numbers of
amplifications but that the frequency of low-level changes was associated with altered
expression of genes involved in mitosis, cell cycle, DNA replication and repair, and
included many genes that are direct targets of E2F (Fridlyand ef al., 2006). This suggests
that the RB1 pathway (see Section 1.2.6) contributes to chromosome instability, as
hypothesised by Hernando et al. (2004) (Fridlyand et al., 2006). Advanced tumours tend
to reach a stable state, which, in the form of cancer cell lines, are stable over many
generations and in different laboratories, suggesting that they have evolved to an optimal

state (Albertson et al., 2003).

1.3.3.2 Using CGH to detect copy number changes

Large alterations in copy number were initially detected and quantified using metaphase
spreads in a technique known as comparative genomic hybridisation (CGH) (Kallioniemi
et al.,, 1992). In CGH, cancer and normal genomic DNA are differentially labelled with

fluorochromes and are co-hybridised to normal metaphase chromosomes. Cot-1 DNA is
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added to suppress hybridisation to repetitive elements in the genome. The ratio of
fluorescence intensities at any chromosomal position is approximately proportional to the
ratio of copy numbers of the cancer and normal DNA at that position (reviewed in Pinkel
et al., 1998). CGH profiles can be viewed and compared using the NCBI Cancer
Chromosomes database, which integrates three databases of chromosomal aberrations in
cancer: the SKY/M-FISH & CGH Database, the Mitelman Database of Chromosome
Aberrations in Cancer, and the Recurrent Chromosome Aberrations in Cancer database
(Knutsen et al., 2005). Rearrangement breakpoints are linked to the underlying genome
assembly. However, the tool is limited to cytogenetic resolution because CGH cannot
detect changes of less than 20 Mb or distinguish changes that are close together, and it

cannot determine exact genomic coordinates (Pinkel et al., 1998).

Array CGH is a higher resolution, high-throughput version of conventional CGH, in
which differentially labelled cancer and reference samples are hybridised to an array
made from large genomic clones, e.g. bacterial artificial chromosomes (BACs), or
cDNAs (for review, see Albertson and Pinkel, 2003; Pinkel et al., 1998; Pollack et al.,
1999). The copy number is measured at each probe on the array, and can be mapped
directly to the genome. A disadvantage of array CGH is that it cannot detect loss of
heterozygosity (LOH), which has traditionally been identified using methods involving
microsatellites and restriction fragment length polymorphisms (RFLPs) that are not

suitable for large scale analyses (see Thomas et al., 20006).

Single nucleotide polymorphism (SNP) arrays are the most recent development in copy
number analysis. SNPs account for most of the genetic variation in the human genome
(Stranger et al., 2007) and they occur, on average, every 100-300 base pairs along the
genome. The Affymetrix GeneChip Mapping Assay (http://www.affymetrix.com) is a
commonly used procedure that combines a whole-genome sampling assay (WGSA) with
high-density SNP arrays (Kennedy et al., 2003; Matsuzaki et al., 2004). WGSA is used
to reduce the complexity of the sample, and involves ligating an adapter to restriction-
digested DNA, which enables PCR amplification using a single primer that is
complementary to the adapter (Figure 1.4B). The amplified DNA is then fragmented,
labelled and hybridised to the array. SNPs within the amplified DNA are used as probes
on the array, therefore ensuring that all probes are informative (Bignell ef al., 2004). In
the Affymetrix GeneChip Mapping 10K assay, which uses an array containing 11,555
SNPs, WGSA involves a single restriction enzyme, Xbal (Kennedy et al., 2003).
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Figure 1.4. Array design (A) and whole-genome sampling assay (B) for the
Affymetrix SNP array. A. A SNP in the DNA sequence is shown in red/blue. The SNP
is represented in the array by a probe set, which comprises multiple probe quartets that
differ from one another in the position of the polymorphic site relative to the centre of the
probe. Each probe quartet consists of four 25mer oligonucleotides in the form of two
probe pairs, which comprise a perfect match (PM) probe and a mismatch (MM) probe
corresponding to each SNP allele (A and B). B. Genomic DNA is digested with a
restriction enzyme, shown here as Xbal, and a linker (shown in blue) is ligated to the
digested DNA. The DNA is PCR amplified using a primer that binds to the linker.
Amplified DNA is fragmented, labelled and hybridised to the array.
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Regions of the genome in which the Xbal site is rare will be under-represented in the
array (Bignell et al., 2004). The higher resolution 100K SNP array therefore use two
restriction enzymes, Xbal and Hindlll, which produce complementary SNP densities
(Matsuzaki et al., 2004). Each SNP in an Affymetrix array is represented by a “probe
set” comprising multiple “probe quartets”. Each probe quartet consists of four 25mer
oligonucleotides in the form of two “probe pairs” comprising a perfect match probe and a
mismatch probe corresponding to each SNP allele (Figure 1.4A). Probe quartets differ
from one another in offset, i.e. the position of the polymorphic site relative to the centre
of the oligonucleotide, and orientation (reviewed in Xiao et al, 2007). Normal and
tumour DNA are hybridised to different arrays, therefore avoiding the need for matched
samples and allowing for a pool of normal samples to be used as a control (Bignell et al.,
2004; Figure 1.4C). As in other forms of array CGH, the copy number at each probe can
be inferred from the intensity of fluorescence of hybridised sample DNA (Bignell et al.,
2004; Zhao et al., 2004).

Commercially available arrays now range in resolution from 10,000 to ~1 million SNPs
across the genome. SNP arrays therefore provide the potential for fine mapping of copy
number changes, enabling the identification of small aberrations and accurate mapping of
chromosomal breakpoints. Furthermore, the SNPs can be genotyped and compared to a
normal sample to identify regions of LOH. This permits the identification of complex
changes such as LOH without decrease in copy number and decrease in copy number
without LOH (Bignell et al., 2004; Raghavan et al., 2005; Zhao et al., 2004). Such
changes are common, as demonstrated in pancreatic and cervical cancer cell lines, where
the proportion of LOH associated with copy-reduction was found to be just 32%

(Calhoun et al., 2006) and 25% (Kloth et al., 2007), respectively.

CGH signal intensities must be normalised to account for technical bias while still
retaining biologically relevant changes. Normalisation of array CGH data has generally
involved the use of methods originally developed for normalising gene expression
microarray data (for review, see Quackenbush, 2002). Cross-slide and within-slide
normalisation are used to transform the data such that all arrays, and all the spots on each
array, are comparable. In median normalisation, all values are multiplied by a constant
factor so that all arrays have a median log, ratio of 0. Lowess, or Loess, normalisation
accounts for spot intensity biases and other dependencies such as the location of the spot

on the array and the use of different print tips. The data are linearised by subtracting a
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Lowess regression curve. A number of additional methods for dealing with spatial effects

in expression microarray data are reviewed in Neuvial et al. (2006).

In general, array CGH must be more stringent than gene expression analysis because it is
required to detect single copy changes and, while the copy number, unlike the expression
level, of a gene is expected to be identical in two samples, this is often not the case due to
tumour heterogeneity and the presence of contaminating stromal cells (Khojasteh et al.,
2005). Khojasteh and coworkers (2005) proposed a multi-step normalisation process
specifically for dealing with array CGH data. A “spatial segmentation” algorithm has
also been developed to account for array CGH-specific spatial effects designated “local
spatial biases”, where clusters of spots show a shift in signal, and “continuous spatial
gradient”, where there is a smooth gradient in signal across the array (Neuvial et al.,
2006). Staaf and coworkers (2007) showed that copy number imbalances correlate with
intensity in array CGH data and that normalisation of expression data erroneously
corrects for biologically relevant gains in copy number. They have therefore developed a
normalisation algorithm that prevents suppression of copy number ratios by stratifying
the data into separate populations representing discrete copy number levels (Staaf ef al.,
2007). Array CGH data are also affected by a genome-wide technical artefact termed
“spatial autocorrelation”, or “wave”, for which the peaks and troughs are aligned across
samples but the amplitude, and for some samples, the direction, varies (Marioni ef al.,
2007). Removal of the wave using a Lowess curve led to an increase in the number of
biologically relevant CNVs detected in array CGH data from normal individuals (Marioni

etal.,2007).

Affymetrix have developed a number of procedures for normalising SNP array CGH data.
As described above, each SNP on an Affymetrix array is represented by a probe set
comprising multiple probe pairs (Figure 1.4A). Fluorescence on the mismatch probes
represents non-specific hybridisation, and the data can be corrected by subtracting the
mismatch from the perfect match intensity for each probe pair. The corrected intensities
are then averaged across the probe set. The data can be globally normalised by
multiplying the average intensity of the experimental array, i.e. the array to which the
cancer sample is hybridised, by a normalisation factor to make it numerically equivalent
to the average intensity of the control array, to which a normal sample is hybridised.
Intensity ratios are calculated by dividing the average intensity for each SNP in the

experimental array by the equivalent value in the control array. Three software packages
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that are commonly used for processing copy number data on Affymetrix SNP arrays are
Copy Number Analyser for GeneChip arrays (CNAG, Nannya et al., 2005), DNA-Chip
Analyzer (dChip, Zhao et al, 2004) and Affymetrix GeneChip Chromosome Copy
Number Analysis Tool (CNAT, Huang et al., 2004). These are compared and reviewed
in Baross et al. (2007), who concluded that the detection of all real CNVs from a 100K

array necessitated the combined use of multiple procedures.

The next step, following normalisation, is to identify regions of copy number change
within the CGH data. Many different approaches have been developed for segmenting
the genome into regions of homogeneous copy number. These include change-point
analysis, where the genome is segmented at points where the copy number changes
significantly (Olshen et al., 2004; Venkatraman and Olshen, 2007), Hidden Markov
Models (HMMs) (Engler et al., 2006; Marioni et al., 2006; Nannya et al., 2005; Rueda
and Diaz-Uriarte, 2007; Shah et al., 2006; Stjernqvist et al., 2007), hierarchical clustering
along chromosomes (Wang et al., 2005) and smoothing methods (Hsu et al., 2005; Huang
et al., 2007). There are also a number of web-based applications, such as ADaCGH
(Diaz-Uriarte and Rueda, 2007) and CGHweb (Lai et al, 2008), for viewing and
comparing outputs from multiple algorithms. Further methods have been developed to
identify copy number changes specifically in SNP array CGH data, which has increased
noise at the probe level compared with BAC array CGH (Yu et al., 2007), and a number
of these infer allele-specific copy numbers (Huang et al., 2006a; LaFramboise et al.,
2005; Lamy et al., 2007; Nannya et al., 2005; Yu et al., 2007). Some of the methods for

detecting copy number changes are discussed in further detail in Section 4.6.

Finally, having identified regions of copy number change, the statistical power can be
increased by examining the region across many samples. Unlike for CNVs in normal
samples, cross-sample analysis of copy number changes in cancer is hampered by the
large size of many rearrangements, variation in the location of breakpoints between
samples, and sample heterogeneity that prevents accurate estimation of the copy number
(Marioni et al., 2007). A handful of methods have been developed to identify recurrent
regions of copy number change in tumours: CMAR (Rouveirol et al., 2006), STAC
(Diskin et al., 2006), H-HMM (Fiegler et al., 2007) and KC-SMART (Klijn et al., 2008).
The latter is the only algorithm that does not discretise the data into 3 states (loss, gain
and no change), which can lead to undetected copy number changes in heterogeneous

tumours (Klijn et al., 2008).
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1.3.3.3 Analysis of copy number changes in cancer genomes

CGH can detect aneuploidy, gene amplifications and deletions, and non-reciprocal
translocations in cancer genomes. Gene amplifications are gains in copy number of
restricted regions of DNA (Bignell et al., 2007) that contribute to tumourigenesis by
increasing the transcript levels, and therefore the protein levels, of oncogenes (Schwab,
1999). Gene amplification is the major mechanism of oncogenesis for a number of
cancer genes, including MYCN, which is amplified in ~30% of advanced neuroblastomas
(Seeger et al., 1985). Amplified genes represent a promising target for cancer therapy, as
demonstrated in breast cancers harbouring an amplified HER/ERBB2 receptor gene

(Cobleigh et al., 1999, see Section 1.2.7).

Deletions are an important mechanism for inactivating tumour suppressor genes,
including PTEN (Li et al., 1997) and CDKN2A (INK4A/ARF) (Orlow et al., 1995). A
genome-wide analysis of homozygous deletions in over 600 cancer cell lines showed that
deletions occur in regions with fewer genes and repeat elements but higher flexibility
compared with the rest of the genome (Cox et al., 2005). A significant proportion occur
in regions that are prone to chromosome breakage, and some of the genes in these “fragile
sites”, such as WWOX and FHIT, show similar mutational patterns to known tumour
suppressor genes, so it is not clear whether or not these genes are causally implicated in

cancer (Futreal et al., 2004).

Like gene expression analysis, copy number profiling can be used to subcategorise
cancers. It can distinguish three subtypes of glioblastoma (Maher et al., 2006), and
separates leiomyosarcomas into a distinct cluster from gastrointestinal stromal tumours,
which, until recently, were classified as the same tumour type (Meza-Zepeda et al., 20006).
It also provides predictive power in breast cancer prognosis, where a poor prognosis is
indicated by high-level amplification (Chin et al.,, 2006), extensive chromosome
instability (Fridlyand et al., 2006) and/or the presence of multiple, closely spaced
amplicons, or “firestorms”, on a single chromosome arm (Hicks et al., 2006). Copy
number profiles can also help to stage a tumour, such as in cervical cancer, where gain of
chromosome 3q is associated with the transition from severe dysplasia to invasive
carcinoma (Kersemaekers et al., 1998). Furthermore, studies in ovarian cancer have
revealed an association between drug response and the presence of copy number changes

associated with drug sensitivity or resistance (Bernardini et al., 2005; Kim et al., 2007a).
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The amplification of genes involved in drug metabolism or inactivation is commonly

observed in cultured cells as a means of acquiring drug resistance (Lengauer et al., 1998).

While many cancer genomes have been analysed for copy number changes, there has
been limited progress in determining the functional significance of altered regions. One
successful approach involves identifying recurrently altered regions that are specific to
particular tumour types. This enables the identification of “lineage addiction” cancer
genes, which may target essential lineage-specific survival functions and therefore
represent promising therapeutic targets (Garraway and Sellers, 2006). Two such genes
are the melanoma-specific oncogene MITF, which is selectively amplified and
overexpressed in 20% of melanomas (Garraway et al., 2005), and NKX2-1, which lies in
the minimal amplified region of a lung-cancer-specific amplicon on chromosome 14q13.3
found in up to 20% of lung cancers (Kendall et al., 2007; Weir et al., 2007). Genes TTF1
and NKX2-8 are usually co-amplified with NKX2-1 in the 14q13.3 amplicon and all three
genes have been shown to co-operate in lung tumourigenesis (Kendall et al., 2007). The
co-occurrence and mutual exclusivity of copy number alterations at different loci may
also reflect co-operating and complementary cancer genes, respectively. For example,
gains of ERBB2 and CCNE]! frequently co-occur in bladder cancer, while CCNDI and

E2F1, which function in the same pathway, are mutually exclusive (Veltman et al., 2003).

The identification of cancer genes in regions of copy number change can be challenging
because changes often span large regions of the genome that encompass many genes and
may include many attractive candidates. Gains of more than one copy may have involved
multiple evolutionary events and the critical gene may reside at the highest peak in copy
number, as demonstrated for oncogenes CYP24 and ZNF217 in breast cancer (Albertson
et al., 2000). Measurement of gene expression is also important for evaluating candidate
cancer genes. SPANXB was identified as the putative critical gene in an Xq duplication in
acute lymphoblastic leukaemias with an ETV6/RUNX] translocation since it was the only
gene with high and uniform overexpression across all samples (Lilljebjorn et al., 2007).
While gene expression and gene dosage are rarely perfectly correlated, many studies,
such as the comparison of array CGH and gene expression data in breast cancers, have
shown good correlation (Hyman er al., 2002; Pollack et al., 2002). However, genes that
are amplified are not necessarily overexpressed, as demonstrated by Kloth and colleagues
(2007), who did not observe a genome-wide correlation between copy number and gene

expression in cervical cancer cell lines. Gene expression is influenced by factors other
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than gene dosage, such as the availability of transcription and regulatory factors, DNA
methylation and chromatin conformation, and the presence of miRNAs (Kloth et al.,

2007).

The integration of copy number analysis with gene resequencing also facilitates cancer
gene identification. Mullighan and colleagues (2007) performed a genome-wide analysis
of genetic alterations in 242 paediatric acute lymphoblastic leukaemias (ALL) using
100K and 250K SNP arrays. They found mutations in genes that regulate late B
lymphocyte development in 40% of B-progenitor ALL cases. PAX5 mutations, which
included deletions, point mutations and translocations, were identified in 32% of cases
(Mullighan et al., 2007). ALL genomes are relatively stable, but genomes harbouring
different translocations show variability in the number of copy number changes, which
may reflect differences in the number of events required for tumourigenesis (Mullighan et
al., 2007; Wang and Armstrong, 2007). The integration of resequencing data, and
epigenetic data (see Section 1.3.4), can facilitate the identification of tumour suppressor
genes in regions of LOH, where the other allele may be inactivated by point mutation or

epigenetic changes.

The identification of human cancer genes is aided by the integration of complementary
genome-wide analyses of human cancers, but the integration of cancer-associated
mutation datasets from other species, particularly the mouse, provides an even more
powerful approach for cancer gene discovery. Cross-species comparisons are discussed

in Section 1.5.

1.3.3.4 Limitations of CGH and alternative strategies

Limitations of CGH-based approaches include difficulties in determining the ploidy of
the sample and identifying the location of rearranged sequences in the cancer genome.
However, the ploidy and location of larger rearrangements (> 10 Mb) can be discerned by
combining CGH with G-banding or Spectral Karyotyping (SKY) (Watson et al., 2007).
CGH may also struggle to detect low level changes and changes in heterogeneous
samples, e.g. primary cancers containing normal stromal cells, and it is affected by low-
copy reiterated sequences, including gene paralogues (for full review, see Pinkel and

Albertson, 2005).
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A further limitation of CGH is that while it can detect nonreciprocal, or unbalanced,
translocations, which result in the gain or loss of DNA and often cause the inactivation of
tumour suppressor genes (Mitelman et al., 2004), it cannot detect reciprocal, or balanced,
translocations. These result in fusion transcripts or transcriptional deregulation due to the
positioning of an intact gene next to promoter and/or enhancer elements of another gene.
It has recently been discovered that cytogenetically balanced translocations are frequently
associated with focal copy number alterations, suggesting that high-resolution array CGH
may in fact be capable of detecting a proportion of balanced translocations in cancer

(Watson et al., 2007). However, truly balanced translocations cannot be identified.

Balanced translocations are often initiating events in tumourigenesis that are essential for
tumour development, and they therefore represent promising therapeutic targets (see
Section 1.2.7). Until recently, it was thought that balanced translocations predominated
in haematopoietic tumours, but an assessment of data in the Mitelman Database of
Chromosome Aberrations in Cancer suggests that they also play an important role in
epithelial tumourigenesis (Mitelman et al., 2004). Furthermore, human solid tumours
appear to contain large numbers of gene fusions (Volik et al., 2006) and a quarter of the
breakpoints detected in 3 breast cancer cell lines were found to be balanced (Howarth et
al., 2008). The high-throughput identification of balanced translocations has been
hindered because translocation breakpoints cannot be amplified by PCR (Howarth et al.,
2008). Genome-wide techniques for identifying translocations include array painting, in
which chromosomes are sorted and DNA is amplified and hybridised to DNA
microarrays (Howarth et al, 2008), and informatics approaches, such as the algorithm
developed by Tomlins and coworkers (2005) that used RNA expression data to identify
candidate gene fusions in prostate cancers. The EML4-ALK fusion was identified in non-

small cell lung cancers by paired-end sequencing (Soda et al., 2007).

End-sequence profiling (ESP) can be used to precisely map all types of genomic
rearrangements, including balanced translocations (Volik et al., 2003). ESP involves
constructing a BAC library from the cancer genome and sequencing the ends of clones to
identify rearrangements, which map to locations in the reference genome that are of
abnormal distance or orientation (Volik et al., 2003; Figure 1.5). The method can also
identify fusion transcripts (tESP) and can be targeted to specific amplicons (Volik ef al.,
2006). Complete sequencing of the BACs enables detailed analysis of the structure of

genomic rearrangements and elucidation of the mechanisms of rearrangement.

27



Chapter 1

Tumour DNA
l Cloning
— I:|| —
[ ] [ ]

l Paired-end sequencing

1 N 1 N

[~ —
e — [~ — [~ —
l Mapping to reference genome

valid invalid

Figure 1.5. End sequence profiling of tumour DNA. 100-250 kb regions of the tumour
genome are cloned and a 500 bp region at the end of each clone is sequenced. The ends
are mapped to the human reference genome. Ends that are an abnormal distance apart or
in an abnormal orientation, shown here as “invalid”, are indicative of rearrangements
within the tumour genome. Redrawn with minor modifications from Figure 1 of Raphael
et al. (2008).
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ESP-based analysis of 4 cancer amplicons revealed evidence for sister chromatid break-
fusion-bridge cycles, the excision and reintegration of double minutes (extrachromosomal
DNA), and more complex architectures involving clusters of small genomic fragments
(Bignell et al, 2007). Break-fusion-bridge cycles are initiated by a double-strand
chromosomal break, which, following DNA synthesis, results in sister chromatids with
identical free DNA ends that fuse to one another to prevent apoptosis. An anaphase
bridge is formed during chromatid separation in mitosis, and this results in a new double-

strand break and reinitiation of the cycle (McClintock, 1941).

ESP analysis of 6 epithelial cancers, including primary tumours from brain, breast and
ovary, plus a metastatic prostate tumour and 2 breast cancer cell lines, revealed extensive
chromosomal rearrangements, some of which appeared to be recurrent (Raphael ef al.,
2008). Despite the benefits of this strategy, sequencing large numbers of clones across
many cancer genomes is costly and impractical. However, Bashir and colleagues (2008)
have derived a formula to maximise the probability of detecting fusion genes with the
least amount of sequencing. The formula depends on the distribution of gene lengths and
the parameters of the sequencing strategy used (Bashir ez al., 2008). A high-throughput
alternative to ESP, which involves massively parallel sequencing of the ends of randomly
sheared DNA, has recently been applied to the genome-wide analysis of somatic and
germline rearrangements in 2 lung cancers (Campbell ef al., 2008). The analysis revealed
a wide spectrum of rearrangements, as well as providing high-resolution copy number
information.  Paired-end sequencing is an attractive strategy for the complete

characterisation of rearrangements in cancer.

1.3.4 Epigenetic profiling

Epigenetic changes are chemical modifications to the DNA or histones that change the
structure of chromatin but do not alter the DNA sequence. If chromatin is in the
condensed conformation, transcription factors cannot access the DNA and genes are
therefore not expressed, whereas genes in open chromatin can be expressed as required.
DNA methylation and changes in chromatin conformation have both been implicated in
tumourigenesis. DNA methylation of CpG islands, which are located in promoter
regions, can result in gene “silencing” by preventing transcription factor binding. It can

also repress gene expression by recruiting methyl-binding domain proteins, which
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associate with histone deacetylases (HDACs). HDACs mediate chromatin condensation

by deacetylating histones. See Pelengaris and Khan (2006).

Aberrant DNA methylation of CDKN2A4 has been observed in a wide range of common
cancer types (Herman et al., 1995; Merlo et al.,, 1995), while VHL and BRCAI are
silenced by methylation in a significant proportion of kidney (Herman et al., 1994) and
breast and ovarian cancers (Esteller et al., 2000), respectively. VHL and BRCAI are also
frequently mutated in cancer, but for other tumour suppressor genes, such as RASSFIA,
promoter hypermethylation appears to be the principal mechanism for inactivation (for

review, see Jones and Baylin, 2002).

Detection of DNA methylation relies on the ability to distinguish cytosine from 5-
methylcytosine. This can be achieved using restriction enzymes that restrict only
unmethylated DNA, or by using sodium bisulfite, which converts unmethylated cytosines
to uracil, or by immunoprecipitation of methylated DNA using 5-methylcytosine-specific
antibodies or methyl-binding domain proteins (see Down et al, 2008). All three
approaches can be applied to the genome-wide detection of DNA methylation through the
use of oligonucleotide arrays. However, restriction enzyme-based methods are limited to
the analysis of CpG sites that contain the recognition site for the enzyme in use, while
bisulfite conversion reduces the complexity of the DNA and so reduces the number of
unique probes that can be used on the array (Down ef al., 2008). Bisulfite conversion and
methylated DNA immunoprecipitation have also been combined with next-generation
sequencing in techniques known as BS-seq (Cokus et al., 2008) and MeDIP-seq (Down et
al., 2008), respectively. Histone modifications can be detected using chromatin

immunoprecipitation (ChIP), which is described in Section 1.3.5.

Large genomic regions, such as an entire chromosome arm, can show aberrant
methylation in cancer (Frigola ef al., 2006), and there is evidence to suggest that some
cancers show a CpG island methylator phenotype (CIMP). CIMP+ colorectal cancers
have significantly more hypermethylation at CpG islands, including an increased
incidence of CDKN2A and THBSI methylation (Toyota et al., 1999), and they are
characterised by a methylated mismatch repair gene, MLHI, which gives rise to
microsatellite instability (Weisenberger et al, 2006; see Section 1.2.5.1.3 for a
description of microsatellite instability). Genes that are reversibly repressed by Polycomb

proteins in embryonic stem cells are significantly over-represented amongst constitutively
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hypermethylated genes in colorectal cancers (Widschwendter ef al., 2007). This provides
support for the theory of a stem cell origin of cancer (Section 1.2.3.2). A detailed
discussion of the epigenomics of cancer is beyond the scope of this thesis, which focuses
on changes in cancer that alter the DNA sequence. Epigenomics approaches are reviewed
in Callinan and Feinberg (2006) and, for a detailed review of epigenomics and its

relevance to the cancer stem cell hypothesis, see Jones and Baylin (2007).

1.3.5 Genome-wide mapping of transcription factor binding sites

The mapping of transcription factor binding sites (TFBS) across the whole genome can
help to elucidate gene regulatory networks. Chromatin immunoprecipitation (ChIP) is a
powerful approach for analysing TFBS in living cells (Wei et al., 2006). Cells are treated
with formaldehyde to mediate the formation of cross-links between DNA and proteins.
The chromatin is then fragmented by sonication and an antibody against the transcription
factor of interest is used to immunoprecipitate the transcription factor bound to DNA (see
Loh et al., 2006). The precipitated DNA can be used to probe a DNA microarray in a
high-throughput method known as ChIP-chip. This approach has been used to map TFBS
in the yeast genome (Ren et al., 2000). For more complex genomes, it has been necessary
to restrict analysis to specific regions, such as promoter regions or individual
chromosomes (Boyer et al., 2005; Cawley et al., 2004; Horak et al., 2002; Weinmann et
al., 2002), but more recent analyses have used ChIP-chip to survey the entire genome

(Kim et al., 2005b; Lee et al., 2000).

An alternative approach involves cloning and sequencing the precipitated DNA
fragments, and then mapping the sequences to the genome. Initially, this involved the
sequencing of individual fragments sampled from the DNA pool (Hug et al., 2004;
Weinmann et al., 2001). However, high coverage is required to distinguish real binding
sites from background DNA, and this has been achieved at reduced cost by sequencing a
“tag” from each DNA fragment by serial analysis of gene expression (SAGE) (Chen and
Sadowski, 2005; Impey et al., 2004; Kim et al., 2005a; Roh et al., 2005). To overcome
the problems of ambiguity associated with mapping short tags, Wei and coworkers (2006)
developed an approach called ChIP-PET, in which ChIP is coupled with paired-end ditag
(PET) sequencing so that both the 5’ and 3’ ends of each DNA fragment are sequenced
(Figure 1.6). This method was applied to the unbiased global mapping of 542 p53
binding sites in the human genome (Wei et al., 2006). The functions of p53 target genes
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Figure 1.6. Overview of ChIP-PET for mapping transcription factor binding sites.
In chromatin precipitation (ChIP), the chromatin is fragmented by sonication and an
antibody against the transcription factor of interest is used to precipitate the transcription
factor bound to DNA. The ChIP-enriched DNA is cloned and the ends of each clone are
sequenced to create a library of paired-end ditags (PETs). The PETs are mapped to the
reference genome. Multiple PETs mapping to a single location indicate the presence of a
transcription factor binding site (TFBS) at that location. Redrawn with modifications
from Figure 1 of Loh et al. (2006) .
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included known roles of p53, such as apoptosis, DNA repair and transcription regulation,

but also novel functions, such as cell adhesion and mobility (see Wei et al., 2006).

Loh and coworkers (2006) applied the ChIP-PET technology to the global mapping of
Oct4 and Nanog binding sites within mouse embryonic stem (ES) cells. Oct4 and Nanog
are required for the maintenance of ES cell pluripotency and self-renewal and may play
an important role in cancer (see Section 1.2.3.2). Approximately 1,000 and 3,000 high
confidence binding sites were identified for Oct4 and Nanog, respectively, and the
presence of one or other binding site was found to be associated with genes that are
repressed and induced during differentiation. The target genes include known effectors of
ES cell fate, such as Foxd3 and Setdbl, genes required for maintaining pluripotency,
including Esrrb and Rifl, and Mycn, which is involved in ES cell self-renewal and
proliferation. Most of the Oct4 binding sites also bind Sox2, suggesting that Oct4 and

Sox2 co-operate in regulating gene expression.

ChIP-PET has also been used in human B cells to identify more than 4,000 potential
binding sites for Myc, of which 668 were identified as direct targets of Myc regulation
(Zeller et al., 2006). Many of the target genes are involved in protein synthesis and cell
metabolism, which is consistent with a role for Myc in controlling cell size. A large
number of transcription factors were also identified. This study showed a weak overlap
with other analyses of Myc binding sites, reflecting the current limitations of ChIP-PET,
such as the limited sensitivity of PET detection, the experimental noise associated with
ChIP, and the fact that the analysis only describes a snapshot of transcription factor
binding at a particular moment in time (Zeller et al., 2006). A comparative study of
STATI binding sites identified by ChIP-chip and ChIP-PET found a considerable overlap
between methods, but each method also identified unique sites, suggesting that higher

accuracy could be achieved by using both techniques (Euskirchen et al., 2007).

The most advanced method for identifying TFBS is ChIP-seq, in which the DNA
fragments isolated by ChIP are amplified and sequenced using next-generation
sequencing technology. ChIP-seq requires less starting material and involves fewer steps,
making it faster and less prone to error. ChIP-seq using Solexa massively parallel
sequence identified STATI binding sites in human HeLa S3 cells with an estimated

sensitivity of 70-92% and specificity of at least 95% (Robertson ez al., 2007).
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1.4 Cancer gene discovery in the mouse
1.4.1 The mouse as a model for studying cancer
1.4.1.1 Background

The mouse is a leading model system for cancer research because it has a rapid
reproduction rate and breeds well in captivity and, owing to its small size, it can be
maintained in large numbers in limited space (see Frese and Tuveson, 2007). It is also
genetically and physiologically similar to human. In light of these factors, the mouse
genome has been sequenced and annotated to a high standard, second only to that of

human (Waterston et al., 2002).

The mouse was initially used as a cancer model through tumour transplantation within
inbred strains, but following the discovery of the immunodeficient “nude” mouse and,
later, the severe combined immunodeficient (SCID) mouse, it became possible to
transplant human tumours into the mouse, creating xenograft models. Such models can be
used to rapidly assess tumour tissue and cell lines in vivo but they do not fully recapitulate
the behaviour of an endogenous tumour because many features of the tumour
microenvironment, such as stromal cells, vasculature and immune cells, are missing. The
tumour xenograft is also likely to be less heterogeneous than the endogenous tumour
because cells in culture are under high selective pressure. These factors have contributed
to the limited success of xenograft models in drug development (for review, see Sharpless

and Depinho, 2006)

Many inbred strains that spontaneously develop cancer at high frequency have been
established, and these, as well as mice that have been treated with a mutagen, are useful
for studying the properties of endogenous cancers in vivo. They have been used to
identify cancer genes and to assess the effects of carcinogens and therapeutic compounds.
However, these models may be biased towards specific types of tumour that show
variable penetrance and latency and do not accurately reflect common human cancers

(Frese and Tuveson, 2007).
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1.4.1.2 Genetically engineered mouse models

Genetically engineered mouse models represent a major advance in cancer research that
allows for the study of gene function in vivo and for the creation of models that more
accurately recapitulate human cancers. Genetically engineered models can be classified

as transgenic or endogenous (Frese and Tuveson, 2007).

1.4.1.2.1 Transgenic models

Transgenic mice can be created to study the effect of overexpressing an oncogene or a
dominant-negative tumour suppressor gene, which encodes a mutant tumour suppressor
that can inactivate the wildtype protein. Transgenic mice can be generated by pronuclear
microinjection, in which a construct containing the gene of interest (transgene) is
microinjected into the mouse oocyte after fertilisation and randomly integrates into the
genome, usually in tandem copies. If the transgenic cells contribute to the germ line, the
genetic change can be transmitted to the next generation, producing mice that are fully
transgenic and establishing a strain. Many genes involved in cancer development are also
essential for mouse development. Therefore, to prevent embryonic lethality and to restrict
overexpression to specific tissues, the construct containing the gene of interest also
contains promoter elements designed for spatial and temporal restriction of gene
expression. For example, the Tet-On and Tet-Off systems (Baron and Bujard, 2000)
promote gene expression in the presence and absence, respectively, of doxycycline, a
non-toxic analogue of tetracycline, while fusing the gene of interest to a gene encoding
the oestrogen receptor binding domain results in an inactive protein that is activated upon

treatment with Tamoxifen (Eilers et al., 1989).

Limitations of the microinjection method include the possibility that, because the
transgene integrates randomly, it could disrupt other genes, resulting in a phenotype that
does not reflect the function of the gene of interest (for review, see Muller, 1999). In
addition, the tendency of the transgene to integrate in multiple copies could result in
excessive overexpression that is toxic to the animal (Muller, 1999). However, transgenic
mice have made a significant contribution to cancer research. In the earliest examples,
mouse models were used to demonstrate the role of oncogenes in cancer. For example,
tissue-specific overexpression of the Myc oncogene in mammary glands and B-cells

resulted in the generation of mice prone to breast cancer (Stewart er al., 1984) and
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lymphomas (Adams et al., 1985), respectively. Overexpression of dominant-negative
mutant tumour suppressor genes has also proved effective, e.g. a gene encoding mutant
type II transforming growth factor beta (TgfP) receptor has been shown to accelerate
chemically induced tumourigenesis in the mammary gland and lung (Bottinger et al.,

1997).

1.4.1.2.2 [Endogenous models

A knockout mouse can be created to study the effect of inactivating a tumour suppressor
gene. In this method, a targeting vector is transfected into embryonic stem (ES) cells,
which are harvested from the inner cell mass of mouse blastocysts. The vector must share
homology with the region of the mouse gene that is being targeted, i.e. the tumour
suppressor gene of interest, and must also contain genes for selection, such that only cells
in which the vector DNA has replaced the endogenous DNA by homologous
recombination will survive. The surviving ES cells are injected back into a blastocyst,
and will contribute to all cell lineages, including the germ line (Robertson ef al., 1986).
The targeting vector can be engineered to knock out the whole gene or part of a gene, or
small changes can be introduced into the gene sequence. Alternatively, the complete
gene under the control of a strong promoter can be introduced to create a knockin mouse
for overexpressing oncogenes. By targeting a single copy to the genome, this overcomes

the problems associated with pronuclear microinjection. (For review, see Muller, 1999).

As with transgenic mice, mutations can be spatiotemporally regulated. Conditional
mouse models frequently use the Cre-lox system from bacteriophage P1, in which Cre
recombinase catalyses recombination between loxP sites (Sauer and Henderson, 1988),
and the intervening DNA is deleted or inverted, depending on the orientation of the sites
(Lakso et al., 1992). loxP sites can therefore be placed on either side of a gene region to
remove that region in the presence of Cre (Figure 1.7). Large-scale chromosomal
deletions and inversions can also be generated by placing loxP sites further apart on the
chromosome (Kmita et al., 2000; Smith et al., 2002), while chromosomal translocations
can be created by placing a loxP site at each breakpoint (Forster et al., 2003).
Conditional oncogene expression can be achieved by inserting a stop cassette, which is
flanked by loxP sites, between the promoter and the first exon such that Cre-mediated
excision of the cassette results in expression of the gene (de Alboran et al., 2001; Jackson

etal.,2001).
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Figure 1.7. Generation of a conditional knockout allele in ES cells. A targeted gene
construct is designed that contains loxP sites flanking the region of the gene to be deleted
as well as genes for selection. Upon introduction into ES cells, DNA in the construct
replaces endogenous DNA in the target gene by homologous recombination. The addition
of G418 selects for cells that express the Neomycin gene, and therefore contain the
knockout construct. The addition of Cre results in recombination between the loxP sites,
removing the region of the gene containing exons 1, 2 and 3 and the Neomycin and tk
genes. Gancyclovir kills cells expressing tk, and therefore selects cells in which
recombination has occurred and the gene has been knocked out.
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Unlike the conditional expression systems in transgenic mice, once Cre recombinase has
been expressed, the change is irreversible, and there is evidence to suggest that Cre can be
cytotoxic, perhaps due to recombination at pseudo-loxP sites (see Jonkers and Berns,
2002). In addition, the Cre-lox system cannot generate conditional point mutations, and
this represents a significant limitation since point mutations and deletions do not always
produce the same phenotype (Frese and Tuveson, 2007). However, the Cre-lox system
has proved invaluable in creating models that would otherwise not arise or survive. For
example, homozygous Brcal and Brca2 knockouts die early in embryogenesis, and
heterozygous mice are not tumour-prone, but mice harbouring a Cre-mediated deletion of
Brecal (Xu et al., 1999) or Brca2 and Trp53 (Jonkers et al., 2001) in the adult mammary
gland do develop mammary tumours. Likewise, 77p53 mutations have been identified in
many types of human cancer, but if 7rp53 is mutated in all cells, the mouse is most likely
to develop lymphomas or sarcomas. Conditional 7rp53 mutations can be used to create
models for human cancers that are driven by 7P53 mutation in other tissues (Jonkers and
Berns, 2002). The Flp/FRT system from Saccharomyces cerevisiae is an alternative to

Cre-lox that works in a similar way.

1.4.1.3 Mouse models in drug discovery

Mouse models that faithfully recapitulate human cancers are important for developing
and testing therapeutic drugs. Studies on a mouse model for acute promyelocytic
leukaemia (APL) have resulted in the development of an effective, retinoic-acid-based
treatment for the disease (Lallemand-Breitenbach et al,, 1999; Soignet and Maslak,
2004). Mouse models can also be used to identify predictive markers of disease response
and progression, and to understand drug toxicity and resistance. They have proved
particularly useful in the study of oncogene addiction, which is an important
consideration in drug target validation (see Section 1.2.7). Mouse models have
demonstrated the requirement for persistent expression of Hras, Myc, Bcr-Abl, Erbb2 and
Fgf7 in the maintenance of melanoma (Chin et al., 1999), haematopoietic tumours
(Felsher and Bishop, 1999), B-cell lymphoma and leukaemia (Huettner et al., 2000),

breast cancer (Xie ef al., 1999), and lung cancer (Tichelaar et al., 2000), respectively.
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1.4.1.4 Mouse models in cancer gene discovery

The methods described in Section 1.3 can also be applied to the identification of
candidate cancer genes in the mouse. For example, array CGH has been used to identify
regions of copy number change in mouse models of malignant melanoma (O'Hagan ef al.,
2003) and pancreatic islet carcinomas (Hodgson et al., 2001). However, as with human
cancers, by the time the cancer has presented, it is difficult to distinguish the important

driver mutations from the background of passenger mutations.

The genetically engineered mouse models discussed thus far are useful for studying the
function of a particular gene or for representing a specific human cancer, but the tumours
in these models do not evolve naturally. In general, the initiating event, i.e. the
engineered mutation, is present throughout a tissue, whereas in natural tumourigenesis,
the tumour develops from one mutated cell (see Section 1.2.3). Likewise, in mouse
models used to study the combined action of multiple genes in cancer, the genes of
interest are usually simultaneously mutated, whereas “natural” tumours progress through
a multi-step process, where mutations are gradually acquired. Finally, many mouse
models are designed to show high penetrance and short latency to keep costs down, but as
a result they may not possess many of the co-operating oncogenic events that would
eventually be acquired by a naturally evolving tumour (for review, see Frese and

Tuveson, 2007; Sharpless and Depinho, 2006).

It is important that the mutations in mouse models used to identify novel cancer genes
reflect the mutations found in human cancers, and this requires more accurate modelling

of the natural evolution of tumours.

1.4.2 Forward genetic screens in the mouse

Forward genetic screens using somatic mutagens are a powerful approach for cancer gene
discovery in which tumours undergo a process of evolution that mirrors that of human
tumour formation. They allow for relatively unbiased, genome-wide identification of
both novel cancer genes and collaborations between genes involved in cancer. Chemical
mutagenesis is highly efficient but mutations are very difficult to identify. Insertional
mutagenesis by retrovirus or transposon is an effective alternative approach in which the

mutagen acts as a molecular tag for easy identification of the mutated allele.
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1.4.2.1 Retroviral insertional mutagenesis
1.4.2.1.1 Mechanisms of mutagenesis

The slow transforming retroviruses murine leukaemia virus (MuLV) and mouse
mammary tumour virus (MMTV) have been widely used for insertional mutagenesis in
the mouse. Unlike acute transforming retroviruses, which induce tumours by expression
of a viral oncogene, slow transforming retroviruses do not carry an oncogene, and
tumours are induced by mutations caused by insertion of the retrovirus into the host
genome. Consequently, tumours develop with a longer latency of 3-12 months, compared
with 2-3 months for acute transforming retroviruses (Uren et al., 2005). MMTV was
identified as a causative agent in several strains of mice that were prone to mammary
tumours, while MuLV was identified as a causative agent in the lymphoma-prone AKR
mice (see Weiss, 2006). The principal dataset used in this thesis was generated using

MuLV, and this mutagen is therefore the main focus of the background provided herein.

Retroviruses infect host cells by binding of the viral envelope proteins to cell surface
receptors. Once the retrovirus has inserted into the host genome, forming a provirus, it
will produce viral envelope proteins that occupy the cell surface receptors and prevent
reinfection of the same cell. However, recombination with endogenous viral sequences
results in the production of envelope proteins that bind to other receptors. This, combined
with the fact that many proviruses have defective envelope coding sequences, enables
retroviruses to reinfect the same cell, resulting in the accumulation of mutations.
Mutations that confer a growth advantage on the cell co-operate in tumour formation, and
the process therefore recapitulates the multi-step progression of human tumours (for

review, see Mikkers and Berns, 2003; Uren et al., 2005, see also Section 1.2.3).

The MuLV provirus consists of viral genes flanked by two long terminal repeats (LTRs),
which are composed of three parts: U3, R and U5 (see Uren et al., 2005; Figure 1.8).
Elements within the LTRs drive expression of the viral genes but can also disrupt host
genes. U3 contains enhancer and promoter sequences, while R contains transcription start
and termination sites. High levels of viral transcription and, therefore, host gene
disruption, will only occur in cells containing transcription factors that bind to U3. The
propensity of MuLV to induce T- and B-cell lymphomas can be attributed to its
dependence upon T- and B-cell-specific transcription factors, including Runx, Ets and

Mpyb (see Neil and Cameron, 2002).
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Figure 1.8. Structure of a retroviral provirus. The provirus contains two long terminal
repeats (LTRs) flanking the genes required for viral assembly. Elements within the LTRs
drive transcription of the viral genes but can also induce mutation of nearby cellular
genes. Splicing of a viral splice donor (SD) or cryptic splice donor (not shown) to a
splice acceptor or cryptic splice acceptor in the first intron or 5> UTR of a cellular gene
results in the formation of a chimeric transcript, in which the cellular gene is coupled to
the viral promoter. Splicing of a splice donor or cryptic splice donor in a cellular gene to
a viral splice acceptor (SA) or cryptic splice acceptor (not shown) can cause premature
termination of gene transcription owing to the presence of polyadenylation signals (pA)
and cryptic polyadenylation signals (not shown) in the LTR. Adapted from Figure 1 of
Uren et al. (2005). Figure is not to scale.
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Retroviruses can mutate host genes in a number of different ways. The most common
mechanism is enhancer mutation, where one of the U3 enhancers upregulates expression
of host genes, which may be some distance away from the retroviral insertion (Figure
1.9A). Most proviruses causing enhancer mutations are found upstream of the mutated
gene in the antisense orientation or downstream in the sense orientation. Several possible
explanations for the directionality of the enhancer are that upregulation of the host gene
may be impeded if the viral promoter intercepts the viral enhancer and host gene, or that
viral enhancers may only be functional if they are not transcribed (Clausse et al., 1993;
see Uren et al., 2005). Myc and Gfil are frequent targets of enhancer mutation in
retroviral insertional mutagenesis (Akagi et al., 2004; Corcoran et al., 1984; Selten et al.,
1984). Myc is mutated in many types of human cancer. It encodes a transcription factor
that is thought to regulate the expression of 15% of all genes, including genes involved in
cell division, cell growth and apoptosis (see Gearhart ef al., 2007). Gfil is a zinc finger
transcriptional repressor that is involved in cell fate determination and differentiation,

including in T- and B-cells (Rathinam and Klein, 2007; Yucel et al., 2003).

An alternative mechanism of mutagenesis is promoter mutation, where the retrovirus
inserts in the sense orientation into the promoter region of a host gene (Figure 1.9B).
This uncouples the host gene from its own promoter and places it under the control of the
viral promoters, resulting in the production of elevated levels of the wildtype protein from
chimeric transcripts comprising part of the viral sequence and the complete coding region
of the host gene (Mikkers et al., 2002). Promoter mutations led to identification of Evil/
as a potential oncogene (Copeland and Jenkins, 1990; Mucenski et al., 1988a; Mucenski
et al., 1988b). EVII encodes a zinc finger transcription factor that is frequently
overexpressed in human myeloid malignancies. It is involved in several recurrent
rearrangements, including 2 translocations that result in the fusion transcripts
AMLI/MDSI/EVII and ETV6/MDS1/EVII, where MDSI and EVII are also expressed as a

readthrough transcript in normal tissues (for review, see Wieser, 2007).

The retrovirus contains a polyadenylation signal within the R region of the LTR and a
cryptic polyadenylation signal in the antisense orientation. Therefore, intragenic
retroviral insertions in both orientations can cause premature termination of gene
transcription. Insertions within the 3> UTR that truncate a transcript such that mRNA-
destabilising motifs are removed will give rise to a more stable transcript and, as a result,

increased levels of the wildtype protein (see Uren et al., 2005; Figure 1.9C). Oncogenes
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Figure 1.9. The mechanisms of mutagenesis of murine leukaemia virus include
enhancer mutation (A), promoter mutation (B) and premature termination of gene
transcription (C). The provirus is shown in blue; coding and non-coding exons are
shown in red and white, respectively. A. An enhancer element in the 5> LTR of murine
leukaemia virus (MuLV) can cause upregulation of nearby cellular genes. Oncogenic
insertions of this type are most frequently found upstream and in the antisense orientation
with respect to the cellular gene(s) that they are mutating. B. Insertion of MuLV into the
promoter region of a cellular gene results in chimeric transcripts that are produced at
higher levels than the endogenous gene transcript. C. Intragenic MuLV insertions can
cause premature termination of gene transcription, resulting in either gene upregulation or
gene inactivation. The figure shows an insertion within the 3’ UTR region, which may
remove mRNA-destabilising motifs, thereby stabilising the gene transcript. Adapted from
figures in Uren et al. (2005).
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Piml and Mycn are frequently mutated in this way (Cuypers et al., 1984; Selten et al.,
1985; van Lohuizen et al., 1989). PIMI encodes a serine/threonine kinase that is
frequently overexpressed in human prostate cancer (Dhanasekaran et al., 2001), while
MYCN encodes a transcription factor related to MYC that is amplified in a variety of

human tumours, most notably neuroblastomas (Brodeur ef al., 1984, 1985).

Intragenic insertions can also activate a gene by causing C-terminal or N-terminal
truncation of the encoded protein. Insertions in oncogenes Myb and Notchl cause both
N-terminal and C-terminal truncations (Rosson et al., 1987; Uren et al., 2005). C-
terminally truncated Notchl lacks the destabilising PEST domain and is therefore
produced at increased levels, while N-terminal truncations remove the extracellular
domain, resulting in a constitutively active intracellular domain expressed from the viral
promoter or from a cryptic promoter in Notchl (Hoemann et al., 2000). Activating
mutations within the extracellular and PEST domains of NOTCH1 have been observed in
human T-cell acute lymphoblastic leukaemia (Weng et al., 2004), in which NOTCH1
plays an important role (see Section 1.2.5.1.4 for further details). Analysis of the
distribution of insertions within an oncogene may therefore help to explain how the gene

is mutated in human cancer.

Intragenic insertions may also cause gene inactivation, either through premature
termination of transcription or by disrupting gene splicing (see Uren et al., 2005). It is
therefore possible to identify tumour suppressor genes by retroviral insertional
mutagenesis, although they are found much less frequently than oncogenes because both
copies of the gene must be inactivated. Mutation at the NfI locus is observed in acute
myeloid leukaemias in BXH2 mice (Largaespada et al., 1996), which contain MuLV
insertions (Bedigian et al., 1984), while in an insertional mutagenesis screen of Bl/m-
deficient mice, 11 genes met the criteria for tumour suppressor genes, including Rb// and
RbI2, which are paralogues of RbI (Suzuki et al., 2006). Blm-deficient mice have a
mutation in the RecQ protein-like-3 helicase gene (Ellis et al., 1995) and show a
predisposition to cancer due to increased frequencies of mitotic recombination (Luo et al.,
2000). There is an increased likelihood of finding tumour suppressor genes in these mice
because they have a higher probability of a normal allele being lost so that only one
insertion is required to inactivate the gene (Luo et al., 2000). However, candidate tumour
suppressor genes still only accounted for 5% of all genes identified in the screen by

Suzuki et al (2006). In theory, insertional mutagenesis screens should have a better
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chance of finding haploinsufficient tumour suppressor genes, but none have yet been

unambiguously identified (Uren ef al., 2005).

Insertional bias could also account for the paucity of tumour suppressor genes identified
in retroviral screens. MuLV shows a strong preference for integration near to the
transcription start sites of actively transcribed genes (Wu et al., 2003) and is therefore less
likely to disrupt a gene by intragenic insertion. However, it is possible that promoter
mutations could also cause gene inactivation, as CpG islands in the retroviral LTRs are
methylation targets, and DNA methylation could “spread” to CpG islands in the host
gene, resulting in gene silencing (see Touw and Erkeland, 2007). Retroviruses prefer to
insert into open chromatin (Muller and Varmus, 1994; Pryciak and Varmus, 1992), but
different retroviruses show different target site preferences, suggesting that virus-specific
interactions are involved (Mitchell et al,, 2004). DNA sequence does not seem to
influence target site selection (Bushman et al., 2005). The tendency for MuLV to insert
into the promoter region indicates that the retrovirus interacts with cellular proteins bound

near start sites (Mitchell et al., 2004; Wu et al., 2003).

1.4.2.1.2 Identifying candidate cancer genes

The retroviral insertions act as tags for identifying the mouse genes that are mutated by
insertional mutagenesis, and sequencing of the mouse genome and the development of
high-throughput genomic techniques have made it possible to identify hundreds or
thousands of insertions in a single screen. Insertion sites were initially identified using
methods that involved Southern blot analysis and genomic library screening, followed by
genome walking to find the mutated gene (see Neil and Cameron, 2002; Uren et al.,
2005). However, these have been replaced by PCR-based methods, in which mouse
genomic DNA flanking the insertion sites is amplified and is then mapped back to the
genome. One such method, known as viral insertion site amplification (VISA) involves
using a PCR primer designed to bind to the MuLV LTR and a degenerate, restriction-site-
specific primer that enables amplification of the DNA between the insertion and a nearby
restriction site (Hansen et al., 2000; Weiser et al., 2007). In inverse PCR and linker-
mediated PCR-based methods, the genomic DNA is restriction-digested prior to PCR

amplification.
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In inverse PCR (Figure 1.10A), the digested genomic DNA is allowed to ligate to itself to
form a circular template. PCR primers bind to the retroviral DNA and point out towards
the genomic sequence, resulting in amplification of genomic DNA directly flanking the
retrovirus (Ochman et al., 1988; Triglia et al., 1988). Only DNA fragments that are a
suitable length for efficient circularisation and for PCR amplification will be detected

(Uren et al., 2005).

In linker-mediated PCR, rather than the digested DNA ligating to itself, it is ligated to a
linker, and this enables shorter insertions to be identified. One primer is designed to bind
to the linker, and the other binds to the retroviral sequence. A number of methods have
been developed, each with a different approach for avoiding amplification of DNA that
has linkers at both ends but contains no retroviral DNA. Vectorette PCR involves the use
of a double-stranded linker with a cohesive end, designed for ligation to restricted DNA,
and a central region with a mismatch (Riley et al., 1990). The primer is the same
sequence as the mismatched part of the upper strand, and this prevents initiation of
priming from the linker until the complementary strand has been synthesised by priming
from within the retroviral insertion. However, this method suffers from non-specific
annealing of the primers and ‘end-repair’ priming, in which the ends of unligated linkers
initiate priming and enable PCR amplification without involving the retroviral-specific
primer (see Devon et al., 1995). Any errors that cause amplification of DNA that is not

flanking an insertion will lead to the false identification of insertion sites.

An improved method uses splinkerettes, which incorporate a hairpin structure on the
bottom strand, rather than a mismatch sequence (Devon et al., 1995; Figure 1.10B). The
primer has the same sequence as the upper strand and, as with vectorette PCR, cannot
anneal until the complementary strand has been synthesised. The stable hairpin does not
enable end-repair priming and only the upper strand can act as a non-specific primer. In
all the PCR-based methods, insertions are only identified if target sites for the chosen
restriction endonuclease are close enough to the insertion for the intervening region to be
amplified. Coverage can be improved by using multiple restriction endonucleases (Uren

et al.,2005).
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Figure 1.10 Isolation of retroviral insertion sites by inverse PCR (A) and splinkerette
PCR (B). In inverse PCR, tumour DNA is digested using restriction enzyme X and the
restricted DNA is allowed to circularise. Genomic DNA flanking retroviral insertions are
amplified using PCR primers that bind within the insertion and point out towards the
genomic DNA. A second round of PCR is performed using nested primers. The
amplified DNA is sequenced and mapped to the mouse reference genome. Splinkerette
PCR follows a similar procedure, except that instead of circularising the digested DNA, a
splinkerette adapter (shown in yellow) is ligated to digested tumour DNA and genomic
DNA flanking the retroviral insertions is amplified using PCR primers that bind to the
adapter and the retroviral LTR.
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Once the insertion-flanking genomic DNA has been amplified, the PCR products must be
separated for sequencing. In the past, products were separated using agarose or
polyacrylamide gels, but rare insertions are likely to be missed, and gel extraction is
painstaking and subjective. An alternative method is to subclone the PCR products
directly into a vector. By shotgun cloning the total mixture, it is possible to maintain the
relative proportions of insertions from the starting material. However, it also means that
more sequencing will be required to capture the rare insertions (see Uren et al., 2005).
The VISA approach sequences PCR products directly, without subcloning, which reduces
the risk of sequencing contaminating products (Weiser et al.,, 2007). The latest method
uses massively parallel sequencing technology from 454 Life Sciences
(http://www.454.com), in which fragmented genomic DNA is ligated to short adapters
that are used for purification, amplification and sequencing. The DNA is denatured and
immobilised onto beads, where PCR amplification and sequencing occur. This approach
is extremely high-throughput, does not rely on cloning and is capable of detecting rare
insertions. However, it can encounter problems when dealing with repetitive regions and

long runs of a single nucleotide.

The next step is to map the sequenced DNA to the genome using a DNA alignment
algorithm. For large screens, it is an advantage to be able to find high quality alignments
quickly (Uren et al., 2005). The Sequence Search and Alignment by Hashing Algorithm
(SSAHAZ2, Ning et al., 2001) converts the genome into a hash table, which can then be
rapidly searched for matches. Sequences in the database (the mouse genome) are
preprocessed into consecutive k-tuples of & contiguous bases and the hash table stores the
position of each occurrence of each k-tuple. The query sequence (sequenced DNA) is
also split into k-tuples and the locations of all occurrences of these sequences in the
database, i.e. the “hits”, are extracted from the hash table. The list of hits is sorted, and
the algorithm searches for runs of hits in the database that match those in the query
sequence. Having identified regions of high similarity, sequences are fully aligned using
cross_match (Green, unpublished), which is based on the Smith-Waterman-Gotoh
alignment algorithm (Gotoh, 1982; Smith and Waterman, 1981). Because the database is
hashed, search time in SSAHA?2 is independent of database size, provided £ is not too
small. SSAHA?2 is therefore three to four orders of magnitude faster than the BLAST
alignment algorithm (Altschul et al., 1990), which scans the database and therefore
performs at a speed that is directly related to database size (Ning et al., 2001).
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As the PCR mixture is shotgun cloned and preferably sequenced to a high depth, an
insertion site may be represented by more than 1 sequence read. Reads from a single
tumour that map to the same genomic region must therefore be clustered into single
insertion sites. Like the mutations in human cancer, tumour DNA will contain both
insertions that drive oncogenesis (oncogenic insertions) and insertions that are passengers
(background insertions). In theory, most identified insertions should be oncogenic
because these, and particularly the earliest events in tumourigenesis, should be present in
most, if not all, tumour cells, whereas background insertions should be present in a
smaller proportion of cells. However, background insertions that occur early in tumour
development in a cell containing oncogenic insertions could also be highly represented in

the final tumour (see de Ridder et al., 2006).

Clustering of insertions from different tumours into common insertion sites (CISs) helps
to distinguish oncogenic and background insertions. In theory, background insertions
should be randomly distributed across the genome. Therefore, for small-scale screens, a
gene in the vicinity of a cluster of insertion sites in different tumours is a strong candidate
for a role in cancer. Methods for identifying statistically significant CISs, i.e. regions that
are mutated by insertions in significantly more tumours than expected by chance, have
involved generating a random distribution of insertions across the genome and obtaining
an estimate of the number of false CISs in windows of fixed size using Monte Carlo
simulation (Suzuki et al., 2002) or the Poisson distribution (Mikkers et al., 2002). These
methods can be used to define the maximum window size in which insertions must fall to
be considered non-randomly distributed. However, for larger scale screens, the window
must be decreased to a size that is smaller than the spread of insertions within a single
CIS so that many CIS are missed (de Ridder ez al., 2006). In addition, the above methods
assume that insertions are randomly distributed and take no account of insertional biases,

as mentioned in Section 1.4.2.1.1 (Wu et al., 2006).

A more recent approach for CIS detection overcomes these problems by using a kernel
convolution (KC)-based framework, which calculates a smoothed density distribution of
inserts across the genome (de Ridder ef al., 2006). The scale (kernel size) can be varied
so that CISs of varying widths can be identified. Decreasing the kernel size may identify
separate CISs affecting the same gene, while increasing the kernel size will identify CISs
where insertions are widely distributed in or around a gene. The method can be used for

large-scale studies because it keeps control of the probability of detecting false CISs. The
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threshold for significant CISs is based on the alpha-level defined by the user and on a
null-distribution of insertion densities obtained by performing random permutations. A
background distribution, such as the location of transcription start sites, can be provided

to correct for insertional biases. See de Ridder ef al. (2006).

The final step is to identify the genes that are being mutated by insertions within CISs,
which are known in this thesis as “CIS genes”. This may be relatively straightforward for
intragenic insertions, but for enhancer mutations, which may have long distance effects, it
is often difficult to identify the mutated gene unequivocally. Measuring the expression
and transcript size of candidate genes in insertion-containing tumours can shed some
light, but animal models and analysis of the orthologues in human cancer data are

required for more conclusive evidence (Uren et al., 2005).

A number of screens have been performed in recent years that have each identified
hundreds of insertion sites (Hwang et al., 2002; Johansson et al., 2004; Li et al., 1999;
Lund et al., 2002; Mikkers et al., 2002; Slape et al., 2007; Stewart et al., 2007; Suzuki et
al., 2006; Suzuki et al., 2002; Theodorou et al., 2007; Uren et al., 2008; Weiser et al.,
2007). The results of many screens have been collated and stored in the Retroviral
Tagged Cancer Gene Database (RTCGD; http://rtcgd.abce.nciferf.gov/) (Akagi et al.,
2004). At the time of writing, the database contains 503 CISs from 29 screens (database
accessed May 2008). Users can search for individual genes of interest, or for CISs
identified using particular mouse models and/or in particular tumour types. Genes with
the most CISs are Gfil and Myc, with 82 and 77 insertions across all screens,

respectively.

1.4.2.1.3 Identifying co-operating cancer genes

Retroviral insertional mutagenesis is a powerful tool for identifying genes that collaborate
in tumour development. Collaborations can be identified by analysing the co-occurrence
of CISs in individual tumours. For example, proviral activation of Meis/ and Hoxa7 or
Hoxa9 is strongly correlated in myeloid leukaemias from BXH2 mice (Bedigian ef al.,
1984; Nakamura et al., 1996). Meisl and Hoxa9 are targets of translocation in human
pre-B leukaemia (Kamps et al., 1990) and acute myeloid leukaemia (AML) (Calvo et al.,
2002), respectively, and they are frequently co-expressed in human AML (Lawrence et

al., 1999). Both genes encode homeodomain transcription factors that bind to Pbx, and
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Meis1-Pbx and Hox-Pbx complexes have been shown to co-occupy the promoters of

leukaemia-associated genes, such as Fi/¢t3 (Wang et al., 2006a).

A two-dimensional Gaussian Kernel Convolution method has recently been developed for
identifying cooperating mutations in insertional mutagenesis data (de Ridder et al., 2007).
It is based on the kernel convolution framework used for identifying CISs (discussed in
Section 1.4.2.1.2). The method has been applied to the data in RTCGD and, as well as
finding previously characterised interactions, such as Meis! and Hoxa9/Hoxa7, it also
finds novel interactions, such as Rasgrpl and Cebpb, which are both known to play a role

in Ras-induced oncogenesis (de Ridder et al., 2007).

As retroviral-induced tumours are oligoclonal, it is difficult to prove that tagged genes are
in the same cell, and therefore that they collaborate (Largaespada, 2000). In an
alternative approach, retroviral screens are performed on transgenic mice overexpressing
known oncogenes, and knockout mice harbouring inactivated tumour suppressor genes, to
identify genes that collaborate with the overexpression of oncogenes, and loss of tumour
suppressor genes, respectively. For example, 35% of B-cell lymphomas generated in
MuLV-infected EuMyc transgenic mice, in which Myc is overexpressed in B-cell
progenitors under the control of the immunoglobulin heavy chain enhancer, have an
insertion in Pim/ or the polycomb group protein Bmil (van Lohuizen et al., 1991). Bmil
collaborates with Myc by inhibiting Cdkn2a (Ink4a/Arf), and therefore inhibiting Myc-
induced apoptosis (Jacobs et al., 1999). In concurrence with these findings, Myc
insertions were identified in 20% of tumours from MuLV-infected Cdkn2a-deficient
mice, but none contained insertions in Bmil (Lund et al., 2002). Insertional mutagenesis
also identifies genes that can functionally complement one another in tumour
development. For example, in MuLV-infected EuMyc mice, activation of Pim2 increases
from 15% to 80% in compound mutant mice lacking Pim/ expression (van der Lugt et
al., 1995), while Pim3 is selectively activated in mice lacking Piml and Pim2 expression
(Mikkers et al., 2002). Piml is a coactivator of Myc that is required for expression of
around 20% of all Myc target genes (Zippo et al., 2007). Pim kinases also appear to
suppress Myc-induced apoptosis, but it is not clear whether this mechanism or Myc
coactivation is responsible for the co-occurrence of Pim/ and Myc mutations observed in
lymphomagenesis (for review, see Naud and Eilers, 2007)). Pim! also collaborates with

Mpyc in human prostate cancers (Ellwood-Yen et al., 2003).
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Retroviral screening of a mouse model for human myeloid leukaemia has identified 6 CIS
genes, including Plagl and Plagl?, which co-operate with the oncogenic fusion gene
CBFB-MYHI1 (Castilla et al., 2004). This screen used a replication-defective retrovirus,
cloned amphotropic virus 4070A, to limit the number of mutations and therefore to show
that mutation of only one or a few genes was sufficient to induce tumorigenesis. Other
studies using replication-competent viruses report 3-6 insertions in a single tumour
(Mikkers et al., 2002; Suzuki et al., 2002) but, as mentioned above, retroviral-induced
tumours are oligoclonal and it is therefore difficult to make a reliable estimate of the

number of insertions in a tumour clone (see Neil and Cameron, 2002).

1.4.2.1.4 Generating tumours of different types

As discussed in Section 1.4.2.1.1, the dependence of retroviruses on cell-type-specific
transcription factors limits the range of tumours that they can induce. There have been
some successful attempts to alter the propensity of MuLV for T-cell lymphomas by using
an EuMyc transgenic mouse, which results in predominantly B-cell lymphomas (van
Lohuizen et al, 1991), and by expressing platelet derived growth factor B-chain
(PDGFp) from an MuLV-based retrovirus to generate mice with glioblastomas, which
require activation of PDGF receptors for tumourigenesis (Johansson et al., 2004).
Mutations in the retroviral LTR may also lead to a change in tumour type, but
manipulated viruses have a tendency to revert to wildtype (Uren et al, 2005). In
addition, MuLV and other retroviruses cannot infect nondividing cells, and infection is
inefficient in slowly replicating cells and in tissues that have a basement membrane or
mucin layer (Wang et al., 2002a; Yamashita and Emerman, 2006). Transposon-mediated
insertional mutagenesis is an alternative method that provides the possibility of

generating a wider spectrum of tumours.

1.4.2.2 Transposon-mediated insertional mutagenesis

Like retroviruses, transposons are genetic elements that can mobilise within the genome.
They are classified according to their mechanism of transposition. DNA transposons
move by a “cut and paste” mechanism, in which they are excised from one site in the
genome and integrated into another.  Retrotransposons transpose via an RNA

intermediate and are classified into LTR retrotransposons, which encode reverse
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transcriptase and transpose in a similar manner to retroviruses, and non-LTR
retrotransposons, which are transcribed by host RNA polymerases and may or may not

encode reverse transcriptase (Kapitonov and Jurka, 2008).

1.4.2.2.1 Sleeping Beauty

While DNA transposons are actively mobile in plants and invertebrates, all of the
elements that have been so far identified in vertebrates are non-functional (Uren et al.,
2005). However, they can be mobilised in the mouse by using an invertebrate DNA
transposon or by reconstructing a degenerate vertebrate transposon. Sleeping Beauty (SB)
is a synthetic transposon derived from dormant DNA transposons of the Tcl/Mariner
family in the genomes of salmonid fish. An active transposon, named SB10, was
synthesised by directed mutagenesis on the basis of a consensus sequence obtained by
aligning 12 degenerate transposon sequences from 8 species (Ivics et al., 1997). SB
consists of two inverted repeat/direct repeat (IR/DR) elements of ~230 bp each, flanking a
cargo sequence (Collier et al., 2005; Figure 1.11). Transposition occurs via binding of a
transposase enzyme to two sites in each IR/DR (Izsvak ef al., 2000). All four binding
sites are required for transposition and, in general, the closer the IR/DRs, the higher the
transposition efficiency (Izsvak et al., 2000). Higher levels of transposition have been
achieved by introducing point mutations into the transposase, producing, for example, the

SB11 (Geurts et al., 2003) and SB12 (Zayed et al., 2004) transposases.

The utility of SB for oncogenic insertional mutagenesis was first demonstrated in two
studies published in 2005 (Collier et al., 2005; Dupuy et al., 2005). In both studies,
transposons were introduced into mice by pronuclear injection of a linear plasmid
containing one copy of the transposon, which forms a multicopy concatemer of variable
length at a single site in the mouse genome. SB was mobilised by crossing these mice to
mice expressing a transposase from a ubiquitous promoter. Collier and coworkers (2005)
used a transgene containing the SB10 transposase under the control of the CAGGS
promoter to mobilise around 25 T2/Onc transposons (Figure 1.11), while Dupuy et al.
(2005) used the more active SB11 version knocked into the endogenous Rosa26 locus to

mobilise 150-350 copies of the T2/Onc2 transposon.

53



Chapter 1

SA |pA MSCV 5 LTR SD | |vd|vs

Figure 1.11. Structure of the Sleeping Beauty transposon. The presence of splice
acceptors (SA) and polyadenylation signals (pA) in both orientations enables premature
termination of gene transcription from intragenic insertions in both orientations. The
transposon also contains the murine stem cell virus (MSCV) 5° LTR and a splice donor
(SD) site that can induce promoter mutations in cellular genes. Elements for mutagenesis
are flanked by 2 IR/DR elements, shown as arrows, which are required for transposon
mobilisation. Redrawn and adapted from Figure 1a of Collier ez al. (2005).
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T2/Onc and T2/Onc2 were engineered to contain elements for mutagenesis much like
those in retroviruses. The cargo of both transposons contains the 5 LTR of the murine
stem cell virus (MSCV) followed by a splice donor, as well as splice acceptors followed
by polyadenylation sites in both orientations. The transposons are therefore capable of
disrupting genes by promoter mutation, N-terminal and C-terminal truncation and gene
inactivation but, unlike retroviruses, they show low enhancer activity (Dupuy et al,
2005). T2/Onc and T2/Onc2 are essentially the same, except that T2/Onc2 contains a
larger fragment of the Engrailed splice acceptor and the IR/DRs have been optimised for
transposase binding (Dupuy et al., 2005). In the study by Dupuy and coworkers (2005),
there was a high rate of embryonic lethality and, of the 24 T2/Onc2;Ro0sa26SB11 mice
that survived to weaning, all developed cancer, most commonly T-cell lymphomas but
also other haematopoietic malignancies plus a few cases of medulloblastomas and
intestinal and pituitary neoplasias. Some mice had 2 or 3 types of cancer and all died
within 17 weeks. In contrast, in the study by Collier et al. (2005), mice on a wildtype
background did not develop tumours, but those on an Arf-null background developed
sarcomas at an accelerated rate. The difference between the two studies most likely
reflects the differences in transposon copy number and in transposase expression and
activity (Collier and Largaespada, 2007). Transposase expression in CAGGS-SB10 mice
has since been shown to be low and variegated in most tissues, probably due to epigenetic
silencing of the transgene, while transposase expression is high in nearly all cell types in
Rosa26SB11 mice (Collier and Largaespada, 2007). However, transposase is expressed
in the testes of CAGGS-SB10 mice, which show high rates of transposition in the male
germline (Collier and Largaespada, 2007; Dupuy et al., 2001).

Transposons, like retroviruses, can be used to identify co-operating cancer genes. For
example, Braf was frequently mutated in Arf-null mice, suggesting that these genes co-
operate in tumour formation (Collier et al., 2005), while of the six T-cell tumours
containing Notchl mutations, three also contained insertions mutating Rasgrpl, and 2 of
these contains Sox8 mutations, suggesting that these three genes also co-operate (Dupuy

et al.,2005).

While a number of the genes identified in the haematopoietic malignancies of
T2/0Onc2;Rosa26SB11 mice had been previously identified in retroviral mutagenesis,
other genes had not (Dupuy et al., 2005). This indicates that transposon-mediated

mutagenesis is a complementary approach for cancer gene discovery, and may reflect
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differences in insertional bias. While MuLV shows a strong preference for inserting near
transcription start sites (Wu et al., 2003), SB shows a less pronounced preference and
shows no preference for actively transcribed genes (Yant ef al., 2005). SB inserts at TA
dinucleotides and therefore shows a bias towards AT-rich sites, particularly those with the
consensus sequence ANNTANNT (Carlson ef al., 2003; Vigdal et al., 2002). However,
most significant is the strong tendency of SB to transpose to sites close to the concatemer.
This phenomenon, known as “local hopping”, results in a non-random distribution of
insertions that hampers CIS detection. Another potential hindrance to cancer gene
identification is the ability of transposons to excise themselves and reinsert multiple
times. SB leaves a small footprint upon excision, and it is possible that, at least in exons,
this could continue to cause gene disruption that would not be identifiable (Collier and
Largaespada, 2007). Likewise, the excision in some cells of transposons that had been
critical for tumour development could result in a more heterogeneous tumour in which
cancer gene identification would be more complicated. However, it is possible that such
an event would be deleterious and that the cell would be eliminated (Collier and
Largaespada, 2007) and, as SB transposition efficiency is higher for methylated (Yusa et
al., 2004) and heterochromatic (Ikeda et al., 2007) transposons, excision of transposons
involved in gene disruption may be relatively rare. A further drawback of SB, and
possibly other DNA transposons, is that transposition induces genomic rearrangements,
including deletions and inversions near to the transposon concatemer, and tumourigenesis
could therefore be initiated by genes disrupted by these rearrangements rather than by

mobilised transposons (Geurts ef al., 2006).

One of the key benefits of using a transposon such as SB for insertional mutagenesis is
that the mutagenic elements can be modified to control the types of mutation that occur.
For example, modifying the cargo to enable only truncating mutations could increase the
likelihood of identifying tumour suppressor genes (Collier and Largaespada, 2007).
Tissue-specific promoters can be integrated as cargo, making transposons an attractive
mutagen for cancer gene discovery in specific cancer types (Dupuy et al., 2006). Spatial
and temporal transposition could also be achieved by introducing a lox-stop-lox cassette
between the SB transposase promoter and cDNA, such that transposition is induced upon

the addition of Cre (Dupuy ef al., 2006).

Identification of cancer genes in SB mutagenesis follows much the same procedure as for

retroviruses. Largaespada and Collier (2008) have developed a technique that uses
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linker-mediated PCR, as described in Section 1.4.2.1.2, but that enables PCR
amplification of DNA flanking both sides of the transposon to maximise coverage.
Primers were designed to bind to the IR/DR sites and to synthetic adapters. Unlike in
retroviral mutagenesis, tumour cells contain a concatemer of non-transposed elements.
To avoid repeated cloning of the junctions between these elements, “blocking” primers
can be used that bind to the plasmid DNA flanking each transposon in the concatemer but
that have blocked 3’ ends to prevent polymerase extension. Alternatively, after linker
ligation, the DNA can be redigested with an endonuclease that cuts within the flanking
plasmid DNA so that the primer binding sites are separated onto different molecules.

(See Largaespada and Collier, 2008).

1.4.2.2.2 Alternative mutagens for transposon insertional mutagenesis

The active invertebrate transposons piggyBac and Minos are the only other DNA
transposons that have so far been mobilised in the mouse (Collier and Largaespada,
2007). The piggyBac transposon, isolated from the cabbage looper moth, mobilises in
mouse somatic cells and in the germline, and it can carry a larger cargo than SB (Ding et
al., 2005). The coding sequence of piggyBac has been codon-optimised to enable higher
levels of transposition in the mouse, and inducible versions have been generated by fusing
the transposon to the ERt* oestrogen receptor ligand-binding domain (Cadinanos and
Bradley, 2007). Unlike SB, it shows a strong preference for inserting into genes in the
mouse (Ding et al., 2005) and in human cell lines (Wilson et al., 2007). The Minos
transposon, from Drosophila hydei, has attracted interest because it shows a low
insertional bias and high transposition efficiency in a range of animals (for review, see
Pavlopoulos et al., 2007). However, it has so far shown only weak in vivo activity in the

mouse (Drabek et al., 2003; Zagoraiou ef al., 2001).

Retrotransposons are also gaining attention as potential insertional mutagens. Long
interspersed nuclear elements (LINEs) are non-LTR retrotransposons that are transcribed
into mRNA by RNA polymerase II and encode two proteins that are essential for
transposition (Moran et al., 1996): a protein that binds to single-stranded RNA (Hohjoh
and Singer, 1997) and a protein with reverse transcriptase and endonuclease activity
(Feng et al., 1996; Mathias et al., 1991). 17% of the human genome is composed of
LINE-1 (L1) elements (Lander et al., 2001). Transcription of endogenous L1 elements is

generally inefficient but there are a small number of highly active “hot L1s”, which were
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used to generate a transgenic mouse model of L1 retrotransposition that showed a higher
frequency of de novo somatic L1 insertions (Babushok et al., 2006). A 200-fold increase
in transposition in the mouse germline has also been achieved by codon optimisation of
the human L1 coding region (Han and Boeke, 2004). L1 mobilises by a “copy and paste”
mechanism. It is therefore an attractive mutagen for forward genetic screens because,
unlike DNA transposons, it is capable of self-expansion and the original insertion remains
intact, aiding identification of mutated genes (Bestor, 2005; Collier and Largaespada,
2007). In addition, it appears to show no preference (An et al., 2006), or only a slight
preference (Babushok et al., 2006), for inserting into genes and there is no local hopping
because the RNA intermediate must exit and re-enter the nucleus before inserting into the
genome. However, most L1 insertions are truncated at the 5° end (Babushok et al., 2006),
potentially resulting in the loss of promoters, splice acceptors and polyadenylation signals
required for mutagenesis (Collier and Largaespada, 2007). Controlled insertional
mutagenesis using L1 derivatives has not yet been reported and Sleeping Beauty remains

the preferred transposon for cancer gene discovery.

1.5 Cross-species comparative analysis for cancer gene discovery

Important biological sequences, such as gene coding regions and regulatory elements, are
conserved in evolution. Cross-species comparative sequence analysis may therefore
potentially help in the characterisation of known cancer genes. Comparison of intronic
sequences in human and mouse BRCA/ led to the identification of two evolutionarily
conserved regulatory elements in the second intron that, when mutated, had opposite
effects on gene expression (Wardrop and Brown, 2005). However, cross-species
comparative analysis also provides an extremely powerful approach for identifying novel
genes and gene collaborations involved in cancer formation. As discussed in Section 1.3,
the human cancer genome is highly complex. Many genes and pathways have been
implicated in tumourigenesis, and most human cancers exhibit genomic instability,
leading to the acquisition of genetic alterations that drive tumourigenesis but also many
passenger mutations that do not contribute to the tumour phenotype. Distinguishing
driver and passenger mutations is a major challenge. However, the molecular
mechanisms that govern important biological processes are conserved in evolution, and
cancer-associated mutation data from other species can therefore be used as a filter for

identifying genes that represent strong candidates for a role in human cancer.
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Genome-wide expression data for human tumours can be difficult to interpret, and a
number of studies have therefore used cross-species comparative analysis to identify
conserved expression signatures that are important in tumourigenesis. Expression
profiles of intestinal polyps from patients with a germline mutation in APC were
compared to those from Apc-deficient mice and the conserved signature showed an over-
representation of genes involved in cell proliferation and activation of the Wnt/B-catenin
signalling pathway (Gaspar et al., 2008). Likewise, comparison of expression profiles for
human lung adenocarcinoma and a mouse model of Kras2-mediated lung cancer led to
the identification of a KRAS2 expression signature that was not identified by analysing
KRAS2-mutated human tumours alone (Sweet-Cordero et al., 2005). More recently, a
mutated Kras-specific signature that can be used to classify human and mouse lung
tumours on the basis of their KRAS mutation status has been identified by comparing
KRAS-mutated human cancer cells to mouse somatic cells containing knocked-in mutant

Kras (Arena et al., 2007).

Mouse prostate cancers induced by human MYC have an expression signature that defines
a set of “Myc-like” human prostate tumours and includes overexpression of the oncogene
Piml (Ellwood-Yen et al., 2003). Rat prostate tumours also have a similar expression
profile to human prostate tumours, and have been used to identify conserved genes that
are differentially expressed in both species in response to treatment with the
chemopreventive agent Selenium (Schlicht ef al., 2004). The mouse is therefore not the
only cancer model that has been used for cross-species comparison. The greater the
evolutionary distance between the species, the greater the likelihood that conserved
changes in gene expression contribute to the cancer phenotype. An expression signature
in zebrafish liver tumours is more consistently associated with human liver tumours than
with other human tumour types and, since human and zebrafish are distantly related,
genes in the conserved signature are strong candidates for a role in cancer development

(Lam et al., 2006).

Another approach for cross-species analysis involves comparing the CGH profiles of
human tumours to the CGH profiles of tumours generated from a mouse model of the
corresponding human cancer. Such studies take advantage of the conserved synteny
between the human and mouse genomes (Waterston et al., 2002). Comparison of CGH
profiles for human neuroblastomas with profiles for tumours and cell lines from a MYCN

transgenic mouse model of neuroblastoma have shown that many genetic aberrations are
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conserved between species (Cheng et al., 2007; Hackett et al., 2003). Likewise, 80% of
aberrations detected by array CGH in tumour cells of the mouse model for epithelial
ovarian cancer are conserved in human epithelial ovarian cancer (Urzua et al., 2005), and
epithelial carcinomas in mice with telomere dysfunction show numerous copy number
changes in regions syntenic to those in human cancers (O'Hagan et al., 2002). Zender
and coworkers (2006) used array CGH to identify regions of copy number change in the
tumours of a mouse model for hepatocellular carcinoma. The CGH profiles were
compared to array CGH data for human hepatocellular carcinomas to identify minimally
conserved amplicons, and genes that showed increased expression in both species were
chosen as candidate cancer genes. The authors identified 2 oncogenes, c/API and Yap,
that act synergistically in a focal amplicon on mouse chromosome 9qAl, which is
syntenic to an 11922 amplicon in human tumours. Kim et al. (2006b) used a comparable
approach to identify Nedd9 as a candidate for a role in promoting melanoma metastasis.
A focal amplicon comprising 8 genes, including Nedd9, was identified on chromosome
13 in 2 metastatic cell lines derived from a Ras mouse model of nonmetastic melanoma.
36% of metastatic melanomas contained a much larger amplicon in a syntenic region on
human chromosome 6p25-24, and 35-52% of metastatic melanomas showed significant

overexpression of NEDDY, with more advanced tumours showing higher levels.

Comparison of human cancers with mouse models of cancer relies on the use of mouse
models that accurately recapitulate the human cancer (Tomlins and Chinnaiyan, 2006).
While ¢IAPI and Yap overexpression was found to be important in p53”;Myc-induced
hepatoblasts in the study by Zender et al. (2006), neither gene contributed to
tumourigenesis in p537;4kt or Ras hepatoblasts. Likewise, Nedd9 did not contribute to
melanoma metastasis in the absence of Ras or Raf activation (Kim et al., 2006b). Cross-
species comparison of genomic profiles for a particular cancer may therefore require
some prior knowledge of the genetic events that drive tumourigenesis in that cancer so
that an appropriate mouse model can be generated. However, cross-species analysis can
also facilitate the selection of a suitable mouse model. Lee and coworkers (2004) used
unsupervised hierarchical clustering of expression data from human and mouse
hepatocellular carcinomas to identify the mouse models that provided the best fit for
human cancers. Mouse and human tumours that clustered together due to similar
expression profiles also shared phenotypic characteristics, such as proliferation rate and
prognosis (Lee et al., 2004). Most genetically engineered mouse models do not show the

high levels of chromosome instability associated with human cancers. Mice that are
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engineered with telomere dysfunction, or defects in DNA damage checkpoints or DNA
repair, may therefore represent better models for comparative oncogenomics (Maser et
al., 2007). Comparative analysis of copy number alterations in chromosomally unstable
murine T-cell lymphomas and human solid tumours identified recurrent aberrations in the
mouse that are conserved in human T-cell acute lymphoblastic leukaemias but also in

other human tumour types (Maser ef al., 2007).

Candidate cancer genes can also be identified by comparing expression and CGH profiles
for human tumours with mouse insertional mutagenesis screens. Genes in expression
signatures associated with distinct subclasses of human acute myeloid leukaemia were
significantly correlated with genes nearest to insertion sites in a Graffi 1.4 MuLV mouse
model and with candidate leukaemia genes in BXH2 and AKXD mouse models (Erkeland
et al., 2006). There was little overlap between the candidates identified by Graffi 1.4 and
BXH2/AKXD, demonstrating that retroviral screens involving multiple models and
viruses may be required for a more effective cross-species comparison (Touw and
Erkeland, 2007). Amplified regions in human pancreatic cancer have also been shown to
contain more CIS in retrovirus-induced murine lymphomas and leukaemias than expected
by chance (Aguirre et al., 2004). As discussed in Section 1.4, insertional mutagenesis
“tags” the mutated gene, therefore facilitating cancer gene identification. In contrast,
copy number alterations in human cancer can be very large, encompassing many genes,
and no systematic approach currently exists for identifying the critical genes within these
regions (Degenhardt et al., 2008). Thus comparative analysis of oncogenic insertions in
mouse tumours and CGH data for human tumours is potentially a very powerful approach

for narrowing down the candidates in regions of copy number change.

1.6 Aims of this thesis

The elucidation of the human genome sequence and the advent of high-throughput
technologies for characterising cancer genomes have led to the discovery that the cancer
genome is far more complex than previously thought. Genome-wide, cancer-associated
mutation datasets can be generated at increasing speed and diminishing cost, yet
identifying the mutations that contribute to the cancer phenotype remains a challenge.
Integrative analyses, particularly cross-species comparisons, provide a means of
distinguishing likely driver mutations from the background of passenger mutations that

arise in unstable cancer genomes. The identification of cancer genes in regions of copy
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number change is especially problematic since such regions are often large and
encompass many potential candidates. Forward genetic screens are purported to be a
powerful tool for cancer gene discovery in the mouse, but how relevant are they to human

cancer?

This thesis describes work undertaken to compare large-scale datasets generated by
mouse insertional mutagenesis and CGH analysis of human cancer cell lines. The main
aims of this project are to narrow down the candidate cancer genes in regions of copy
number change in human cancers and, in so doing, demonstrate the utility of forward
genetic screens in the mouse for the identification of human cancer genes. Chapter 2
describes the steps taken to identify mouse candidate cancer genes from a retroviral
insertional mutagenesis dataset generated from 1,005 mouse tumours and a smaller
transposon-mediated insertional mutagenesis dataset generated from 73 mouse tumours.
Chapter 3 describes detailed analyses of the mouse candidate genes, including
comparisons with numerous human and mouse cancer-associated mutation datasets, as
well as an analysis of the types of mutations occurring in each candidate and the
identification of collaborating cancer genes. Chapter 4 describes the work undertaken to
identify regions of copy number change in Affymetrix 10K SNP array CGH data for 713
human cancer cell lines, and then to identify candidate cancer genes within these regions
by comparison with mouse candidates from the retroviral screen. In Chapter 5, higher
resolution Affymetrix SNP 6.0 CGH data generated from a subset of the same cell lines is
used, again to identify putative cancer genes, but also for comparison with the lower
resolution data to demonstrate the superiority of the high-resolution data for cancer gene
discovery. Analyses that attempt to identify genes that co-occur, and therefore potentially
co-operate, in both human and mouse cancers are also described. Finally, conclusions

drawn from the analyses are presented in Chapter 6.
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Chapter 2 Identifying insertion sites and candidate
cancer genes by insertional mutagenesis in the

mouse

2.1 Introduction

When a retroviral or transposon insertional mutagen inserts into the mouse genome, it
acts as a molecular tag that facilitates the identification of genes that it disrupts. As
discussed in Section 1.4.2.1.2, the elucidation of the mouse genome sequence and the
development of high-throughput, PCR-based technologies for insertion site identification
have allowed for larger scale mutagenesis screens that can identify a higher proportion of
insertions across larger numbers of tumours. 1,005 mouse tumours were generated in a
retroviral insertional mutagenesis screen performed by the Netherlands Cancer Institute
(NKI). Murine leukaemia virus (MuLV) was used as the insertional mutagen, and
insertions into the mouse genome were identified using splinkerette PCR (see Section
1.4.2.1.2). In a separate study at the University of Minnesota, 73 mouse tumours were
generated by insertional mutagenesis using the Sleeping Beauty T2/Onc transposon (see
Section 1.4.2.2.1). Genomic DNA flanking the retroviral and transposon insertion sites
was sequenced at the Wellcome Trust Sanger Institute. This chapter begins with a
description of the retroviral and transposon insertional mutagenesis datasets. While I did
not contribute to the generation of tumours or sequence reads, all statistics are the result
of my own analyses. A dataset of known cancer genes, compiled by the Sanger Institute
Cancer Genome Project, is also described. This is followed by an account of the work
undertaken to process the sequence reads into insertion sites, to filter out erroneous reads
and insertion sites, and to measure the coverage of the screen. A relatively high
proportion of reads could not be mapped, and the nature of non-mapping reads was
therefore investigated. The remainder of the chapter focuses on the methods used to
identify candidate cancer genes in the vicinity of mapped insertions. The identification of
genes that are being mutated by retroviral insertions is complicated by the presence of
enhancer mutations that may act at long range (see Section 1.4.2.1.2). Insertions were
assigned to genes by defining rules based on an analysis of the distribution of insertions
around mouse genes. Statistically significant common insertion sites (CISs) were defined

using Monte Carlo simulations (Suzuki et al, 2002) and a kernel convolution-based
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framework (de Ridder et al., 2006), and CIS genes identified by the two approaches were
compared. Data from the retroviral screen forms the principal mouse dataset used in this
thesis, and is therefore discussed in greater detail than data from the transposon screen.
The main steps involved in identifying candidate cancer genes from retroviral sequence
reads are summarised in Figure 2.1. Unless otherwise stated, P-values provided in this

chapter were generated using the Chi-squared test for independence.

2.2 Description of the datasets
2.2.1 The retroviral dataset

Mice of the FVB strain were engineered with a range of genetic backgrounds in order to
identify cancer genes that collaborate with the loss of tumour suppressor genes (see
Section 1.4.2.1.3). 1,005 tumours were generated, of which 22.7%, 12.5% and 23.0%
were on a pl 9% (Cdkn2a™), p53" or wildtype genetic background, respectively. The
remaining tumours were generated on a background deficient in p/5, p16, p21 or p27, or
a combination of these (Table 2.1A). Equal numbers of males and females were used
(500 each of males and females, 1 hermaphrodite and 4 unknown). The vast majority (at
least 90.9%) of tumours originated in the spleen, thymus or lymph nodes (Table 2.1B).
The 1-tailed Fisher Exact Test was performed to determine whether genetic background
or gender was associated with particular tumour types. Wildtype and pl9” genetic
backgrounds were over-represented in tumours of the thymus (P=4.67x10° and
P=9.87x107, respectively), while among tumours of the spleen, there was an over-
representation of p53” (P=5.05x107) as well as wildtype and p/9” genetic backgrounds
(P=0.0240, and P=1.84x10, respectively). Lymph node tumours were over-represented
in p]6'/'p]9'/' mice (P=1.10x107) and in mice with a deficiency in p2I or p21 and p27
(p217", P=2.32x10""; p217p27"", P=4.34x10"; p217p27", P=2.17x10™; p21"p27"",
P=0.0128). It is possible that these results represent a subjective bias in the selection of
tumours.  Alternatively, they may indicate that different genetic backgrounds are
predisposed to different tumour types. Most striking was the over-representation of the
pl6"pl97 genotype among tumours in the liver (P=1.04x107%). At least 24 of the 33
liver tumours have been identified as tumours of the liver nodule. These are commonly
observed in p/6”pIl9” mice infected with MuLV and may be lymphomas that have
spread to the liver or they may be histiocytic sarcomas, which are a poorly-defined class

of haematopoietic neoplasm (Lund ef al., 2002). There was no significant difference
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LTR and adapter sequences identified
in reads using cross_match

< =
Reads mapped using SSAHA2
< =

Mapped reads filtered to remove
possible contaminants

= =

Exact insertion coordinates and
orientations determined

= =

Overlapping reads clustered into
single insertion sites

= =

Insertions mapping to LTR-like
sequences removed

= =

Insertions per PCR merged into
insertions per tumour

= =

Insertions mapping to the same base
pair removed

= =

Statistically significant common
insertion sites (CISs) identified

= =

CISs assigned to mouse genes

= _—

Final set of candidate genes

Figure 2.1. Workflow for identifying mouse candidate cancer genes from sequencing
reads generated in a retroviral insertional mutagenesis screen.
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A B

Number of Number of
Genotype tumours Tissue tumours
wildtype 231 spleen 468
p19-/- 228 thymus 227
p53-/- 126 lymph node 125
p16-/-, p19-/- 91 spleen; lymph node 71
p15-/- 55 unknown 52
p21-/-, p27+/- 54 liver 33
p21-/- 43 thymus; spleen 15
p27+/- 38 spleen nodule 4
p21-/-, p27-/- 36 spleen; liver 3
p27-/- 36 kidney nodule 2
pl6+/-, p19+/- 26 scapular tumour 1
p21+/-, p27+/- 17 uterine tract 1
p15-/-, p21-/- 15 uterine tumour 1
p21+/-, p27-/- 5 fascial lymphoma 1
p53+/- 2 uterine tumour; lymph node 1
p21+/- 2 Total 1005
Total 1005
C

Number of
Tissue tumours
spleen 38
thymus 22
lymph node 10
brain tumour 2
unknown 1
Total 73

Table 2.1. Characterisation of the insertional mutagenesis datasets. (A) The number
of tumours from mice with different genetic backgrounds in the MuLV screen. (B)
The number of tumours of each tissue type in the MuLV screen. (C) The number of
tumours of each tissue type in the Sleeping Beauty T2/Onc screen.
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between the number of males and females with tumours from different tissues or genetic

backgrounds.

Following the isolation of tumour DNA, most samples were subjected to two separate
splinkerette PCRs using different restriction enzymes, Sau3A4l and Tsp5091, in order to
increase the number of insertions that could be identified in the screen (see Section
1.4.2.1.2). The PCR products were shotgun cloned, and 96 reads were sequenced per
PCR. Everything described from this point onwards is the result of my own work. The
reads were converted to a CAF (Common Assembly Format) file, which contains the
DNA sequence, base quality, and the coordinates of sequencing and cloning vector
sequences within the read. The CAF file was then converted to FASTA format, in which
the vector sequences were masked. The resulting dataset comprised 159,303 sequence
reads from 2,060 PCRs. 14,767 reads from 199 PCRs were discarded because they were
of unknown identity or had been flagged as invalid due to possible sample mix-up, no
obvious tumour when killed, or contaminated or low quality PCR. The remaining
144,536 reads included 134,985 that were generated from 1,734 PCRs performed on
1,005 mouse tumours. For 62% of tumours, the dataset contained reads obtained from 2
PCR experiments, i.e. using both restriction enzymes, while for 33% of tumours, reads
were only available for a single experiment. The remaining 5% of tumours were
subjected to 3 or 4 PCRs, in which additional reactions using Sau3A4I and/or Tsp5091
were performed. The number of reads per tumour is shown in Figure 2.2. To facilitate
the identification of PCR artefacts, 1,180 reads were also generated from 24 PCRs
performed on uninfected mice. Finally, 8,371 reads were generated from 103 PCRs
performed on samples that were harvested from mice 5 or 10 days post-MuLV infection.
There has been limited time for cell re-infection, and thus for tumour initiation and
progression, in these “short infection time” mice. A high proportion of insertions in
samples from these mice are therefore expected to map to sites in the genome where the

virus prefers to insert (“hotspots”) and that may not contribute to tumourigenesis.

Cross_match (Green, unpublished) was used to identify and mask the retroviral LTR (5°-
GCTAGCTTGCCAAACCTACAGGTGGGGTCTTTCA-3") and splinkerette adapter
(5’-CCACTAGTGTCGACACCAGTCTCATTCAGCCAC-3’) in order to prevent
erroneous mapping of reads to regions of the mouse genome that resemble these
sequences. The minimum length of the perfectly matching sequence (minmatch) and the

minimum alignment score (minscore) were each set to 10. These parameters were used
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Figure 2.2. The number of sequence reads per tumour before mapping. Up to 96
reads were sequenced for each PCR. The bimodal distribution reflects the fact that 62%
of tumours were subjected to 2 linker-mediated PCRs, while for 33% and 5% of tumours,
1 PCR or more than 2 PCRs, respectively, were performed.
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for all cross match runs, unless otherwise specified. Among the reads from tumour
DNA, 110,318 (81.7%) contained LTR and adapter sequences, 9,534 (7.1%) contained an
LTR but no adapter, 12,592 (9.3%) contained an adapter but no LTR, and 2,541 (1.9%)

contained neither.

2.2.2 The Sleeping Beauty dataset

This smaller screen comprised 73 tumours, of which 60 were from wildtype mice on a
mixed C57BL/6J/FVB background, and 13 were from Bloom (Blm)-deficient mice from
the same strain. Blm-deficient tumours may be more likely to harbour mutations that
inactivate tumour suppressor genes (see Section 1.4.2.1.1). These tumours, and 31
wildtype tumours, were generated from a transposon array (LC76) located on
chromosome 1. The remaining wildtype tumours were generated from an array (LC68)
on chromosome 15. As in the MuLV screen, tumours developed almost exclusively in
the spleen, thymus and lymph node (Table 2.1C) since mice have a propensity for these

tumour types.

Insertions were cloned using linker-mediated PCR in which genomic DNA flanking both
sides of the insertion was amplified to maximise insertion site identification (see Section
1.4.2.2.1). The restriction enzymes Bfal and Nlalll were used to clone DNA flanking the
5 and 3’ IR/DRs, respectively. As in the retroviral screen, PCR products were shotgun
cloned and 96 reads were sequenced. All work described hereafter is my own. The initial
dataset comprised 16,674 sequences. Although steps were taken to minimise the
amplification of transposons within the concatemer (see Section 1.4.2.2.1), the sequence
data inevitably contain some reads that map to the concatemer. Transposons in the
concatemer are flanked by the sequence 5’-TATAGGGATCC-3’ and therefore any reads
containing this sequence are likely to represent transposons that have not mobilised. 89

concatemer sequences were removed using cross_match (Green, unpublished).

The presence of the transposon IR/DR provides evidence that the genomic DNA is
directly flanking an insertion. Using cross_match, IR/DR elements were identified and
masked in 15,630 reads (94.2% of the total), and the rest were discarded. The linker,
which was identified in 12,209 (78.1%) of the remaining reads, and extra vector sequence
from the PROMEGA pGEM-T easy vector T7 promoter-multiple cloning site-SP6

promoter were also screened out with cross_match. 3,716 reads (23.8%) contained fewer
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than 25 bp of unmasked sequence after screening, and as these would be too short for
mapping, they were removed from the dataset. Tumour details were not available for a
further 1,123 reads, and so these were also removed. The final dataset comprised 10,791
reads generated from 138 PCRs. This included 60 tumours for which genomic DNA
flanking both sides had been amplified and sequenced, and 11 tumours for which only
one side had been amplified. For the remaining 2 tumours, both sides had been amplified,

and PCR had been performed twice on one or both sides.

2.2.3 Known cancer genes in the Cancer Gene Census

The Cancer Gene Census is a list of genes for which there is strong evidence of a role in
cancer (Futreal et al., 2004; see Section 1.2.5.2). The complete working list dated
13/02/2007 was downloaded from http://www.sanger.ac.uk/genetics/CGP/Census/. The
Ensembl (Hubbard et al., 2007) Perl Application Programming Interface (API) was used
to extract the Ensembl identifiers for each gene in the list from Ensembl version 48.
Ensembl provides annotation on a selection of eukaryotic genomes, and it has been used
throughout this project to obtain information about the mouse and human genomes. The
API provides standardised methods for accessing data in the Ensembl MySQL databases
through Perl scripts and it insulates developers from changes at the database level. From
the 363 genes in the Cancer Gene Census, 354 human Ensembl genes were identified.
352 mouse Ensembl genes have a human orthologue in the Cancer Gene Census. 314
mouse genes have an orthologue with somatic mutations in cancer and 67 have an
orthologue with germline mutations, including 32 that have an orthologue with both
mutation types. The orthologues of 285 mouse genes bear mutations that are dominant at
the cellular level, 66 bear recessive mutations, of which 2 are X-linked, and 1 has both
dominant and recessive mutations. 205 have been implicated in leukaemia and/or
lymphoma, 102 have been implicated in epithelial tumourigenesis and 84 have been
implicated in mesenchymal tumourigenesis. The most common type of mutation is
translocation, which affects the orthologues of 263 mouse genes. A list of the human

cancer genes with mouse orthologues is provided in Appendix A.

2.3 Mapping the sequence reads using SSAHA2

As discussed in Section 1.4.2.1.2, SSAHA2 (Ning et al., 2001) is a fast DNA alignment

algorithm that is suited to mapping large numbers of insertions to the mouse genome.
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The parameters of SSAHA2 were adjusted to maximise the number of mapped reads, and
therefore to identify as many insertions as possible. A test set of 25,000 reads from the
retroviral screen was mapped to the NCBI m34 mouse genome assembly. SSAHA2
preprocesses the query sequence (the read) and the subject (sequences in the NCBI m34
database) into consecutive k-tuples of k& contiguous bases, called the word size or k-mer.
Lowering the k-mer increases the sensitivity, and therefore yields more hits, but it also
increases CPU time, and a k-mer of 13 or 14 is generally recommended for large
databases, such as genome assemblies. The default k-mer of 12 was used for all runs of
SSAHAZ2, since this offers a small gain in sensitivity without impacting too heavily on the
speed. The “seeds” parameter defines the number of exact words that must match in the
subject. Lowering the seeds increases the sensitivity, resulting in a higher proportion of
low (<95%) identity and ambiguous mappings, but also more high identity unambiguous
mappings (Table 2.2A). Initially, seeds 3 was chosen because seeds 2 yielded only &
additional high identity unambiguous mappings and required more CPU time. By
default, sequences are processed into consecutive k-mers with no overlap. Reducing the
parameter “skip” increases the overlap between k-mers and should provide greater
sensitivity. For seeds 3, decreasing skip to 4 (8 base overlap) and 6 (6 base overlap) did
not increase numbers of high identity, single mapping reads. For higher seeds, numbers
did increase but were lower than for seeds 3 alone (Table 2.2B). SSAHA2 with seeds 3
yielded more mappings than NCBI BLASTN (Altschul et al., 1990; Table 2.2A) and was
significantly faster. BLASTN parameters were set for moderately sized (~500 bp)
genomic DNA (-G 1, -E 3, -W 30, -F ‘m D’, U, -e 1e-20).

The full set of 144,536 retroviral reads was mapped to the NCBI m36 mouse build using
SSAHA2 with seeds 3 and default values for all other parameters. Alignments with low
identity were not segregated in this larger analysis because they may simply represent
sequencing reads of poor quality and, if they are erroneous, they should be picked up in
the filtering process (see Section 2.5). 86,290 reads (59.7%) mapped to a single location,
28,484 (19.7%) mapped to multiple locations, and 29,762 (20.6%) did not map at all.
Further runs of SSAHA2 were performed with lower seeds to map as many of the
unmapped reads as possible. 3,866 (13.0%) of unmapped reads could be mapped using
seeds 2, and the same results were obtained with seeds 1. This is surprising, since the
difference between seeds 3 and 2 was minimal when the 25,000-read test dataset was
used. In the test set, analysis with seeds 2 did increase the number of alignments with

<95% identity (Table 2.2A), and it is therefore likely that a proportion of the additional
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A SSAHA2 seeds
Mapping 5 4 3 2 BLAST
Single 13470 13894 14158 14164 14010
None 7060 6002 4971 3870 5960
Low 1837 2110 2414 3253 1365
Multiple 2633 2994 3457 3713 3665
Total 25000 25000 25000 25000 25000

B seeds 3 seeds 5
Mapping default skip 4 skip 6 default skip 4 skip 6
Single 14158 13699 13854 13470 13875 14004
None 4971 4187 4044 7060 3959 5096
Low 2414 3301 3281 1837 3301 2413
Multiple 3457 3813 3821 2633 3865 3487
Total 25000 25000 25000 25000 25000 25000

Table 2.2. The number of MuLV reads mapped using SSAHA2, with varying values
for parameters seeds and skip, and BLASTN. (A) Lowering the number of seeds
increases the number of reads mapped by SSAHA2. (B) Increasing the overlap
between k-mers decreases the number of reads mapped using seeds 3 but increases
the number mapped using seeds 5. Mapping types are Single (read maps to a single
location in the genome), None (read unmapped), Low (read maps with an identity lower
than 95%) and Multiple (read maps to multiple locations in the genome).
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unambiguous mappings obtained using SSAHA?2 with seeds 2 on the entire dataset have a
low identity. The difference may also reflect developments in the algorithm in the time
between the two analyses. The default minimum Smith-Waterman score is 30, and
reducing this to 20 further increased the number of unmapped reads that could be mapped
to a single location using seeds 2 to 4,382 (14.7%). The final set of mappings comprised
90,672 reads (62.7%) that mapped unambiguously and 29,769 (20.6%) that mapped to
multiple locations. 24,095 (16.7%) remained unmapped.

Based on the observations for the retroviral dataset, the 10,791 reads of the Sleeping
Beauty dataset were mapped to NCBI m36 using SSAHA2 with default parameters plus
seeds 2 and score 20. 5,470 (50.7%) mapped to a single genomic location, 1,859 (17.2%)
mapped to multiple locations, and 3,462 (32.1%) did not map at all.

2.4 Accounting for unmapped reads

Even after maximising the number of reads that could be mapped using SSAHA2, there
was still a high proportion of unmapped reads in both the retroviral and Sleeping Beauty
datasets. The lengths of the 96,072 single-mapping, and 24,095 non-mapping, retroviral
reads are shown in Figures 2.3A and 2.3B, respectively. Since it is not known which part
of the read, if any, is genomic DNA, all bases that were not masked as vector, LTR or
linker were counted. 2,143 (8.9%) of the unmapped reads were exactly 132 base pairs in
length and a high proportion of these shared an identical sequence flanked by LTR and
splinkerette sequences. One read of length 132 bp was submitted to SSAHA2 and
BLASTN on the Ensembl website (http://www.ensembl.org/). As expected, there were
no matches to NCBI m36 using SSAHA2 with near exact or no optimisation. Using
BLASTN optimised for near exact matches (—E 10 —B 100 —filter dust —RepeatMasker —
W 15-M 1 -N -3 —Q 3 —R 3), there were 96 hits, all of which were low scoring. The hit
with the lowest E-value and P-value (both 4.2x10”) was an alignment of 50 bp with a
score of 22 and 86% identity to chromosome 8:126312491-126312540. The sequence
was also submitted to the Ensembl Trace Server (http://trace.ensembl.org), which
contains millions of single-pass DNA sequencing reads from over 1,000 different species.
The full length of the read matched with 100% identity to 6 clones from the free-living
nematode species Pristionchus pacificus. Since it was unclear how DNA from this
organism would have become incorporated into the screen, a 132 bp read was also

submitted to NCBI VecScreen (http:/www.ncbi.nlm.nih.gov/VecScreen/), which
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Figure 2.3. The lengths of retroviral reads that are unambiguously mapped (A),
unmapped (B), and unmapped and uncharacterised (C). The reads of length 63 bp
and 132 bp, which underwent further investigation, are shown.
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searches for vector contamination in nucleic acid sequences by using BLAST to query the
UniVec database. The entire sequence aligned to the MuLV retroviral vector pLNL6
with 100% identity and no gaps. Therefore, it appears that the 132 bp sequences are

composed entirely of retroviral sequence, to which an adapter has been ligated.

There were 657 sequences of length 63 bp. One such sequence was submitted to
BLASTN optimised for near exact matches, and one hit — an alignment of 18 bp with
100% identity to chromosome 15:90360616-90473373 — was obtained. The highest
scoring hit obtained in a search against the Trace Server was just 75.9% identity, to a
sequence from an unknown source. A VecScreen search revealed a 100% identity match
along the entire length of the unmasked sequence to the cloning vector pBR322. Since
these reads contain an adapter sequence, it is likely that they represent contamination

during linker-mediated PCR.

Other reads containing the pLNL6 and pBR322 vector sequences were identified using
cross_match. 19.4% of unmapped reads contained the pLNL6 sequence, while a further
4.8% contained the pBR322 sequence. In contrast, only 0.32% and 0.08% of reads
mapping to a single location had matches to pLNL6 and pBR322, respectively.
RepeatMasker (Smit et al., 1996-2004) was used to identify repeat regions within the
remaining unmapped reads. 13.6% contained low-complexity regions. Such regions are
difficult to sequence, and these reads may have failed to map because they were not
correctly sequenced. Alternatively, low-complexity regions may be the result of
polymerase stuttering, where the polymerase transcribes the same nucleotide multiple
times during PCR amplification, and the read may therefore no longer bear a close
enough resemblance to the corresponding region of the mouse genome. The proportion
of low-complexity regions was significantly lower in reads that mapped unambiguously

(6.2%, P=0).

A further 26.6% of unmapped retroviral reads were below the minimum length (25 bp)
that could be mapped using SSAHA2 with the chosen parameter values. Of the
remaining sequences, 0.73% comprised more than 50% Ns (i.e. unknown nucleotides),
and 1.2% contained other types of repeat element identified by RepeatMasker. This
compared with 0.11% and 0.18%, respectively, for reads mapping to a single location
(P=0 for both). The 2-tailed Fisher Exact test was used to determine whether there was

any significant difference between the numbers of each type of repeat identified by
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RepeatMasker in the mapped and unmapped reads. All types of low-complexity region
were over-represented in the unmapped reads, as were simple repeats and a selection of
retrovirus-related repeat elements (HAL1, GSAT MM, LIMEd, LTR/ERV1, MuL V-int,
MuRRS-int, RLTR4 MM-int and RLTR6-int, see Table 2.3A). This supports the theory
that many of the reads could not be mapped either because they contain low complexity
regions, or because they contain retroviral sequence and may not contain any genomic
DNA. There were also numerous under-represented repeat elements among the
unmapped reads (Table 2.3B). These included elements that one would expect to find in
genomic DNA, such as 4.5SRNA and LINEs and SINEs, and elements that are specific to
the genomes of rodents, such as the endogenous LTR MTE2a, and to the mouse in

particular, such as the SINE B2 Mm?2.

In summary, 15,996 (66.4%) of unmapped reads contained vector sequences or sequences
of low complexity, low quality or short length (Table 2.4). The remaining 8,099 reads
were searched against the Ensembl Trace Server using SSAHA2 with seeds 5. 5.1% had
matches in the archive, of which 90.5% had matches to sequences of mouse origin. All of
the non-mouse matches had an identity of less than 91%, except one, which matched with
100% identity to 2 sequences, with trace names rtnlut06.g and rtnlyp83.g, from Rattus
norvegicus. As rat and mouse are closely related, it is possible that this read does contain
DNA from the mouse genome, but that it does not align to the mouse genome because of
a genome assembly error. 245 reads mapped to mouse sequences in the Ensembl Trace
Server with greater than 90% identity. The 8,099 uncharacterised reads were also
searched against NCBI m36 using NCBI BLASTN. 2,901 (35.8%) had BLAST hits, but
most had very low scores, just above the score threshold (half had a score of less than 33,
90% had a score of less than 59; Figure 2.4). The mapping algorithms of BLASTN and
SSAHAZ2 therefore show small differences in output that may not significantly affect the
final set of reliable mappings. Of the reads with BLAST hits, 76 also had hits to mouse
sequences in the Ensembl Trace Server. However, there were also 295 reads that had hits
to mouse sequences in the Trace Server but no BLAST hits. Again, these potentially

represent sequences that have been incorrectly omitted from the mouse build.
Of the 5,198 (20.9%) remaining non-mapping reads, 4,363 were from tumours, 62 were

from non-infected mice and 773 were from short infection time mice. Reads from

control samples were highly over-represented (P=6.62x10""%). There was also a highly
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A B
Repeat Element P-value Repeat Element P-value Repeat Element P-value
A-rich 0 4.5SRNA 7.90E-04 LTR/ERVL 1.21E-10
AT_rich 0 B1F 3.74E-22 LTR/MaLR 1.21E-82
C-rich 7.64E-241 B1F1 6.41E-08 Lx8 2.67E-13
CT-rich 1.94E-09 B1F2 1.03E-14 Lx9 9.04E-08
G-rich 0 B1_Murl 1.07E-11 MIR 3.08E-20
GA-rich 0 B1_Mur2 1.05E-18 MIR3 8.14E-06
GC_rich 0 B1_Mur3 5.32E-05 MIRb 8.48E-23
GSAT_MM 3.76E-04 B1_Mur4 1.09E-07 MTD 4.17E-13
HAL1 2.76E-05 B1_Musl 5.17E-05 MTE-int 2.38E-08
L1MEd 2.02E-03 B1_Mus2 5.55E-09 MTE2a 2.02E-05
LTR/ERV1 9.60E-21 B2_Mm?2 4.07E-03 MTE2b 1.30E-06
MuLV-int 1.87E-26 B3 5.49E-49 MTEa 8.20E-07
MuRRS-int 2.23E-08 B3A 3.50E-25 ORR1D2 3.79E-10
RLTR4_MM-int 5.83E-45 B4 1.93E-20 ORR1E 1.21E-04
RLTR6-int 8.18E-03 B4A 7.06E-45 Other 2.10E-03
Simple_repeat 0 BC1_Mm 8.00E-03 PB1 2.48E-12
T-rich 8.15E-301 DNA/MER1_type 1.44E-27 PB1D10 1.99E-31
polypurine 4.87E-47 DNA/MER2_type 5.23E-04 PB1D9 5.99E-09
polypyrimidine 4.47E-07 ID 8.22E-03 RMER15 2.11E-04
D4 3.79E-10 RMER30 1.26E-04
ID4_ 2.25E-10 RSINE1 7.00E-60
ID_B1 5.29E-69 SINE/Alu 9.88E-176
L1M 4.16E-04 SINE/B2 3.31E-73
L1M2 4.90E-03 SINE/B4 1.45E-182
L1MC3 8.00E-03 SINE/ID 9.77E-23
L1_Rod 3.19E-05 SINE/MIR 3.24E-47
L2 4.73E-07 THER1_MD 3.16E-03
LINE/L1 1.16E-65 URR1A 5.15E-03
LINE/L2 5.59E-13 URR1B 1.09E-07
LTR/ERVK 6.24E-07 SCRNA 1.99E-04

Table 2.3. Repeat elements that are over-represented (A) and under-represented (B)
among unmapped reads compared with unambiguously mapped reads. Over-
represented elements include low-complexity regions and retrovirus-related elements,
while under-represented elements include many that are frequently found in mouse
genomic DNA. P-values were calculated using the 2-tailed Fisher Exact Test.

Unmapped Unambiguous
reads (%) mappings (%)

MMLV vector sequence 19.37 0.32
pBR322 4.84 0.08
low complexity 13.63 6.19
<=25 bp in length 26.62 0
>50% Ns 0.73 0.11
Other repeats 1.19 0.18
Total 66.38 6.88

Table 2.4. Summary of the proportions of unmapped and unambiguously mapping
reads that contain vector sequences, or sequences of low complexity, low quality or
short length. “>50% Ns” refers to sequences where the identity of more than 50% of
bases is unknown. “Other repeats” refers to sequences containing repeat regions other
than low complexity regions that were identified using RepeatMasker.
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Figure 2.4. BLAST scores for uncharacterised unmapped reads. The majority of
sequences that do not map with SSAHA2 but map with BLASTN have a low BLAST

score.
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significant under-representation (P=0) of reads containing both an LTR and an adapter
sequence (1,972 reads) compared with those containing no LTR (1,065 reads) or no
adapter (1,031 reads). These findings suggest a high presence of erroneous,
contaminating reads. In addition, many reads were very short (Figure 2.3C) and may
have failed to map due to the presence of a small number of differences from the
reference genome sequence. Such differences may correspond to polymorphisms
between the mouse strain FVB, from which the reads are derived, and strain C57BL/6J,
upon which the mouse reference genome is based. 17.7% of reads were greater than 800
bp in length. The quality of reads rapidly deteriorates after ~700-900 bases of
sequencing, which suggests that these are mostly of very poor quality or are chimeric

sequences (discussed in Section 2.5).

There was also a highly significant over-representation of non-mapping reads without
linker sequences (P=1.61x107°) in the Sleeping Beauty dataset. Most of the non-mapping
sequences flanked by an IR/DR and linker were short, with 50.2% being shorter than the
25 bp threshold for SSAHA2. As with the retroviral reads, there was a higher proportion
of low-complexity sequences among unmapped Sleeping Beauty reads greater than 25 bp
in length (3.1%) than among those that mapped unambiguously (2.4%). There was also a
significant over-representation of GC-rich elements (P=1.44x10"), and an under-
representation of the LINE L1M2 (P=0.00265) and the rodent-specific LTR MTD
(P=2.85x10"") and SINEs B3 (P=0.00348), B3A (P=0.00265), PBID10 (P=2.65x10) and
RSINE1 (P=2.74x10™).

2.5 Filtering the mapped reads

During PCR amplification, unrelated sequences can hybridise to one another, resulting in
clones comprising chimeric sequences. It is important that retroviral reads contain the
LTR sequence since, if the part of the read that maps to the genome is directly adjacent to
the LTR, the location of the mapped DNA is likely to be the true location of the retroviral
insertion. For reads that contain an LTR and an adapter, these sequences should directly
flank the genomic DNA. Therefore, for each read, the coordinates of the LTR and
adapter sequences identified by cross match were compared to the coordinates of the
region that mapped to the mouse genome using SSAHA2. If the gap between these
regions was within 5 bp, the read was accepted. Since the junction between the LTR and

the genomic DNA is most important, reads were also accepted if the DNA that mapped to
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the genome was within 5 bp of the LTR but there was a gap between the genomic DNA
and the adapter, or if the read did not contain an adapter sequence. Base miscalling in
low quality reads may result in a SSAHA2 alignment that does not extend right up to the
LTR sequence even though the LTR and genomic DNA are directly adjacent. Therefore,
up to a distance of 30 bp, reads were accepted if the sequence between the LTR and the
aligning genomic DNA did not contain any restriction sites for 7Tsp509/ (i.e. 5’-AATT-3")
or Sau3Al (i.e. 5°-GATC-3’), depending on which had been used in the PCR. If a
restriction site intercepts the LTR and genomic DNA, it is possible that the genomic DNA
that immediately flanks the LTR, and represents the true location of the virus in the
genome, may not have been mapped because it is too small or of poor quality but that it

has ligated to a contaminating DNA fragment that has been mapped.

The components within the read should be in the configuration LTR-genome-adapter or
adapter-genome-LTR. Therefore, any reads that had a different configuration were
discarded.  For example, the configuration LTR-adapter-genome suggests that a
contaminating fragment of genomic DNA has ligated to the end of the adapter, and that
the true flanking region of the LTR could not be mapped because it is too short or of poor
quality. Reads containing multiple LTR or adapter sequences were subjected to the same
filtering criteria, whereby reads were discarded if the sequence for one LTR did not
directly abut the genomic sequence or the adapters intercepted the LTR and genomic
sequence. Reads with no LTR were rejected unless an LTR identified by reducing the
minimum score for cross_match to 5 followed the rules outlined above for stronger LTR

matches.

81,846 reads (90.3%) were retained after filtering. Both accepted and rejected reads with
gaps of greater than 5 bp were subjected to further analysis. If the average quality
(Phred) score of the gap region was less than 30, the read was accepted as the gap may
contain miscalled bases, causing SSAHA2 to prematurely terminate extension of the
alignment across the full length of the genomic DNA within the read. Reads were also
accepted if they mapped to the same location as other reads from the same tumour that
did not contain a gap. The final set of accepted reads totalled 81,910 (90.3%). The
filtering procedure is summarised in Figure 2.5. There were significantly more reads of
greater than 800 bp in length among removed reads (39.5%) than retained reads (6.7%,
P=0) and removed reads mapped to the genome with a lower percentage identity (92.6%

+ 5.9) than retained reads (99.0% =+ 2.3).
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Figure 2.5. The filtering process for single mapping reads. Blue boxes contain the
counts for accepted or rejected reads at each stage, where the top number in each box
refers to the count for retroviral reads and the bottom number refers to the count for
transposon reads. Final counts for the accepted and rejected reads are shown in the green
and red box, respectively.
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29,769 reads mapped to multiple locations in the mouse genome. These may be chimeric
or low quality reads, or they may represent retroviruses that have inserted into duplicated
or repetitive regions of the genome. 15,036 reads were identified where at least one of
the mappings matched the criteria used for filtering single mapping reads. For 8,429 of
these reads, only one mapping matched the criteria, and this was retained in the dataset
while other mappings were discarded. Among the remaining 6,607 reads, there were 465
where only one mapping had an alignment of 100% identity. These mappings were
retained and all others were discarded. In total, 8,894 (29.9%) of reads that mapped
ambiguously were retained. As with the unambiguous mappings, there was a significant
over-representation of reads greater than 800 bp in length in the removed reads (13.4%)
compared to the retained reads (8.9%, P=3.40x102*). The retained reads were pooled

together with the retained single mapping reads, giving a total of 90,804 reads.

Transposon insertions were filtered using the same criteria, except that gaps between
IR/DRs and genomic DNA were scanned for Nlalll (5’-CATG-3") or Bfal (5’-CTAG-3’)
restriction sites, depending on whether the IR/DR was from the left or right end of the
transposon. 5,340 (97.6%) of reads mapping to a single genomic location and 941
(50.6%) of those mapping ambiguously were accepted. The filtering of reads that

mapped unambiguously is summarised in Figure 2.5.

2.6 Identification and filtering of insertion sites

As 96 reads were sequenced for each PCR, there may be multiple reads that correspond to
the same insertion site. The exact genomic coordinates and orientation of the retroviral or
transposon insertion represented by each read were determined using the coordinates and
orientation of the genomic DNA, resolved by SSAHA2. The methods are summarised in
Figure 2.6. Reads from a single PCR mapping to within 2 kb were then clustered into a
single insertion site, resulting in 29,553 retroviral insertion sites and 2,821 transposon

insertion sites across all PCRs.

It is possible that endogenous LTR sequences within the mouse genome could be the
target of non-specific PCR amplification in the retroviral screen. NCBI BLASTN,
adjusted to search for short sequences (Word size 7, E value 10,000, filter OFF), was
therefore used to identify sequences in NCBI m36 that resembled the MuLV LTR. In a
preliminary analysis on NCBI m34, all 15 bp fragments of the LTR sequence
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Figure 2.6. Determining the exact insertion site and orientation of retroviral (A) and
transposon (B) insertions in the mouse genome. Adapter sequences are shown in red;
genomic DNA is shown in green. A. The point of insertion is the genomic nucleotide
adjacent to the 5> LTR of the MuLV retrovirus (shown in blue) in the sequence read.
Alignment to the forward strand of the mouse genome indicates that the retrovirus has
inserted in the 5’-3” orientation and the insertion site corresponds to the last nucleotide in
the reported alignment. Alignment to the reverse strand indicates that the retrovirus has
inserted in the 3’-5” orientation and the insertion site corresponds to the first nucleotide in
the alignment. B. As for retroviral insertions, except that there are two sets of reads,
containing a left or right IR/DR sequence. The T2/Onc transposon is shown in pink.
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5’-GCTAGCTTGCCAAACCTACAGGTGGGGTCTTC-3> were used as query
sequences, but 99% of the insertions near LTR-like sequences in short infection time
mice were identified using LTR fragments 5’-GCTTGCCAAACCTAC-3" and 5’-
CTTGCCAAACTACA-3’, and therefore only these fragments were used in the current
analysis. All of the apparent insertions in the uninfected control samples should be PCR
artefacts, while short infection time DNA is expected to contain a higher proportion of
PCR artefacts than tumour DNA. Among the 1,399 reads mapping to LTR-like sites,
there were significantly more from uninfected samples and from short infection time
samples than expected by chance (P=3.17x107° and P=0, respectively). These findings
support the theory that reads mapping to sites that resemble the retroviral LTR are the
result of non-specific PCR amplification and do not represent real insertion sites. For
example, 174 samples contain an insertion in the aminoadipate-semialdehyde synthase
(Aass) gene, but the insertions are adjacent to a 14 bp sequence that precisely matches the
MuLV LTR and are therefore likely to be false positives. Figure 2.7 shows these
insertions displayed in Ensembl. The Distributed Annotation System (DAS) server
ProServer was used to display both the retroviral and the transposon insertion sites in the
context of the mouse genome in Ensembl contigview. Ensembl is a DAS client that can
integrate genome annotation information from multiple servers, enabling users to view
and compare annotations from multiple sources in a single display. All 1,399 reads at

675 LTR-like sites were removed from the dataset.

Apparent insertions in non-infection and short infection time samples were removed from
the dataset, but a decision was made not to remove tumour insertions that mapped to the
same locations. A preliminary analysis, in which the reads were mapped to mouse build
NCBI m34, showed that many of the reads from non-infection and short infection time
samples mapped to cancer genes that are known targets of retroviral insertional
mutagenesis. Insertions within 5 kb of Myc were identified in 41.7% of non-infection
samples, 26.2% of short infection time samples and 30.4% of tumour samples (see Figure
2.8). Similarly, the proportions of insertions from non-infection and short infection time
samples in and around Mycn were 12.5% and 35.9%, respectively, but just 8.9% in
tumour samples. Findings for the short infection time dataset could indicate that Myc and
Mpycn are insertion hotspots, or that selection for Myc and Mycn insertions occurs at an
early time point. However, these explanations do not justify the presence of such
insertions in non-infection samples. As all non-infection insertions map to only 142

distinct coordinates, it seems an unlikely coincidence that Myc and Mycn are targeted by
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Figure 2.7. Insertions in the mouse aminoadipate-semialdehyde synthase (4ass) gene
are PCR artefacts that map to an LTR-like sequence in the mouse genome. 174
samples contain an insertion in this region (46 are shown here as triangles). Insertions
from tumours, short infection time samples and uninfected samples are shown as red,
green and blue triangles, respectively. The LTR-like sequence is circled.
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Figure 2.8. A high proportion of insertions in control samples map to the Myc gene.
This figure shows some of the insertions in and around the Myc gene. Insertions from
tumours, short infection time samples and uninfected samples are shown as red, green and
blue rectangles, respectively.
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non-specific primer binding, and there are no LTR-like sequences near these genes. The
insertions may result from contamination during PCR or, even more worryingly,
unintended infection of mice in the animal facility. The control samples are useful for
picking out possible contaminants, like those described above that map to LTR-like
sequences, but discarding all tumour insertions that map to the same sites as control
insertions would most likely result in the removal of a considerable number of real

insertions.

The insertion sites identified in individual PCRs were clustered into 22,579 retroviral
insertion sites from 997 tumours. The average number of inserts per tumour was 23.49 =
11.42 (Figure 2.9A). There were, on average, 3.72 + 6.21 reads per insert (Figure 2.9B).
The 2,821 transposon insertion sites identified in individual PCRs were clustered into
2,643 insertion sites from 73 tumours. There was an average of 36.21 = 18.55 inserts per

tumour, and 2.38 = 4.08 reads per insert.

2.7 Estimating the coverage of the mutagenesis screens

Measuring the overlap of insertion sites between PCRs for an individual tumour gives
some indication of the proportion of insertions that were identified in the screens. There
were 616 tumours for which retroviral insertions had been identified from one PCR using
Sau3A1 and one using Tsp5091. These contained 10,733 and 8,580 insertions identified
using Sau3Al and Tsp5091, respectively, of which 2,968 were identified using both
enzymes. The overlap between PCR experiments was therefore 18.2%, rising to 32.9% if
insertions represented by a single read were omitted. More than one enzyme is required
because individual enzymes do not cut the genomic DNA sufficiently close to all
insertions to enable PCR amplification of the intervening sequences. Since the overlap
between PCRs is low, it seems likely that even two enzymes do not give sufficient
coverage. However, the difference between the 2 PCRs may also result from insufficient
sequencing, such that genomic DNA flanking an insertion is amplified but is not
sequenced. This may explain why a high proportion of insertion sites represented by a
single read are not identified by both PCRs, since they are more likely to be rare
insertions that have a low representation in the PCR mixture and are less likely to be

sequenced.
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Figure 2.9. The number of insertions per tumour (A) and reads per insertion (B).
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For 3 tumours, genomic DNA was also digested using BstYl, and 384 reads were
sequenced. Reads were mapped to NCBI m34 and were compared to Sau3Al and
Tsp5091 reads from the same tumours, also mapped to NCBI m34. There was a 39.0%
overlap between insertion sites identified from PCRs using Sau347 and BstYl, and a
23.4% overlap between those identified from PCRs using 7sp5091 and BstYl. A higher
overlap is expected between Sau3Al and BstYl because the BstYl target site (5°-
RGATCY-3’) contains the target sequence for Sau3A41. BstYI cuts less frequently than
Sau3A1 and Tsp5091. For reads generated using Sau3A41 or Tsp5091, the average distance
between the LTR and the restriction site at which the DNA was cut was 308.41 bp, but
for reads generated using BstYl, the average distance was 386.52 bp. It is therefore
difficult to directly compare the PCRs because fragments of BstY/-digested DNA will be
longer, on average, and there is likely to be a higher proportion that cannot be amplified
by PCR. For insertion sites that were identified using Sau3A41 or Tsp5091 but not using
BstYl, the genomic DNA within the corresponding reads was scanned for BstY/ target
sites. Likewise, for insertion sites that were uniquely identified using BstY/, the genomic
DNA was scanned for Sau3A41 and Tsp509I target sites. If the sequencing depth of 96
reads was sufficient, insertion sites should only be uniquely identified using BstY/ if there
are no Sau3Al and Tsp509] target sites close enough to the insertion site for successful
PCR. A BstYI target site was identified at a distance equal to, or closer than, the Sau3A41
or Tsp5091 site in reads corresponding to 2 out of 15 unique Sau3A4! insertion sites and 4
out of 20 unique Tsp509I insertion sites. However, for Sau3A41 and Tsp5091, a target site
was identified at a distance equal to, or closer than, the BstY7 site for 21/21 and 14/29
unique BstYI insertions, respectively. This suggests that more insertion sites could be
obtained by increasing the sequencing depth to 384 reads per PCR, and that an even
greater depth may be required to saturate the screen. However, as only 3 tumours were
used in this analysis, and different enzymes were used to generate the digested DNA for
96-read and 384-read sequencing, it is difficult to reach any firm conclusions about the

number of enzymes and the sequencing depth required for maximum coverage.
For the Sleeping Beauty screen, there were 60 tumours for which 2 PCRs were performed

using restriction enzymes Bfal and Nlalll. Only 159 insertions (6.9%) were shared from

1,161 insertion sites identified using Bfal and 1,310 identified using Nlalll.
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2.8 Analysis of the distribution of insertions around mouse genes

The long-range effects of MuLV enhancer mutations can complicate the identification of
mutated genes. Analysing the distribution of insertions around mouse genes, and in
particular, around the mouse orthologues of known cancer genes, can help to define rules
for predicting which gene is being mutated by an insertion. The genomic coordinates and
orientation of all mouse protein-coding and miRNA genes were extracted from Ensembl
using the Perl API version 45 36f, and insertions were counted in 100 bp intervals up to
20 kb upstream and downstream of each gene. The gene orientation was used to
determine the orientation of insertions with respect to each gene. Figures 2.10A-D show
the number of genes that contain insertions in each 100 bp interval upstream and
downstream in the sense and antisense orientation with respect to each gene. In the full
set of genes, the number of sense and antisense insertions peak at around 500-600 bp
upstream, and a similar pattern is observed around the mouse orthologues of known
cancer genes. These sense and antisense insertions are likely to represent promoter and
enhancer mutations, respectively (see Section 1.4.2.1.1), with the peak representing the
optimal distance for mutation. Downstream insertions show a relatively uniform
distribution with similar proportions of insertions in the sense and antisense orientation.
This may indicate that most are randomly occurring non-oncogenic insertions, or that
there is no optimum distance for an enhancer mutation that acts downstream of a gene. It
is also likely that some of these insertions are affecting adjacent genes, and variation in
the distance between genes may contribute to the observed distribution. There is also no
obvious pattern in the downstream counts of cancer genes with insertions. The plots in
Figures 2.10A-D show the counts of genes with insertions up to 20 kb upstream or
downstream, regardless of whether adjacent genes intercept the 20 kb region. However,
counting only as far as the adjacent gene gives a similar distribution, with peaks at 500-
600 bp upstream in both orientations, and an essentially uniform distribution downstream.
Counting actual insertions, rather than the number of genes containing insertions, skews
the distribution towards genes containing larger numbers of insertions. For example, Myc
contains many enhancer mutations, and the highest peak might represent the optimal
distance for an enhancer mutation of Myc, rather than for all genes. However, once again
the highest peak is at 500-600 bp upstream. A similar distribution is also obtained by

counting only the genes that contain insertions represented by more than one read.
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Figure 2.10. The number of genes with insertions in 100 bp intervals up to 20 kb
upstream in the sense (A) and antisense (B) orientation and downstream in the sense
(C) and antisense (D) orientation with respect to the gene. Counts of cancer genes
with insertions in each interval are shown in yellow.
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Known oncogenes and tumour suppressor genes with intergenic insertions up to 20 kb
upstream and/or downstream are shown in Tables 2.5A and 2.5B, respectively. Tumour
suppressor genes are expected to contain intragenic insertions that result in truncated,
inactivated, transcripts. Of the 12 tumour suppressor genes flanked by intergenic
insertions, only 1 has insertions represented by more than one read. This suggests that
“singleton” insertions, i.e. insertions represented by a single read, are less likely to
contribute to oncogenesis. They may be rare insertions that are not in the dominant
tumour lineage or have integrated into a single lineage late on in tumour development, or
they may be PCR artefacts. 8 known oncogenes had insertions within 2 kb upstream in
the sense orientation, and 22 had insertions within 20 kb. These numbers fell to 5 and 9,
respectively, if singleton insertions were removed. Likewise, there were 9 oncogenes
with antisense insertions within 2 kb upstream, and 29 with insertions within 20 kb, but
only 5 and 13, respectively, without singletons. As well as representing rare insertions,
singleton insertions may result from limitations in PCR and sequencing depth. Therefore,
in order to maximise the number of candidates that could be identified, singleton
insertions were retained in the analysis since, if they are not important in tumourigenesis,

they should not form statistically significant CISs (see Section 2.10).

Insertions around the Pim/ oncogene (Figure 2.11A) suggest that downstream sense and
antisense insertions can contribute to tumourigenesis. Downstream sense insertions also
appear to affect the Kir oncogene (Figure 2.11B). However, there are fewer oncogenes
with downstream sense insertions than upstream insertions, and even fewer with
downstream antisense insertions. For some of the genes, e.g. Gatal (Figure 2.11C), it
does appear that the downstream insertions are in fact mutating an adjacent gene. These
observations concur with prior work, in suggesting that upstream antisense and sense
insertions, corresponding to enhancer and promoter mutations, respectively, are the most
common forms of mutation. Downstream insertions, while less common, appear to be
more frequent in the sense orientation, which is the proposed orientation for downstream

enhancer mutations (see Section 1.4.2.1.1).

Of the 22 oncogenes that had sense insertions within 20 kb upstream, 20 were still
identified when the upstream limit was set to the 3° end of the upstream gene. All 9
genes without singleton insertions were similarly identified. Likewise, 23 out of 29
genes, including all 13 genes without singletons, that had antisense insertions within 20

kb upstream were still identified. 9 out of 14 genes containing downstream sense
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A Insertion Gene 20 kb no 2 kb no Within

Orientation Mouse Ensembl ID Name 20 kb all _singletons 2 kb all _singletons limits
ENSMUSG00000031103 EIf4 39 18 33 13 39
ENSMUSG00000018654 Tkzf1 22 14 0 0 22
ENSMUSG00000062312 Erbb2 13 0 0 0 1
ENSMUSG00000022346 Myc 12 9 11 8 12
ENSMUSG00000006362 Cbfazt3 11 4 2 0 11
ENSMUSG00000026923 Notch1 8 4 0 0 8
ENSMUSG00000000409 Lck 7 6 6 5 7
ENSMUSG00000034342 Cbl 7 3 0 0 6
ENSMUSG00000024014 Pim1 6 4 6 4 6
ENSMUSG00000029204 Rhoh 5 0 0 0 5
Upstream ENSMUSG00000032688 Malt1 3 0 0 0 3
sense ENSMUSG00000036986 Pml 3 0 0 0 0
ENSMUSG00000025408 Ddit3 2 0 2 0 2
ENSMUSG00000037169 Mycn 2 0 2 0 2
ENSMUSG00000000184 Ccnd2 2 2 2 2 2
ENSMUSG00000059248 Sept9 2 0 0 0 2
ENSMUSG00000020893 Per1 2 0 0 0 2
ENSMUSG00000021377 Dek 2 0 0 0 2
ENSMUSG00000021356 Irf4 2 0 0 0 2
ENSMUSG00000027829 Ccenl1 2 0 0 0 2
ENSMUSG00000066306 Numal 2 0 0 0 2
ENSMUSG00000003282 Plag1 2 0 0 0 0
ENSMUSG00000022346 Myc 388 303 383 299 388
ENSMUSG00000026923 Notch1 19 10 0 0 19
ENSMUSG00000024014 Pim1 16 11 15 10 16
ENSMUSG00000070348 Cend1 14 9 5 3 14
ENSMUSG00000018654 Tkzf1 14 9 0 0 14
ENSMUSG00000000184 Ccnd2 13 7 4 2 13
ENSMUSG00000006362 Cbfa2t3 13 8 0 0 13
ENSMUSG00000006389 Mpl 10 0 4 0 6
ENSMUSG00000022952 Runx1 8 6 0 0 8
ENSMUSG00000003282 Plag1 8 0 0 0 0
ENSMUSG00000059248 Sept9 6 2 0 0 6
ENSMUSG00000042817 Fit3 5 2 4 2 5
ENSMUSG00000031103 Elf4 4 0 2 0 4
Upstream ENSMUSG00000043962 Akt3 3 0 3 0 3
antisense ENSMUSG00000048251 Bcl11b 3 0 2 0 0
ENSMUSG00000030745 I21r 3 0 0 0 3
ENSMUSG00000034342 Cbl 3 0 0 0 3
ENSMUSG00000025958 Creb1 2 2 0 0 2
ENSMUSG00000020453 Patz1 2 0 0 0 2
ENSMUSG00000021457 Syk 2 0 0 0 2
ENSMUSG00000021356 Irf4 2 2 0 0 2
ENSMUSG00000056234 Ncoa4 2 0 0 0 2
ENSMUSG00000022797 Tfrc 2 0 0 0 2
ENSMUSG00000032698 Lmo2 2 0 0 0 2
ENSMUSG00000002028 Mil1 2 0 0 0 2
ENSMUSG00000025408 Ddit3 2 2 0 0 0
ENSMUSG00000041358 Nut 2 0 0 0 0
ENSMUSG00000000409 Lck 2 0 0 0 0
ENSMUSG00000029438 Bcl7a 2 0 0 0 0
ENSMUSG00000024014 Pim1 17 9 2 0 17
ENSMUSG00000038227 Hoxa9 6 2 0 0 3
ENSMUSG00000022346 Myc 5 2 0 0 5
ENSMUSG00000020325 Fsti3 4 2 0 0 0
ENSMUSG00000010755 Cars 3 0 3 0 0
ENSMUSG00000032097 Ddx6 3 0 0 0 3
Downstream ENSMUSG00000034041 Lyl1 2 0 0 0 3
sense ENSMUSG00000057329 Bcl2 2 0 0 0 2
ENSMUSG00000069305 Hist4h4 2 0 0 0 2
ENSMUSG00000029204 Rhoh 2 0 0 0 2
ENSMUSG00000005672 Kit 2 0 0 0 2
ENSMUSG00000034165 Ccnd3 2 0 0 0 0
ENSMUSG00000004895 Prcc 2 2 0 0 0
ENSMUSG00000028718 Stil 2 0 0 0 0
ENSMUSG00000031162 Gatal 9 8 0 0 5
ENSMUSG00000024014 Pim1 5 2 0 0 5
ENSMUSG00000030745 121r 4 2 0 0 4
ENSMUSG00000069305 Hist4h4 3 0 0 0 3
Downstream ENSMUSG00000020453 Patz1 3 0 0 0 0
antisense ENSMUSG00000068860 Gm128 3 0 0 0 0
ENSMUSG00000070002 Ell 3 2 0 0 0
ENSMUSG00000026656 Fcgr2b 2 0 0 0 2
ENSMUSG00000020167 Tcfe2a 2 0 0 0 0
ENSMUSG00000034041 Lyl1 2 0 0 0 0

B Insertion Gene 20 kb no 2 kb no Within

orientation Mouse Ensembl ID name 20 kb all _singletons 2 kb all _singletons __limits
Upstream ENSMUSG00000003068 Stk11 2 0 0 0 2
sense ENSMUSG00000009863 Sdhb 2 0 0 0 0
ENSMUSG00000036712 Cyld 2 0 0 0 0
ENSMUSG00000009863 Sdhb 6 0 0 0 0
ENSMUSG00000003068 Stk11 2 0 0 0 2
Upstream ENSMUSG00000013663 Pten 2 0 0 0 2
antisense ENSMUSG00000026526 Fh1 2 0 0 0 0
ENSMUSG00000028687 Mutyh 2 0 0 0 0
ENSMUSG00000034023 Fancd2 2 0 0 0 0
ENSMUSG00000030528 Blm 4 2 0 0 4
Downstream ENSMUSG00000024947 Men1 2 0 0 0 0
sense ENSMUSG00000025231 Sufu 2 0 0 0 0
ENSMUSG00000044702 Palb2 2 0 0 0 0
Downstream ENSMUSG00000040084 Bub1b 3 0 0 0 3
antisense ENSMUSG00000024947 Menl 2 0 0 0 0

Chapter 2

Table 2.5. Number of intergenic insertions up to 20 kb upstream and downstream of
known oncogenes (A) and tumour suppressor genes (B) from the Cancer Gene
Census. “20 kb all” and “2 kb all” give the total number of insertions up to 20 kb and 2

kb upstream/downstream.

“2 kb no singletons” and “20 kb no singletons” give the

number of insertions represented by more than 1 read. “Within limits” gives the number
of insertions up to the adjacent upstream or downstream gene.
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Figure 2.11. Insertions around known cancer genes Piml (A), Kit (B), Gatal (C) and
Bim (D). Insertions are shown as black bars in the context of Ensembl genes, shown in
red. Insertions above and below the blue bar are in the sense and antisense orientation,
respectively.
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insertions, and 5 out of 10 genes containing downstream antisense insertions, were still
identified when the downstream limit was set to the 5’ end of downstream gene. The
lower proportion for genes with downstream sense insertions, and lower still for
downstream antisense insertions, most likely reflect the fact that these insertions are less
likely to contribute to oncogenesis. The same applies to tumour suppressor genes, of
which only 4 out of 12 were still identified when the upstream and downstream limits
were set to adjacent genes. Therefore, based on these results, it seems reasonable to

assign insertions to a gene only if they are within the limits of adjacent genes.

As indicated by the high proportion of singleton insertions and the presence of insertions
beyond the boundaries of adjacent genes, it is likely that most of the tumour suppressor
genes listed in Table 2.5 are not mutational targets. However, the Blm gene contains an
intragenic insertion, as well downstream sense insertions (Figure 2.11D). It is possible
that the intergenic insertions are not oncogenic, or that they are affecting a nearby gene,
or there may be an error in the Blm gene prediction in Ensembl, such that the insertions
appear to be intergenic but are in fact intragenic. Alternatively, the insertions could be
disrupting a downstream regulatory element, resulting in reduced transcription or gene

inactivation.

There is no obvious pattern in the distribution of transposon insertions upstream or
downstream of genes. This is not surprising for upstream antisense and downstream
insertions, since the Sleeping Beauty transposon T2/Onc has low enhancer activity.
However, insertions in the upstream sense orientation might be expected to follow a
similar distribution to those in the retroviral screen. The T2/Onc promoter is perhaps not
as strong as the MuLV promoter and mostly mutates by producing truncated transcripts,
rather than by increasing levels of the wildtype protein. Alternatively, some of the
apparent promoter mutations in the retroviral screen may in fact be enhancer mutations,
or a high background of non-oncogenic T2/Onc insertions may be masking the true
pattern of oncogenic mutations. There is only one oncogene (/rf4) and no tumour
suppressor genes with sense or antisense insertions up to 20 kb upstream or downstream.
While this may in part reflect the smaller size of the dataset, it also suggests that

oncogenic T2/Onc insertions are usually intragenic.
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2.9 Assigning insertions to genes

The coordinates and orientation of the longest transcript of all protein-coding and miRNA
genes in the mouse genome were extracted from Ensembl version 45 36f using the API.
Genes nestled within other genes were removed from the analysis, since these complicate
the specification of gene boundaries for assigning intergenic insertions to genes.
Intragenic retroviral insertions were assigned to the genes within which they resided. For
intergenic insertions, the flanking genes were identified. If an insertion was upstream of
the first gene or downstream of the last gene on a chromosome, it was assigned to the first
or last gene, respectively. If only one of the flanking genes was within 100 kb of the
insertion, that gene was assigned the insertion. If one of the flanking genes contained
intragenic insertions, the intergenic insertions were also assigned to that gene. Based on
the observations of insertions around known cancer genes outlined in Section 2.8, if an
insertion was in the downstream antisense orientation relative to one gene, but in a
different orientation relative to the other gene, it was assigned to the other gene, and other
intergenic insertions were also assigned to that gene. Finally, for the remaining
unassigned intergenic insertions, the nearest insertion to each gene was identified, and all
insertions were assigned to the gene that had the nearest insertion. Sleeping Beauty
T2/Onc insertions were processed in a similar way, except that if an intergenic insertion
was in the upstream sense orientation with respect to one gene, but in a different

orientation with respect to another gene, it was assigned to the former gene.

2.10 Identifying statistically significant common insertion sites

Oncogenic insertions must be distinguished from a background of non-oncogenic
insertions. Insertions from different tumours that reside in the same genomic region,
defined as common insertion sites (CISs), are more likely to contribute to tumourigenesis,
but statistical approaches are required to determine whether a CIS is significantly
different to the random, background distribution of insertions. Monte Carlo simulations,
and a more recent method that uses a kernel convolution-based statistical framework,
have been applied to the retroviral and Sleeping Beauty datasets, and the results

compared.
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2.10.1 Monte Carlo simulations

This method is based on the procedures described in Suzuki et al. (2002) and Mikkers et
al. (2002). The 26,144 retroviral insertions were randomised across the mouse genome
(golden path length 2,661,205,088 bp, mouse build NCBI m36). A wide range of
window sizes were used, and the number of windows containing at least M insertions
were counted, where M was a number of 2 or more (up to 14 for large window sizes).
The randomised insertions were ordered across the genome (X[} to X[26,1441), and windows
were taken as the interval from X};; to Xjiariy (see Suzuki et al., 2002). If the distance
between an insertion and the next M-1 insertions on the chromosome was less than the
window size (X;+a1] — X)), it was counted as a CIS. The next window was positioned at
i+M. 100,000 iterations were performed, and mean counts and the 0.99 upper quantile
were calculated for each number (M) of insertions. This gives the number of CISs of M
insertions that one would expect to find by chance in each window size, and the
maximum number for P=0.01. As in Mikkers et al. (2002), fractions (represented as Ef)
0f 0.001, 0.005 and 0.01 of the total number of insertion sites expected to be random CIS
clusters were calculated. These are 26.144, 130.72 and 261.44, respectively, for retroviral
insertions, and 2.64, 13.22 and 26.43, respectively, for transposon insertions. Maximum
window sizes for significant CISs for varying values of M can then be calculated by
finding the window size at which the upper quantile of the random distribution is less

than the expected number of false CISs (Table 2.6).

For each gene to which insertions had been assigned, the number of insertions was
counted and the distance between insertions was calculated. If any of the insertions fell
within a window size that met the criteria for a significant CIS, the gene was accepted as
a candidate cancer gene. For an Efr of 0.001, 0.005 and 0.01, the number of identified
candidates in the retroviral screen was 1,404, 1,677 and 1,829, respectively. For the
Sleeping Beauty screen, the number of candidates was 62, 91 and 115, respectively. This
approach differs from the method in Suzuki et al. (2002) in that insertions were
considered in the context of each gene, and a consistent approach was used to identify all
candidates. In Suzuki er al. (2002), CISs were identified independently of genes, and
then assigned to genes, but further genes were selected as candidates if they contained
multiple insertions that were not in significant CISs. In addition, the method in Suzuki et

al. (2002) uses 3 fixed window sizes to define CISs, which, particularly in a screen of this
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A Number of insertions
Efr 2 3 4 5 6 7 8 9 10 11 12 13 14
0.001 0.1 5.0 19.5 45.0 80.0 120.0 168.0 220.0 275.0 333.0 391.5 455.0 521.0
0.005 0.5 10.0 35.0 75.0 120.0 175.0 235.0 299.5 366.0 437.5 510.0 586.0 663.0
0.01 1.0 14.4 45.7 95.0 150.0 210.0 280.0 351.5 425.5 505.0 587.5 671.0 757.0

B Number of insertions
Efr 2 3 4 5 6 7 8
0.001 1 45 193 450 800 1200 1650
0.005 5 101 345 750 1200 1750 N/A
0.01 10 142 452 950 1500 2100 N/A

Table 2.6. Maximum window sizes in kb for significant CISs for varying numbers of
insertions in the retroviral (A) and Sleeping Beauty (B) screens. Window sizes are
given for Efir (fraction of the number of insertion sites expected to be random CIS
clusters) of 0.001, 0.005 and 0.01, for which the corresponding numbers of false CISs are
26.144, 130.72 and 261.44 for retroviral insertions, and 2.64, 13.22 and 26.43 for
transposon insertions. N/A is given where the window size is larger than any gene plus
100 kb of flanking sequence, and is therefore not relevant to the analysis.

A Number of Number of non-
Method cancer genes cancer genes Accuracy Coverage MCC
KC 42 487 0.0794 0.1193 0.1433
MC Efr=0.001 66 1144 0.0545 0.1875 0.1010
MC Efr=0.01 80 1500 0.0506 0.2273 0.0944
All 175 5483 0.0309 0.4972 0.0562

Number of Number of non-

B Method cancer genes cancer genes Accuracy Coverage MCC
KC 6 21 0.2222 0.0170 0.3115
MC Efr=0.001 10 45 0.1818 0.0284 0.2708
MC Efr=0.01 11 90 0.1089 0.0313 0.1836
All 59 1279 0.0441 0.1676 0.0767

Table 2.7. Comparison of the methods used to generate candidate cancer genes lists
from the retroviral (A) and Sleeping Beauty (B) screens. The accuracy, coverage and
Matthew’s correlation coefficient (MCC) are based on the number of known cancer genes
in the candidate gene lists. KC = kernel convolution-based framework, MC Efi=0.001
and MC Efi=0.01 refer to Monte Carlo simulations using Efi (fraction of the number of
insertion sites expected to be random CIS clusters) of 0.001 and 0.01, All = all genes to
which insertions were assigned, regardless of whether they were statistically significant.
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size, could result in some CISs being missed. Therefore, this method uses the approach in

Mikkers et al. (2002) to define maximum window sizes for all values of M.

2.10.2 Kernel convolution

As discussed in Section 1.4.2.1.2, the Monte Carlo (MC) method may not be suitable for
very large datasets. Significant CISs were therefore also identified using the kernel
convolution (KC)-based statistical framework (de Ridder et al, 2006). A list of
insertions was supplied to the Netherlands Cancer Institute, where Jeroen de Ridder
produced and returned a list of genomic coordinates corresponding to CISs generated
using the KC method. In this method, a kernel function is placed at every insertion in the
dataset and the number of insertions at any genomic position can be estimated by
summing all the kernel functions. Insertions in close proximity to one another will
produce a higher peak in the estimated number of insertions (de Ridder et al., 2006, also

discussed in Section 1.4.2.1.2).

867 retroviral cross-scale CISs were identified using the KC-based framework with
P=0.05. These are all the CISs identified using a range of kernel widths (0.05, 0.1, 0.25,
0.5, 1, 2.5, 5, 10, 30, 50, 100 and 150 kb). The kernel width controls the smoothness of
the estimated number of insertions (de Ridder et al., 2006). In other words, it controls the
size of the genomic region in which neighbouring insertions affect the estimate of the
number of insertions at the observed insertion. For each CIS, the flanking genes were
identified using the Ensembl API version 45 36f and were compared to the genes
identified using MC simulations. Among the 867 KC CISs, there were 765 where the
nearest or further gene was represented in the Efir=0.01 MC list of candidates. Genes
flanking the remaining 102 KC CISs may be missing from the MC list because insertions
have been misassigned or because of differences between the two statistical approaches.
As described in Section 1.4.2.1.2, for large screens, the statistically significant window
size in the MC method may be so small that it is less than the width of biologically
relevant CISs, causing these to be missed. Many of the CISs unique to the MC analysis
are likely to be false positives since, at an Efi of 0.01, 261.44 randomly occurring CISs

are expected.

652 CISs identified using a kernel width of 30 kb (P=0.05) were chosen for further

analysis since this width, which was also used in Uren et al. (2008), should capture a high
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proportion of biologically relevant CISs without splitting independent CISs or merging
CISs that represent different types of mutation within a gene. For example, in genes that
are mutated by multiple mechanisms, upstream enhancer mutations may form one CIS,
while intragenic or downstream enhancer mutations may form another. For intragenic
CISs, the gene containing the CIS was defined as the candidate cancer gene. For
intergenic CISs, the flanking genes were compared to the list of candidates generated
using Monte Carlo (MC) simulations. Where one of the flanking genes was within the
MC list, this was chosen as the candidate gene. Where both nearest genes were within the
MC list, both were initially included in the KC list because it is possible that a CIS could
be mutating multiple nearby genes. Where neither nearest gene was in the MC list, the
nearest genes were compared to a list of all genes to which insertions had been assigned,
rather than just those to which significant CISs had been assigned using MC simulations.
Genes could not be identified for 26 CISs, and these were assigned to genes manually, by
observing insertions in the context of genes using the Ensembl DAS track (see Section
2.6). 102 CISs were assigned to more than 1 gene, and these were also assessed manually
to determine whether one gene could be removed from the list. 14 CISs were removed
where all insertions mapped to the same genomic coordinates, as these are likely to be
artefacts. The final dataset comprised 630 CISs assigned to 608 genes. 30 CISs were

associated with more than 1 gene, and 37 genes contained more than 1 CIS.

The lists of genes generated by the KC and MC methods were compared to the list of
mouse orthologues of known cancer genes (see Section 2.2.3) and the Matthew’s

correlation coefficient (MCC) was calculated.

TP x TN - FP x FN
Vv ((TP + FP)(TP + FN)(TN + FP)(TN + FN))

MCC =

TP is the number of cancer genes in the candidate cancer gene list (true positives), FP is
the number of non-cancer genes in the list (false positives), TN is the number of non-
cancer genes not in the list (true negatives), and FN is the number of cancer genes not in
the list (false negatives). Genes that were not in the list were calculated as all 18,017
mouse genes with human orthologues, as identified in Ensembl version 48, minus those in
the list. MCC is used in machine learning as a measure of the quality of a prediction and
it takes into account the counts of true and false positives and negatives to generate a

single number that can be compared across predictions. The candidate cancer gene lists
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generated from the retroviral screen are expected to contain known cancer genes, and
these can therefore be used as a measure of the quality of the list. MCC is a more useful
measure than accuracy or coverage alone, especially when comparing lists of different
lengths. For example, a short list may have high accuracy but low coverage, and for a
longer list, the reverse may be true. MCC returns a value between -1 and +1, where +1 is
a perfect prediction (i.e. in this case, the list contains all known cancer genes and no non-
cancer genes), 0 is a random prediction, and -1 is an inverse prediction. The MCC score,
plus accuracy and coverage, for the KC list and each MC list are shown in Table 2.7A
(page 98). All MCCs generated in this analysis are positive but are very small because
many of the genes are not known cancer genes. The KC list had the lowest coverage but
the highest accuracy, and achieved the highest MCC score. As expected, the MC list
generated using a Efi of 0.001 achieved a higher MCC score than the Efi=0.01 list since
there should be 10-fold reduction in the number of randomly occurring CISs, and the
higher accuracy more than compensated for the lower coverage. The list containing all
genes that were assigned to insertions, rather than just those with statistically significant
insertions, achieved the highest coverage but performed worst overall. Despite the fact
that the list of known cancer genes is incomplete, measurement of the MCC score enables
direct comparison of the gene lists and is likely to be meaningful. In light of these
findings, the KC list was judged to be most accurate and was chosen for the cross-species

comparative analyses performed in Chapter 5.

In order to gain an impression of whether the correct genes had been chosen for the KC
CISs, known oncogenes were identified within the list of genes flanking each CIS. 37
oncogenes had been chosen, while 16 had not. Of the unselected oncogenes, 3 were
genes nearest to the CIS, and 13 were further away. The insertions around these genes
were analysed in the context of the mouse genome in Ensembl contigview. Only one
oncogene nearest the CIS and one further away appeared to have been wrongly assigned,
and for one additional nearest oncogene, it appeared that both this gene, and the correctly
assigned gene might be mutational targets. The list of CIS genes was modified to include
these three genes (Rhoh, Chl and Ccnd?2), but the results of the MCC comparison and
analysis of the distribution of insertions suggest that, by and large, the most likely

candidate gene has been selected.

Of the 39 cross-scale Sleeping Beauty CISs identified by the KC method, 36 were also

present in the E£fi=0.01 MC list. The remaining 3 were a long way from the nearest gene,
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further than the 100 kb limit used in the MC simulations. As Sleeping Beauty has low
enhancer activity, these are likely to be non-oncogenic insertions that have preferentially
inserted into a particular genomic region, or are mutating a gene that has not been
identified in the Ensembl gene build. 79 genes from the Efi=0.01 MC list were not
identified by the KC method. 5 KC genes were missing from the MC list generated using
an Efr of 0.001, and in all cases the CIS was greater than 100 kb from the gene, and 27 of
the Efr=0.001 MC genes were not identified by KC. The KC method is designed
primarily for large datasets and may therefore miss a significant proportion of
biologically relevant CISs in the Sleeping Beauty dataset. However, the MCC score is
highest for the candidate gene list generated using the KC method, and other lists follow
the same pattern as the corresponding lists generated from the retroviral dataset (Table

2.7B, page 98).

21 Sleeping Beauty CISs were identified using the KC-based framework with a kernel
width of 30 kb and P=0.05 (Appendix B1), but 5 were situated close to the transposon
array on chromosome 1, and 4 were situated close to the array on chromosome 15. These
were removed from the list because they are likely to result from “local hopping” of the
transposon (see Section 1.4.2.2.1). The T2/Onc splice acceptor and splice donor
sequences are derived from exon 2 of the En2 gene and exon 1 of the Foxf2 gene,
respectively (Collier et al., 2005). Statistically significant CISs were identified in both
these genes, and the insertions were found to cluster around the splice junctions used to
construct T2/Onc (Figure 2.12). These CISs most likely represent artefacts resulting from
the mapping of T2/Onc sequences, rather than flanking genomic sequences, to the mouse
genome, and they were removed from the dataset. This leaves just 10 CISs and so, for the
purposes of comparison with the retroviral dataset, discussed in Chapter 3, the more

inclusive MC lists of candidate cancer genes were also used.

2.10.3 Final set of candidate genes

Following a survey of the candidate genes identified from the retroviral screen by the
kernel convolution-based method, it became clear that some insertions mapped to exactly
the same coordinates. This is unlikely to occur by chance, except where mutation of a
very localised region of a gene is required for oncogenesis. There were 26 animals from
which 2 tumours had been collected, 70 from which 3 tumours had been collected, and 3

from which 4 tumours had been collected. Where a tumour has spread to a different site,
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Figure 2.12. Insertions in En2 (A) and Foxf2 (B) are located at the splice junctions
used to construct the T2/Onc transposon and are contaminating sequences.
Insertions are shown as pink lines in the context of the Ensembl gene, shown in red.
Insertions above and below the blue line are in the sense and antisense orientation,
respectively.
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a high proportion of insertions may be shared by both the original tumour and the
secondary tumour, and this will influence the identification of significant CISs.
Therefore, where 2 or more insertions from different tumours in the same animal occurred
within 50 base pairs of one another, all but 1 of the insertions were removed from the
dataset. A distance of 50 bp was chosen by counting the number of insertions that co-
occurred within varying distances, and taking the distance at which the number levelled
off. This reduced the dataset to 22,180 insertions. In addition, there is the possibility that
insertions may map to the same position because of contamination during PCR.
Therefore, if there were 2 or more sites in the genome where insertions from 2 tumours
co-occurred within 10 bp, 1 of the co-occurring insertions was removed from the dataset
at each location. A 10 bp window was used since it allows for a small amount of
variation in the alignment of sequences using SSAHA2 (see Section 2.5), without
significantly risking the removal of insertions that happen to fall into dense CISs. If the
co-occurrence has resulted from aerosol contamination, it is assumed to be more likely
that the insertion represented by the fewest number of reads is the contaminant and,
therefore, in each case, this insertion was removed. The kernel convolution-based
approach was applied to the final dataset of 20,114 insertions, and this resulted in 439
candidate cancer genes, of which 416 had a single CIS, 18 had 2 CISs, 2 had 3 CISs, 2
had 4 CISs and 1 had 5 CISs. The total number of CISs was 447, of which 24 were

assigned to 2 genes. The CISs and associated genes are shown in Appendix B2.

2.11 Discussion

The aim of this chapter was to generate a reliable list of candidate cancer genes from
insertional mutagenesis screens performed using the retrovirus MuLV and the Sleeping
Beauty transposon T2/Onc. In order to maximise the number of insertions that could be
identified within tumours, SSAHA2 was optimised to enable the mapping of as many
reads as possible. The high number of unmapped reads was found to result from a high
proportion of very short reads, especially in the Sleeping Beauty dataset, as well as reads
containing genomic DNA of low complexity or low quality and reads that contained
contaminating vector sequences. A small proportion may also result from errors in the
mouse genome assembly. There did not seem to be any significant advantage in using
BLASTN to map the reads, and as SSAHA?2 is a faster algorithm, it is a good choice for
mapping large numbers of reads. However, a possible alternative to SSAHA?2 for future

screens is the BLAST-Like Alignment Tool, BLAT (Kent, 2002). The UCSC Genome
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Browser website (http://genome.ucsc.edu/, Kent et al., 2002) uses BLAT to map users’
sequences to the genome, and, because of its high speed and accuracy, BLAT has recently
replaced BLAST as the default DNA search algorithm on the Ensembl website.
Nevertheless, given the modest differences between SSAHA2 and BLAST (Altschul et
al., 1990), it is likely that BLAT would also perform similarly since the short, repetitive

and low quality non-mapping reads can only be mapped at the expense of accuracy.

The reads were filtered to remove those in which the genomic DNA did not appear to
represent the true location of the insertion. A gap between the genomic and retroviral
DNA can result from low quality sequencing or the presence of unrelated DNA fragments
within the clone, and efforts were made to retain low quality reads, whilst removing
contaminating chimeric sequences. Comparisons between PCRs performed on the same
tumours suggested that using more restriction enzymes and increasing the sequencing
depth should increase the number of insertions that can be identified. Advances in
sequencing technologies, such as 454 sequencing (see Section 1.4.2.1.2), will enable the
use of more restriction enzymes and a greater depth of sequencing at a lower cost per

read, thereby facilitating the identification of a higher proportion of insertions.

Identifying the genes that are most likely to have been mutated by insertions is hampered
by the presence of enhancer insertions that can act at long range. Analysis of the
distribution of insertions around mouse genes, and in particular, known cancer genes,
suggested that the optimal distance is around 500-600 bp upstream, although the distance
can be much greater, e.g. enhancer mutations can act as far as 270 kb downstream of the
Myc promoter (Lazo et al., 1990). It appears that downstream insertions are less likely to
be oncogenic, although those in the sense orientation with respect to upstream genes may
be more likely to contribute to oncogenesis. Enhancers can act over large distances via
chromatin loop interactions, and they may therefore affect the activity of multiple genes
(Uren et al., 2005). However, analysis of the distribution of insertions around cancer
genes suggests that, in general, enhancer insertions affect the promoters of the nearest,

flanking genes.

Two approaches, Monte Carlo simulations (Suzuki et al., 2002) and a kernel convolution-
based statistical framework (de Ridder et al, 2006), have been used to identify
statistically significant CISs in the retroviral and transposon screens. Known cancer

genes can be used as a partial set of true positives to evaluate candidate cancer genes in
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the vicinity of CISs, and Matthew’s Correlation Coefficient was used to show that the
kernel convolution-based framework gives the most reliable set of candidate cancer
genes. The final set of candidates generated from the Sleeping Beauty screen comprises
just 10 genes, reflecting the small size of the initial dataset and problems in mapping the
reads. 439 candidates were identified from the MuLV screen, thereby supporting the
theory that many genes contribute to tumourigenesis. The candidate cancer genes are

analysed and characterised in Chapter 3.
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Chapter 3 Analysis of mouse candidate cancer genes

identified by insertional mutagenesis

3.1 Introduction

This chapter describes methods used to characterise the mouse candidate cancer genes
identified by retroviral and transposon-mediated insertional mutagenesis. The integration
of other cancer-associated datasets provides a means of filtering the genes to identify the
strongest candidates for a role in tumourigenesis (see Section 1.5). Importantly, human
cancer-associated datasets can be used to assess the relevance of insertional mutagenesis
to human cancer. Analysis of Gene Ontology terms and gene pathways, as well as the
identification of genes with binding sites for transcription factors relevant to cancer, can
help to define the cancer pathways in which candidate genes may act. Comparative
analyses between the mouse candidate genes and other cancer-related datasets are
described in Section 3.2. The mutational profile varies between insertional mutagens, and
is affected by insertional bias and the mechanisms by which the mutagen disrupts genes
(see Section 1.4.2.1.1). Genes that are identified by multiple mutagens are strong
candidates for a role in tumourigenesis. The candidate genes identified using MuLV and

the Sleeping Beauty (SB) transposon T2/Onc are compared in Section 3.3.

The distribution of insertions in and around candidate cancer genes gives an indication of
the likely mechanisms of mutagenesis (see Section 1.4.2.1.1) and therefore provides an
insight into the structure and function of mutant oncoproteins. In Section 3.4.1, the
distribution of intragenic insertions within candidates from the MuLV screen is explored,
and genes are classified according to their predicted mutation type. The co-occurrence of
both retroviral and transposon insertions within a localised region of a gene provides a
strong indication that mutation within that region contributes to tumourigenesis.
Therefore, in Section 3.4.2, the distribution of insertions in genes identified by both
screens is used to predict the likely mechanisms of mutation. While it is clear that genes
are frequently mutated by enhancer or promoter mutation or by premature termination of
gene transcription, it is unclear whether the disruption of regulatory elements is a
common mechanism of insertional mutagenesis. Therefore, Section 3.4.3 describes an

analysis of insertions within regulatory features extracted from the Ensembl database.
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Retroviral insertional mutagenesis identifies mainly oncogenes but it is also possible to
identify tumour suppressor genes, and candidates are presented in Section 3.4.4. Finally,
expression data for 18 MuLV-induced tumours is analysed in Section 3.4.5 in an attempt

to confirm the deregulation of candidate genes.

Tumourigenesis is a multi-step process involving the co-operation of multiple cancer
genes and pathways (see Section 1.2.3). Section 3.5 describes approaches for identifying
co-operative cancer genes and presents a number of strong collaborations between genes
identified in the retroviral screen. The work described in this chapter demonstrates the
relevance of insertional mutagenesis to the study of human cancer, and identifies

candidate cancer genes that warrant further investigation.

3.2 Comparative analyses between the insertional mutagenesis data

and other cancer-related datasets
3.2.1 Description of the datasets

This section describes the datasets used for comparison with the candidate cancer genes
identified by retroviral and transposon-mediated insertional mutagenesis. For all datasets
where it was necessary to convert gene names to Ensembl identifiers, Ensembl BioMart
(http://www.ensembl.org/biomart/index.html) was used. BioMart is a data mining tool
that can be used to extract specific information from Ensembl for multiple genes
simultaneously via a simple web interface. For all human datasets, mouse genes with
human orthologues were also identified using Ensembl BioMart (version 48). The dataset
of known cancer genes from the Cancer Gene Census (Futreal et al., 2004) is described in

Section 2.2.3.

3.2.1.1 The Retrovirus Tagged Cancer Gene Database (RTCGD)

As mentioned in Section 1.4.2.1.2, RTCGD (Akagi et al, 2004;
http://rtcgd.abcc.nciferf.gov/) is a database that manages data from retroviral and
transposon-mediated insertional mutagenesis screens. All candidate cancer genes in the
database were obtained from the website on 01/11/07. In total, the database contained
537 genes with unique MGI (Mouse Genome Informatics,

http://www.informatics.jax.org/) symbols identified from 512 retroviral CISs (25 CISs
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had been assigned to 2 genes). The MGI symbols were used to identify 544 mouse
Ensembl genes. 16 genes had 2 Ensembl identifiers (e.g. Akap3, which, according to
Ensembl, is duplicated in 2 adjacent copies) and 9 could not be identified. 55 genes were
identified from 52 transposon CISs (3 had been assigned to 2 genes) and all but 2 had

Ensembl gene identifiers.

3.2.1.2 The Catalogue of Somatic Mutations in Cancer (COSMIC)

COSMIC stores and displays somatic mutation information relating to human cancers that
has been curated from published scientific literature (Forbes et al., 2006, see also Section
1.3.1). The complete set of mutations in COSMIC version 35 (dated 04/02/08) was
downloaded from the website ftp://ftp.sanger.ac.uk/pub/CGP/cosmic/data_export. The
list comprised 52,678 mutations in 1,550 genes from 45,743 tumours of 38 cancer types.
Unique HGNC (HUGO Gene Nomenclature Committee; http://www.genenames.org/)
human gene symbols were converted to human Ensembl gene identifiers. 1,521 mouse
Emsembl genes were identified as having a human orthologue with somatic mutations in
COSMIC. Individual genes were also searched against the COSMIC database via the

website http://www.sanger.ac.uk/genetics/CGP/cosmic/.

3.2.1.3 Human candidate cancer genes from Sjoblom ez al. (2006)

This dataset, which is described in Section 1.3.1, comprises 121 candidate breast cancer
genes and 69 candidate colon cancer genes. HGNC symbols were used to extract

Ensembl identifiers for all genes, and 181 mouse orthologues were identified.

3.2.1.4 Transcription factor binding sites

Mouse genes with Nanog and Oct4 binding sites were extracted from Loh et al. (2006),
while human genes with p53 binding sites were extracted from Wei et al. (2006). Both
datasets are described in Section 1.3.5. Ensembl gene IDs were identified from MGI
symbols and/or Entrez Gene (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)
accession numbers for genes in the Nanog and Oct4 datasets, and from HGNC symbols
and/or RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/) accession numbers for genes in the

p53 dataset. Of the 3,006 Nanog binding sites, 2,408 were assigned to 1,923 mouse
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Ensembl genes (i.e. some genes contained multiple binding sites), of which 1,889
encoded proteins or miRNAs. 817 mouse Ensembl genes, including 797 encoding
proteins or miRNAs, were identified for 902 of the 1,083 Oct4 binding sites. 1,725 and
732 genes had human orthologues with Nanog and Oct4 binding sites, respectively. The
p53 dataset contained 474 binding loci associated with human genes, of which 423 had
Ensembl identifiers, resulting in 409 unique human Ensembl genes. 388 mouse Ensembl

genes had a human orthologue with at least one binding site for p53.

3.2.1.5 Amplicons and deletions in paediatric acute lymphoblastic leukaemias

Regions of copy number change affecting more than one case of acute lymphoblastic
leukaemia (ALL) were extracted from Mullighan ef al. (2007; discussed in Section
1.3.3.3). In the publication, genomic coordinates were mapped to the human genome
assembly NCBI 35, and these were therefore mapped across to NCBI 36 using the UCSC
LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Overlapping amplicons and
overlapping deletions were merged into single regions of copy number gain and loss,
respectively. 1,905 mouse Ensembl genes contained a human orthologue within one of 8
non-overlapping amplicons, while 1,514 contained a human orthologue within one of 52

non-overlapping deletions.

3.2.1.6 Gene ontology (GO) terms

The GO project (http://www.geneontology.org) provides controlled vocabularies for
describing genes and gene products in terms of their molecular function, their role in
biological processes and their localisation to cellular components. The annotations
assigned to genes and their products are known as GO terms. The public webserver
g:Profiler (Reimand et al., 2007, http://biit.cs.ut.ee/gprofiler/) was used to identify over-
represented GO terms among the mouse candidate cancer genes, which were submitted as
a list of mouse Ensembl gene identifiers. g:Profiler also identifies over-represented
KEGG (http://www.genome.jp/kegg/) and REACTOME (http://www.reactome.org/)
pathways, over-represented TRANSFAC (http://www.gene-regulation.com/) regulatory
motifs, and miRNAs in miRBase (http://microrna.sanger.ac.uk/) for which target genes

are over-represented among the candidate gene list.
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3.2.2 Comparison with insertional mutagenesis data

The 1-tailed Fisher Exact Test was used to determine whether there was a significant
overlap between candidate cancer genes identified by the MuLV and SB screens and
those in other cancer-associated datasets. For comparison with the human datasets, the
number of mouse orthologues of human genes was counted, whereas for comparison with
the mouse Nanog and Oct4 binding site and RTCGD datasets, all mouse genes encoding
proteins and miRNAs were counted. In total, there were 18,017 mouse Ensembl genes
with human orthologues and 24,374 mouse genes that encoded proteins or miRNAs. All
439 of the candidate cancer genes identified in the MuLV screen using the kernel
convolution (KC)-based approach (de Ridder et al., 2006; see Section 2.10) encoded a
protein or miRNA, and 384 had a human orthologue in Ensembl v48. All 10 of the
Sleeping Beauty candidate genes were protein-coding, and 9 had human orthologues. For
each significant CIS gene identified by the MuLV and SB screens, other cancer-
associated datasets in which they also occurred are listed in Appendices C1 and C2,

respectively.

Of the 439 CIS genes identified using MuLV, 118 (26.9%) were found among genes from
other retroviral screens in the RTCGD database, and 6 (1.4%) were found among genes
identified by transposon-mediated mutagenesis. This corresponds to a coverage of 21.7%
and 11.3% of genes in the RTCGD database identified by retroviral and transposon-
mediated mutagenesis, respectively. The larger overlap with candidates identified in
retroviral screens suggests that retroviruses and transposons have different mutational
profiles (see also Section 3.3) but may also reflect the fact that there is more retroviral
data available. However, a high proportion of candidates are unique either to this dataset
or to the RTCGD database. This may in part reflect limitations in insertion site
identification, such as the number of restriction enzymes used in linker-mediated PCR
and the depth of sequencing. Because of the variety of methods used to detect significant
CISs, there may also be a high number of false detections in the RTCGD database, since
53% of CISs did not reach the significance threshold when the KC-based approach was
applied to the data in RTCGD (de Ridder et al., 2006). In addition, the RTCGD database
contains genes that were identified by insertional mutagenesis on a range of genetic
backgrounds and using a range of retroviral mutagens, and each mutagen and background
may generate a different spectrum of candidates (see Section 3.5.1 for details on the

identification of genotype-specific candidates). For example, Sox4 and Fgf3 are the 3™
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and 6™ most frequently mutated genes in RTCGD and yet they were not among the
candidates identified in the MuLV screen. Almost all of the Sox2 insertions were
identified in mice with an AKxD or BXH2 strain background, while all of the Fgf3
insertions were from a screen that used mouse mammary tumour virus (MMTYV), rather

than MuLV, as the retroviral mutagen.

Human orthologues of mouse candidate genes were enriched among oncogenes in the
Cancer Gene Census (36 oncogenes, P=7.88x10"*) and the COSMIC database (69 genes,
P=1.36x107). There were no recessive cancer genes among the candidates (P=1),
demonstrating that the screen identifies predominantly oncogenes. Surprisingly, there
were just 3 genes (Lrrfipl, Nup214 and Bcllla; P=0.74) that overlapped between the
candidates of the retroviral screen and the candidates from Sjoblom et al (2006). This
may reflect the fact that the Sjoblom dataset was an exon resequencing study of breast
and bowel tumours exclusively, and it may be biased against genes mutated in

lymphomas.

The 36 orthologues of mouse candidate cancer genes in the Cancer Gene Census were
enriched for genes that are mutated in lymphoid tumours (31 genes, P=2.66x10*). This
suggests that the retroviral screen mainly identifies genes that are important in the
development of lymphoid malignancies. There was also a slight enrichment of genes that
are mutated by chromosomal translocation, although this was not significant (31 genes,
P=0.067). A more significant association might be expected because translocation is a
common mechanism of mutation in lymphoid cancers, and a number of genes that are
frequently targeted by insertional mutagenesis are involved in translocations in human
tumours. In addition, MuLV mutagenesis may have a similar effect to translocations,
since it often changes the regulatory environment of a gene and/or produces truncated
oncoproteins. Chromosomal translocations, and leukaemias, lymphomas and
mesenchymal tumours, all of which frequently harbour translocations, are over-
represented in the Cancer Gene Census. This is partly because both translocation partners
feature in the list of cancer genes, but also because, traditionally, cancer gene
identification has been more frequently performed in these cancer types (Futreal, 2007).
This may explain why the candidate cancer genes identified in the retroviral screen
contain an over-representation of genes in the Cancer Gene Census, but that
translocations are not over-represented among these candidates in the Census. Finally,

there was an over-representation of known cancer genes that bear somatic mutations in
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human cancer (36 genes, P=0.0130). These findings demonstrate the efficacy of the
MuLV retrovirus as a somatic mutagen that can be used to model the clonal evolution of

human cancers, particularly those of lymphoid origin.

Human orthologues of mouse candidate cancer genes were significantly enriched among
genes with p53 binding sites (14 genes, P=0.0394). The p53 pathway is important in
tumourigenesis (see Section 1.2.6), and the identification of genes that act in this pathway
provides further evidence that the screen has identified promising candidates for a role in
cancer. It has been proposed that the CIS genes Ptpre and Notchl are upregulated by
p53, while Nedd4l is downregulated (Wei et al., 2006). Ptpre is required for p53-induced
differentiation of IW32 erythroleukaemia cells (Tang and Wang, 2000), while
upregulation of Notchl by p53 in human cancer cell lines contributes to cell fate
determination (Alimirah et al., 2007). Nedd4! is overexpressed in human prostate cancer
cells (Qi et al., 2003) and in the rare cutaneous T-cell lymphoma associated with Sézary
Syndrome (Booken et al., 2008), suggesting that suppression by p53 inhibits cancer
growth. There was also a significant enrichment of mouse candidate cancer genes among
genes with Nanog (53 genes, P=5.86x10™) and Oct4 (32 genes, P=1.64x107) binding
sites. Nanog and Oct4 regulate self-renewal, pluripotency and differentiation of ES cells
(see Section 1.3.5). 9 CIS genes have binding sites for both Nanog and Oct4 and these
include Mycn, Il6st and Chdl, which are upregulated in human ES cells, mesenchymal
stem cells and haematopoietic stem/progenitor cells, respectively (Kim et al., 2006a).
1l6st (also known as gp/30) is a key component of the signalling pathway required for the
maintenance of embryonic stem cell pluripotency (Yoshida et al, 1994) and mouse
haematopoietic stem cell function (Audet et al, 2001). These results suggest that a
significant proportion of candidates may be involved in tumour cell self-renewal,
therefore providing support for the cancer stem cell hypothesis, described in Section

1.2.3.2.

Mouse candidate genes with human orthologues were also over-represented in regions of
copy number gain (54 genes, P=0.0180) and copy number loss (47 genes, P=5.82x10) in
paediatric ALL. CIS genes that were deleted in ALL included Lefi, lkzf1, Tkzf3, Etvo,
Elfl and Erg, while those that were amplified included RunxI, Myb and Ahil. This
suggests that genes that are mutated by insertional mutagenesis, and contribute to mouse
tumourigenesis, may also be mutated by copy number changes in human cancers.

However, the overlapping genes are implicated in B-cell development and differentiation,
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which are disrupted in human B-progenitor ALL and in MuLV-induced murine
lymphomagenesis. It therefore remains to be seen whether CIS genes significantly
overlap with regions of copy number change in other human cancers, and this is
addressed in Chapters 4 and 5. The CIS genes may help to narrow down the candidates in
regions of copy number change in the ALL dataset. For example, the deleted region on
human chromosome 16q22.1 contains 11 genes, but the mouse orthologue of only 1 of
these genes (FAM65A4) is targeted by MuLV in insertional mutagenesis and therefore
represents a putative target for deletion in ALL. Table 3.1 provides a list of the regions

that are amplified and deleted in ALL and the CIS genes within these regions.

The candidate cancer genes were over-represented among genes in the KEGG pathways
associated with acute and chronic myeloid leukaemia (P=2.14x10"* and P=1.75x107,
respectively) and Jak-STAT signalling, and in the T cell receptor signalling KEGG and
REACTOME pathways (P=1.35x10" and P=1.96x10°, respectively). This is
encouraging, since the genes are candidates for a role in lymphomagenesis. However,
genes were also over-represented in the endometrial cancer KEGG pathway (P=7.14x10"
4), demonstrating that some of the candidates (including Pik3cd, Pik3r5, Aktl, Lefl, Myc,
Cendl and Tcf7) also contribute to other cancer types. Over-represented GO terms are
listed in Table 3.2. These include terms related to the development, differentiation and
proliferation of B- and T-cells, reflecting the lymphoid origin of the mouse tumours, and
terms specifically related to cancer, such as cell proliferation, apoptosis, angiogenesis,

cell motility and kinase activity.

Four transcription factor binding sites from the TRANSFAC database were also over-
represented among the candidate genes. The most significant was the MAZ (Myc-
associated zinc finger protein) binding matrix (TF:M00649, P=1.49x10®), which binds
the MAZ transcription factor. MAZ interacts with MYC and histone deacetylases, and
MAZ overexpression drives expression of the oncogene PPARyI in human breast cancer
cells (Wang et al., 2008). It is also overexpressed in acute myeloid leukaemia (Greiner et
al.,2000) and in the terminal phase of chronic myeloid leukaemia (Daheron et al., 1998).
The second most significant binding matrix was TF:M01104 (P=2.51x10"®), which binds
the mouse Movo-b zinc finger protein. This protein is highly expressed in the mouse
testis (Unezaki et al., 2004), and has no known role in tumourigenesis, but has been
shown to be involved in vascular angiogenesis in the developing embryo (Unezaki ef al.,

2007). Finally, binding matrices for transcription factors LRF (leukaemia/lymphoma
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Comment in

A Chromosome Start (bp) End (bp) Mullighan et al. CIS genes in region
1 127000000 247249719 719 genes telomeric of Mef2d, Nid1, Slamf6, Cd48, Anp32e,
PBX1 Lyst, Btg2, Ptprc, Mixl1, Ccdc19, Sell,
Ppp2r5a, Zbtb7b, Rorc, Slamf7, Mcl1,
Itpkb, AI848100, Rcsd1, 5730559C18Rik,
Irf2bp2
2 1 31987853 235 genes D12Ertd553e, Mycn
6 1 26216000 190 genes Irf4, Exoc2, Rrebl, Sox19
6 135556000 135714000 MYB, MIRN548A2, Myb, Ahil
AHI1
9 60000000 140273252 155 genes telomeric of Nup214, Phyhd1, Sema4d, Gadd45g,
ABL1 Ccrk, Eng, Gfilb, Ak1, Egfl7, Notch1,
Coro2a, A2AN91_MOUSE, Akna,
A130092J06Rik
10 1 40290000 All 10p Cugbp2, Map3k8, Il2ra, Zfp438
21 32896000 35199000 33 genes including Runx1, Ifnarl
Runx1
22 1 21888000 277 genes telomeric of Bid, Tuba8, BC030863, Cecr5, Vpreb2
BCR
Comment in
B Chromosome Start (bp) End (bp) Mullighan et al. CIS genes in region
2 232347739 242951149 124 genes Lrrfip1
4 109254845 109303845 LEF1 Lefl
5 163535000 180857866 172 genes C330016010Rik, Mgat1
7 1 58058273 All 7p Stard3nl, Mafk, Ikzf1, Mad1l1, Lfng,
Hibadh, Hoxa7, Sdk1, 3110082117Rik,
Jazfl
9 1 50600000 All 9p Cd72, Anxa2, Dock8
11 117882000 118379000 16 genes distal to MLL  Treh, Bcl9/
12 11694055 11939588 ETV6 Etv6
13 40453000 40484000 ELF1 Elf1
13 47885000 47968000 RB1 Rcbtb2
16 66116000 66423000 FAM65A, CTCF, RLTPR, 2310066E14Rik (FAM65A)
ACD, PARDG6A,
C160rf48, LOC388284,
GFOD2, RANBP10,
TSNAXIP1, CENPT
17 1 18837000 383 genes Lgals9, AA536749, Prr6, Pik3r5, Ntn1i,
Slc43a2, Ovca2, Smg6, Rtn4rll
17 35185000 35230000 IKZF3 Ikzf3
19 229000 1531000 63 genes telomeric to Ptbp1, Arid3a, Midn
TCF3
20 27000000 62435964 All 20q Bcl2l1, Serinc3, Stk4, Ndrg3, Sla2,
Ncoa3, Ppplrl6b, Prkcbpl, Zfp217
21 38706000 38729000 ERG Erg

Table 3.1. The human orthologues of mouse CIS genes can help to identify the
critical gene(s) in regions of copy number change in acute lymphoblastic leukaemias
(ALLs) from Mullighan et al. (2007). Recurrent amplifications and deletions in ALLs
that contain CIS genes are shown in Tables A and B, respectively. The coordinates of
each region in the NCBI 36 human assembly are shown. “Comment in Mullighan et al.
(2007)” provides details of how the region was characterised in the publication. “CIS
genes in region” provides a list of mouse genes that have human orthologues mapping to

each region.
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CIs
P-value genes GO ID Ontology GO term
8.90E-14 167 G0:0065007 BP biological regulation
4.89E-14 155 G0:0050789 BP regulation of biological process
3.29E-14 64 G0:0048518 BP positive regulation of biological process
3.98E-14 148 GO0:0050794 BP regulation of cellular process
2.07E-12 57 G0:0048522 BP positive regulation of cellular process
1.01E-07 19 G0:0008284 BP positive regulation of cell proliferation
1.48E-06 27 GO0:0031325 BP positive regulation of cellular metabolic process
2.18E-06 10 GO0:0050867 BP positive regulation of cell activation
1.51E-05 6 GO0:0045787 BP positive regulation of cell cycle
1.52E-05 79 G0:0019219 BP regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process
5.73E-06 76 GO0:0051252 BP regulation of RNA metabolic process
3.83E-05 76 G0:0045449 BP regulation of transcription
2.77E-05 73 GO0:0006355 BP regulation of transcription, DNA-dependent
4.32E-07 26 GO0:0006357 BP regulation of transcription from RNA polymerase II promoter
1.46E-11 30 GO0:0051726 BP regulation of cell cycle
1.29E-10 54 G0:0048523 BP negative regulation of cellular process
1.60E-08 28 G0:0042127 BP regulation of cell proliferation
2.47E-07 13 GO0:0050865 BP regulation of cell activation
4.84E-07 30 GO0:0009966 BP regulation of signal transduction
2.71E-06 89 G0:0031323 BP regulation of cellular metabolic process
1.51E-05 9 GO0:0051270 BP regulation of cell motility
4.54E-05 80 G0:0010468 BP regulation of gene expression
8.52E-11 57 G0:0048519 BP negative regulation of biological process
8.80E-08 44 GO0:0050793 BP regulation of developmental process
3.09E-10 28 G0:0051094 BP positive regulation of developmental process
5.83E-08 30 GO0:0043067 BP regulation of programmed cell death
2.86E-08 20 G0:0043068 BP positive regulation of programmed cell death
2.47E-08 20 GO:0043065 BP positive regulation of apoptosis
2.38E-06 15 G0:0006917 BP induction of apoptosis
2.38E-06 15 G0:0012502 BP induction of programmed cell death
4.87E-08 30 G0:0042981 BP regulation of apoptosis
6.43E-06 21 GO0:0051093 BP negative regulation of developmental process
2.18E-07 17 G0:0002682 BP regulation of immune system process
2.47E-07 13 G0:0002694 BP regulation of leukocyte activation
1.26E-07 13 G0:0051249 BP regulation of lymphocyte activation
6.55E-09 13 G0:0050863 BP regulation of T cell activation
1.24E-06 5 G0:0050854 BP reqgulation of antigen receptor-mediated signaling pathway
1.76E-05 4 GO0:0050856 BP regulation of T cell receptor signaling pathway
3.52E-06 8 G0:0002683 BP negative regulation of immune system process
1.24E-05 13 G0:0002684 BP positive regulation of immune system process
2.18E-06 10 G0:0002696 BP positive regulation of leukocyte activation
1.69E-06 10 GO0:0051251 BP positive regulation of lymphocyte activation
1.31E-07 10 G0:0050870 BP positive regulation of T cell activation
3.40E-05 6 G0:0042102 BP positive regulation of T cell proliferation
2.43E-06 23 G0:0051239 BP regulation of multicellular organismal process
9.53E-06 89 G0:0019222 BP regulation of metabolic process
2.35E-06 27 G0:0009893 BP positive regulation of metabolic process
2.86E-05 9 GO0:0040012 BP regulation of locomotion
1.29E-12 27 GO0:0001775 BP cell activation
6.04E-12 25 G0:0045321 BP leukocyte activation
6.15E-12 24 G0:0046649 BP lymphocyte activation
1.13E-11 19 G0:0042110 BP T cell activation
3.85E-05 9 GO:0046651 BP lymphocyte proliferation
2.29E-05 8 G0:0042098 BP T cell proliferation
2.71E-11 47 G0:0002376 BP immune system process
1.21E-05 6 GO0:0001776 BP leukocyte homeostasis
3.60E-05 5 G0:0002260 BP lymphocyte homeostasis
2.89E-05 4 G0:0043029 BP T cell homeostasis
8.96E-10 41 GO0:0007049 BP cell cycle
9.55E-10 61 G0:0007242 BP intracellular signaling cascade
1.96E-09 75 GO0:0048869 BP cellular developmental process
1.96E-09 75 G0:0030154 BP cell differentiation
1.15E-10 19 G0:0002521 BP leukocyte differentiation
3.10E-09 15 GO0:0030098 BP lymphocyte differentiation
6.62E-06 9 G0:0030217 BP T cell differentiation
5.95E-09 103 G0:0032502 BP developmental process
3.25E-09 80 G0:0048856 BP anatomical structure development
4.15E-08 39 G0:0016265 BP death
2.83E-05 45 G0:0009653 BP anatomical structure morphogenesis
6.25E-09 84 GO0:0007275 BP i or i
2.88E-09 72 G0:0048731 BP system development
1.80E-11 27 G0:0002520 BP immune system development
4.63E-12 27 G0:0048534 BP hemopoietic or lymphoid organ development
2.02E-11 25 G0:0030097 BP hemopoiesis
5.95E-09 62 G0:0048513 BP organ development
1.56E-08 34 G0:0008283 BP cell proliferation
1.97E-05 7 GO0:0050673 BP epithelial cell proliferation
3.85E-05 9 G0:0032943 BP mononuclear cell proliferation
1.59E-07 53 GO0:0048468 BP cell development
4.15E-08 39 G0:0008219 BP cell death
1.67E-08 39 G0:0012501 BP programmed cell death
1.24E-08 39 GO0:0006915 BP apoptosis
1.16E-05 13 GO0:0001525 BP angiogenesis
1.54E-05 178 G0:0043170 BP macromolecule metabolic process
3.08E-09 153 G0:0043283 BP biopolymer metabolic process
1.57E-05 63 G0:0043412 BP biopolymer modification
7.15E-06 62 GO0:0006464 BP protein modification process
3.48E-05 54 GO0:0043687 BP post-translational protein modification
1.58E-05 16 G0:0045944 BP positive regul n of transcription from RNA polymerase II promoter
2.30E-05 7 G0:0030183 BP B cell differentiation
2.36E-05 79 GO0:0006350 BP transcription
2.44E-05 86 G0:0016070 BP RNA metabolic process
1.71E-05 75 GO0:0032774 BP RNA biosynthetic process
1.63E-05 75 G0:0006351 BP transcription, DNA-dependent
9.62E-06 25 GO:0006366 BP transcription from RNA polymerase II promoter
2.81E-05 6 G0:0050851 BP antigen r di. d si i pathway
2.45E-06 6 G0:0050852 BP T cell receptor signaling pathway
3.38E-05 11 G0:0001816 BP cytokine production
3.88E-05 15 G0:0007265 BP Ras protein signal transduction
3.98E-05 36 G0:0016310 BP phosphorylation
5.64E-06 35 G0:0006468 BP protein amino acid phosphorylation
2.82E-07 179 GO 15 MF protein binding
3.66E-06 54 G0:0030528 MF transcri on regulator activity
5.08E-06 41 G0:0003700 MF transcription factor activity
3.95E-05 39 GO0:0016301 MF kinase activity
2.40E-05 27 G0:0004674 MF protein serine/threonine kinase activity

Table 3.2. Over-represented GO terms among CIS genes identified using MuLV.
“CIS genes” is the number of CIS genes annotated for each term. The ontologies shown
are biological process (BP) and molecular function (MF). Terms are staggered to show
GO term hierarchies, with terms of equivalent hierarchy being listed in order of
decreasing significance. Terms associated with T- and B-cells are shown in blue.
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related factor; TF:M01100) and VDR (vitamin D receptor; TF:M00444) were also
significantly over-represented among candidate genes (P=1.38x10” and P=1.47x10-5,
respectively). LRF is a master regulator of oncogenesis that directly represses
transcription of the tumour suppressor gene p/9**" (Maeda et al., 2005) and plays an
essential role in determining B- versus T-cell fate (Maeda et al., 2007). VDR is also
widely implicated in human tumourigenesis (for review, see Thorne and Campbell, 2008).
Specific analysis of over-represented GO terms for the genes associated with each
transcription factor showed that all were enriched for terms relating to the cell cycle and
KEGG pathways for acute and chronic myeloid leukaemia. Only candidates associated
with the Movo-b binding site were enriched for genes with protein serine/threonine kinase
activity (P=2.21x107), suggesting that Movo-b may play an important role in regulating
protein kinases. Likewise, only genes with Lrf binding sites were enriched for terms
associated with apoptosis, suggesting that Lrf may also repress other tumour suppressor

genes, including Wwox and Trp53inp].

The output from g:Profiler also showed that candidate genes were over-represented
among the predicted targets of 3 miRNAs: mmu-miR-449b (P=4.31x107), mmu-miR-
449¢ (P=9,69x10°) and hsa-miR-565 (P=6.29x107), which suggests that these miRNAs
may play an important role in regulating genes involved in tumourigenesis. The list of
candidates also included 5 genes that encode miRNAs: mmu-miR-142, mmu-miR-17,
mmu-miR-802, mmu-miR-181c and mmu-miR-23a. miRNAs play an important role in
haematopoiesis, and miRNA deregulation has been widely observed in leukaemias and
lymphomas (for review, see Garzon and Croce, 2008). The human orthologues of mmu-
miR-142 and mmu-miR-181 are both implicated in the regulation of mammalian
haematopoiesis, since hsa-miR-142 is at a translocation site within a case of aggressive B-
cell leukaemia, while B-cell-specific hsa-miR-181 promotes B cell differentiation (Chen
and Lodish, 2005). Deregulated miRNAs also contribute to cancer in other cancer types.
hsa-miR-23a, the human orthologue of mmu-miR-23a, is upregulated in human
hepatocellular carcinomas (Kutay et al., 2006), while the human orthologue of mmu-miR-
17 is implicated as an oncogene in a range of cancers, and is discussed further in Section

4.5.2.1.2.

Of the 10 candidates genes in the Sleeping Beauty dataset, 5 had been previously
identified by retroviral insertional mutagenesis in RTCGD and were also identified in the

MuLV screen described herein (see Section 3.3), while 3 had been previously identified
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by transposon-mediated mutagenesis. Therefore, a higher percentage (42.9%) of these
candidates than those in the MuLV screen (1.4%) overlapped with other transposon
screens, again highlighting the different mutational profiles of the two mutagens. The
Sleeping Beauty dataset is small, and none of the genes had Nanog or Oct4 binding sites
(P=1 for both tests), while 1 had a p53 binding site (P=0.178) and 1 overlapped with the
Sjoblom et al. (2006) dataset (P=0.087). However, 6 candidates were identified in the
Cancer Gene Census and 5 had mutations in COSMIC. This is significantly greater than
the number expected by chance (P=4.26x10” and P=4.02x10™, respectively). 5 genes
were dominant cancer genes in the Cancer Gene Census (P=1.16x107), while 1 (PTEN)
was recessive (P=0.032). Candidate genes were also enriched in regions of copy number
loss (3 genes, P=0.0338) but not in regions of gain (2 genes, P=0.2450) in the Mullighan
et al. (2007) dataset. There was an over-representation of genes (AK72 and PTEN) in the
melanoma, endometrial cancer and glioma KEGG pathways (P=1.68x10°, P=9.26x10™
and P=1.36x107, respectively) and in the REACTOME pathway associated with negative
regulation of the PI3K/AKT network (P=8.11x107). Candidate genes were also over-
represented in the B-cell receptor signalling pathway (4KT2 and PPP3CA; P=1.40x107).
Only 2 GO terms, “regulation of biological process” (8 genes, P=6.10x107) and
“transcription factor activity” (Notchl, Flil, Myb, lkzfl and Erg; P=3.39x107 ) were over-

represented, but the test was limited by the small size of the dataset.

The enrichment of candidate genes from the MuLV and Sleeping Beauty screens within
human cancer-associated datasets demonstrates the efficacy of insertional mutagenesis as
a tool for discovering human cancer genes, as well as those in mice. In addition,
overlaying other cancer-associated datasets on to the insertional mutagenesis data helps to
characterise the candidate genes and facilitates the identification of novel cancer genes.
However, the approach is biased towards the identification of genes involved in the
development of cancers of lymphoid origin. Candidate genes were positively associated
with the Mullighan et al. (2007) dataset, which was generated using ALLs, and the
Cancer Gene Census and COSMIC database, in which genes implicated in
haematopoietic and lymphoid tumourigenesis are over-represented. Many of the over-
represented GO terms were also directly related to the differentiation and activation of B-
and T-cells. Conversely, candidates showed no significant association with the Sjoblom
et al. (2006) dataset of colon and breast cancer genes. This highlights the importance of
developing insertional mutagenesis screens that can induce other types of tumour, e.g. by

integrating tissue-specific promoters into transposons or by spatial and temporal
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regulation of transposase expression (see Section 1.4.2.2.1). The datasets discussed in
this section are further referred to in the proceeding sections and chapters in relation to

individual cancer gene candidates.

3.3 Comparison of candidate cancer genes in the MuLV and Sleeping

Beauty datasets

There was a significant overlap between the lists of candidate cancer genes obtained
using the retroviral and Sleeping Beauty (SB) screens. There was an overlap of 5 genes
(P=9.64x10>") when both lists generated using the kernel convolution (KC)-based
approach were compared. Comparing the KC list of candidates from the retroviral screen
to the Sleeping Beauty candidates generated using Monte Carlo (MC) simulations
(Efir=0.001) produced an overlap of 10 genes (P=1.95x10™). The KC lists therefore
yielded the most significant overlap, which is consistent with the work described in
Section 2.10.2, where the KC method was proposed to generate the most reliable set of

candidate genes.

The distributions of MuLV and T2/Onc insertions across the mouse genome are shown in
Figures 3.1A and 3.1B, respectively. The figures also show the location of candidate
cancer genes that were identified by both screens, as well as all other Sleeping Beauty
candidates identified using the KC method and a subset of the most frequently disrupted
candidates from the MuLV screen. The most frequently mutated genes in MuL V-induced
tumours were Gfil/Evi5, Myc/Pvtl and Ccnd3. These genes had insertion densities of
427.28, 314.19 and 172.09, respectively, using the KC method with kernel width 30 kb.
Remarkably, none of the SB-induced tumours contained insertions in or around these
genes. While these genes are known to contribute to tumourigenesis, the frequency of
insertions may reflect the bias of retroviruses to insert into particular sites in the genome
(see Section 1.4.2.1.1). In addition, many of the MuLV insertions in these genes appear
to be enhancer mutations, which do not feature in the Sleeping Beauty screen because
T2/Onc has low enhancer activity. Therefore, the frequency of insertions may reflect the
choice of mutagen and does not imply that a gene would contribute to a similar

proportion of spontaneous tumours in the mouse.

Conversely, a significant CIS comprising insertions in 6 SB-induced tumours was

identified in the tumour suppressor gene Pten, but none of the MuLV-induced tumours
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Figure 3.1. MuLV (A) and T2/Onc (B) insertions across the mouse genome. The
plots show the density of insertions calculated using the kernel convolution-based method
(de Ridder et al., 2006) with a kernel width of 30 kb. Common insertion sites (CISs) are
shown in green. The red line represents the threshold above which insertions form
significant CISs (P<0.05). Gene names shown in red contain significant CISs in both
screens. Gene names shown in black contain significant common insertion sites that are
unique to one screen. * marks artefacts in En2.
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contained an insertion within this gene. None of the T2/Onc insertions were in Bloom-
deficient tumours, which have an increased propensity for insertions within tumour
suppressor genes (see Section 1.4.2.1.1). For 3 tumours, multiple insertions were
identified, suggesting that the gene may be inactivated by insertions affecting both copies,
rather than by one insertion in a region of loss of heterozygosity (LOH) (Figure 3.2A).
The lack of MuLV insertions may reflect the fact that MuLV prefers to insert near to
transcriptional start sites (Section 1.4.2.1.2) and is therefore more biased towards the
identification of oncogenes than is the T2/Onc transposon. These observations suggest
that MuLV and the T2/Onc transposon are unique mutagens with complementary
mutagenic profiles, and that performing screens with both these mutagens can identify

more candidate cancer genes than with either alone.

As well as the distinct differences between the mutagenic profiles of MuLV and T2/Onc,
a number of known and implicated cancer genes (Notchl, Erg, Ikzfl, Myb and Flil)
contained significant CISs in both screens. The co-occurring MuLV and T2/Onc
insertions within these genes are discussed in Section 3.4.2. After Myc/Pvtl, Gfil/Evi5
and Ccnd3, the most highly mutated genes in the MuLV screen were Rasgrp! (insertion
density 169.59) and Rras2 (insertion density 161.49). Although significant Sleeping
Beauty CISs were not identified in these genes using the KC method, Rras2 did contain 1
T2/Onc insertion, and Rasgrpl contained 3 T2/Onc insertions, which was significant
using the Monte Carlo method with Efi=0.005. Likewise, A4536749, Zmizl, and known
oncogenes [rf4 and Etv6, contained significant MuLV CISs identified using the KC
method and T2/Onc CISs that were significant using the MC method with Efi=0.001.

The human orthologue of 44536749 is myosin phosphatase Rho-interacting protein
(p116Rip or M-RIP). pll6Rip is a filamentous actin-binding protein that is capable of
disassembling the actomyosin-based cytoskeleton and acts downstream of RhoA (Mulder
et al.,2003). The actin cytoskeleton plays a role in many cancer-related functions such as
cell motility, cell differentiation, cell survival and cell division. The LIM kinases
(LIMK1 and LIMK?2) are regulators of actin dynamics that also act downstream of Rho
GTPase and play an important role in tumour invasion and metastasis (Scott and Olson,
2007). The identification of insertions in tumours generated by both mutagens suggests

that p/16Rip may also play an important role in tumourigenesis.
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Known and putative tumour suppressor genes identified in the Sleeping

Beauty (SB) screen. Pten (A) did not contain any MuLV insertions. Ppp3ca (B) and
BC033915 (C) contained MuLV insertions but not in a statistically significant CIS. For
all genes, there was at least 1 SB tumour that contained more than 1 insertion, suggesting
that inactivation of both genes may be required for tumourigenesis. The tumour in which
each T2/Onc insertion was identified is provided as a label under the insertion, which is
shown in pink. Ensembl genes are shown in red and, where applicable, MuLV insertions
are shown as black vertical lines. Insertions above and below the blue line are in the
forward and reverse orientation, respectively.
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Zmizl enhances p53 (Lee et al., 2007) and Smad transcriptional activity (Li et al., 2006b),
suggesting a tumour suppressive role. However, it is also required for vasculogenesis
(Beliakoff et al., 2008) and activates transcription of the androgen receptor (Beliakoff and
Sun, 2006; Sharma et al., 2003), which contributes to the formation and progression of
human prostate cancer (for review, see Nieto et al., 2007). In addition, a fusion between
ZMIZ1 and ABLI was recently identified in a human B-cell acute lymphoblastic
leukaemia (Soler et al., 2008). There are 4 other known fusion partners (BCR, ETV6,
NUP214 and EMLI) for ABL in human haematological malignancies, and one putative
partner, RCSDI (De Braekeleer et al., 2007). Remarkably, Zmizl, Etv6, Nup2l4 and
Resdl all contained statistically significant CISs in the retroviral screen and, although not
significant, Bcr contained 2 MuLV insertions, while Em// contained 1 MuLV and 1
T2/Onc insertion. This reflects the fact that mutagenesis by MuLV often resembles the

effects of translocation, as mentioned in Section 3.3.2.

The remaining candidates containing significant Sleeping Beauty CISs identified using
the KC method also contained retroviral insertions, although not significant CISs. The
known oncogene Akt2 and the serine/threonine protein phosphatase Ppp3ca contained 1
and 2 MuLV insertions, respectively. One of the 3 SB-induced tumours in which Ppp3ca
was disrupted contained 4 insertion sites, suggesting that this gene encodes a tumour
suppressor (Figure 3.2B).  This is supported by research showing that Ppp3ca can
dephosphorylate cyclin dependent kinases (CDKs), therefore potentially inhibiting cell
cycle progression (Cheng et al., 1999, see Section 1.2.6 for more on CDKs). In addition,
Ppp3ca overexpression increases the levels of p53 and inhibits cell growth (Ofek et al.,
2003), and expression is reduced in androgen-independent prostate cancer cells (Singh et

al., 2008).

The gene encoding serine/threonine protein kinase BCO033915 (known as QSK in
humans) was also identified in both screens, and although the MuLV CIS was not
significant, it did contain 5 retroviral insertions (Figure 3.2C). In the COSMIC database,
2 of the 296 human tumour samples that have been tested for mutations in the OSK gene
contain missense mutations. One heterozygous S882C substitution was identified in the
primary renal cell carcinoma PD1583a, which contains just one other small intragenic
mutation in 519 genes examined, and a P836S substitution (zygosity unknown) was
identified in the non-small cell lung cancer cell line NCI-H1770, which contains 201

small intragenic mutations in 4,688 genes examined. 1 silent mutation (heterozygous
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substitution R476R) was also identified in the malignant melanoma cell line MZ7-mel,
but this line contains 428 mutations in 4,668 genes examined and therefore appears to
have a hypermutable phenotype. Both missense mutations are located in a glutamine-rich
region (Prosite profile PS50322). All of the retroviral and transposon insertions in QSK
precede this region and may therefore produce truncated gene transcripts in which the
region is missing. 2 heterozygous, missense mutations were also identified in the
resequencing study by Sjoblom et a/ (2006). QSK and 11 other kinases related to AMP-
activated protein kinase (AMPK) are known to be activated by the tumour suppressor
kinase LKB1 (Lizcano et al., 2004). Activation of one of these kinases (MARKI) by
LKB1 has been shown to regulate microtubule dynamics by phosphorylating the
microtubule-associated protein Tau, thereby reducing the affinity of Tau for microtubules
and inhibiting tubulin polymerisation (Kojima et al., 2007). QSK may play a similar role,
since RNAi-mediated knockdown of the Drosophila orthologue of OSK resulted in
spindle and chromosome alignment defects (Bettencourt-Dias ef al., 2004). One of the
SB-induced lymphomas contained 2 insertion sites in Qsk, and this, coupled with the

observations described above, suggests that Osk may be a tumour suppressor gene.

Finally, a novel gene, ENSMUSG00000075015, contained a significant T2/Onc CIS and 1
MuLV insertion. 2 T2/Onc insertions were in the antisense orientation with respect to the
gene, suggesting that the gene might encode a tumour suppressor, but functional analysis

is required to determine the role of this gene in tumourigenesis.

The Sleeping Beauty dataset is relatively small and few candidate cancer genes have been
identified. However, comparison with the MuLV screen demonstrates the potential
benefits of using multiple mutagens to increase the spectrum of candidate cancer genes,
but also to identify strong candidates that are independently mutated by both screens and
are therefore unlikely to result solely from insertional bias. 3 of the 10 genes identified in
the Sleeping Beauty screen are known or putative tumour suppressor genes, i.e. Pten,
Ppp3ca and Qsk, suggesting that the T2/Onc mutagen is an effective tool for identifying
recessive cancer genes. Scaling up the screen to identify further candidates would

provide a valuable dataset to complement the retroviral insertional mutagenesis data.
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3.4 Determining the mechanisms of MuLV insertional mutagenesis
3.4.1 Analysing the distribution of intragenic insertions

Analysis of the distribution of insertions within and around genes can help to determine
the likely mechanisms of mutation. Oncogenic insertions in intergenic regions are likely
to be promoter or enhancer mutations that result in increased levels of the wildtype
protein. However, the effect of intragenic insertions, of which there are 8,447 (42.0% of
the total), may be less obvious. The Ensembl API version 45 36f was used to identify
the genomic coordinates of untranslated regions (UTRs), exons and introns in the longest
transcript of each candidate cancer gene. From these, coding and non-coding exons, and
introns within coding regions or UTRs, were distinguished. The “gene regions” were
defined as 5° UTR, intron in 5° UTR, coding exon, intron flanked by coding exons, intron
in 3 UTR, and 3 UTR. For each candidate, the number of insertions in each gene region
was counted, and the orientation of each insertion with respect to the disrupted gene was
determined. The total number of insertions in each gene region is shown in Figure 3.3A.
The collective length of each gene region across all candidate genes was also calculated
and, for each region, the insertion count was divided by the length in base pairs to give an
indication of the proportion of insertions given the region size (Figure 3.3B). For
insertions within introns or exons of the coding region, the identity, i.e. number, of the
exon or intron containing the insertion was determined. This is helpful in determining the
mechanism of mutation since, if a specific oncogenic gene product is formed, multiple

insertions would be expected to localise to the same region of the gene.

Within genes, introns were the most common site of insertion, but for their size, they
were the least commonly hit region. Intronic insertions may result in the formation of N-
or C-terminal truncations. There are polyadenylation sites in both orientations of the
retroviral provirus but promoters are only found in the forward orientation of the
retroviral LTRs (see Section 1.4.2.1.1). Therefore, while antisense insertions can only
form C-terminal truncations, sense insertions can form both N-terminal and C-terminal
truncations. The distribution and orientation of intronic insertions will vary in different
oncogenes depending on how an oncogenic mutant is created, and tumour suppressor
genes can be inactivated by any distribution of insertions that results in non-functional N-
or C-terminal truncations. There were therefore roughly equal numbers of sense and
antisense insertions in introns. Genes with the highest numbers of intronic insertions

were [lkzfl (56 insertions) and Notchl (52 insertions). The insertions in /kzf1, a tumour
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Figure 3.3. The distribution of MuLYV insertions within candidate cancer genes. (A)
The total number of insertions in each gene region. (B) The number of insertions as
a proportion of the total length of the gene region across all candidate genes. The
number of insertions in the sense orientation (F) with respect to genes is shown in red,
while the number in the antisense orientation (C) is shown in yellow.
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suppressor gene (see Section 3.4.4), are likely to cause premature termination of gene
transcription, resulting in gene inactivation, while those in Notchl are likely to produce
distinct, truncated mutant proteins that are implicated in tumourigenesis (see Section 3.4.2
for further details). FI¢3 contained 40 intronic insertions that were all in the sense
orientation, suggesting that the gene is most likely disrupted by the formation of N-
terminal truncations (Figure 3.4A). Most insertions were within intron 9 and are
predicted to result in the production of proteins lacking the extracellular, ligand-binding,
Ig-like domain. FLT3 is mutated in around one third of human acute myeloid leukaemias,
yet it is mutated by internal tandem duplications or by point mutations that produce a
constitutively active protein (Small, 2006). 4,170 out of the 20,259 haematopoietic and
lymphoid cancer samples tested in COSMIC have a mutation in FL73, of which 185 have
a missense mutation at amino acid 835 in the protein kinase core domain. Most of the
remaining samples have internal tandem duplications that are represented in COSMIC by
complex mutations and indels. This suggests that retroviral insertional mutagenesis may
not always accurately recapitulate the mutations contributing to human cancers.
Antisense insertions occurring in introns close to the 5’ end of a gene could be
inactivating mutations affecting tumour suppressor genes, or may result in the production
of a truncated transcript from a cryptic transcription start site further downstream within

the gene. It is also possible that they are acting as enhancer mutations.

The second most frequently hit regions were introns in the 5° UTR, i.e. introns that are
flanked on each side by exons of the 5> UTR. Again, these collectively form a larger
region than coding and non-coding exons. There were 28.8% more insertions in the
antisense orientation than in the sense orientation. Sense insertions are most likely to be
promoter mutations, which result in increased production of the full-length cellular
protein.  Antisense insertions may be prematurely terminating gene transcription,
resulting in the complete absence of the gene product, as might be expected for tumour
suppressor genes, or they may result in the production of a truncated transcript from a
cryptic transcription start site. They could also be intragenic enhancer mutations or, as
the longest gene transcript has been selected for this analysis, it is possible that some are
enhancer mutations that are upstream of alternative gene transcripts, and are therefore
producing full-length, wildtype proteins at increased levels. Cyclin D3 (Ccnd3)
contained the highest number of insertions (204) within 5> UTR introns, with 85%
occurring in the antisense orientation (Figure 3.4B). Since Ccnd3 is an oncogene, and

contains no known cryptic transcription start sites or alternative transcripts, it is likely that
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Figure 3.4. Intragenic MuLV insertions in candidate cancer genes. (A) Intronic
insertions in Flt3 are predicted to generate N-terminally truncated gene products.
(B) Antisense insertions in the 5> UTR of Ccnd3 are likely enhancer mutations. (C)
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the insertions are enhancer mutations. Lck contained 18 sense insertions but no antisense
insertions in intronic regions of the 5° UTR, and a further 3 sense insertions in the 5’
UTR and first coding exon, suggesting that all of the insertions are involved in the
formation of chimeric transcripts in which the retroviral promoter drives increased

expression of the cellular gene.

The 5° UTRs of candidate genes contained an over-representation of sense insertions, as
expected for promoter insertions. Myc contained the most sense insertions, totalling
eight. Antisense insertions in the 5° UTR may interfere with gene transcription,
preventing protein production or resulting in transcription from a cryptic or alternative

promoter.

Exons and 3 UTRs showed a strong bias towards insertions in the sense orientation.
80% of sense insertions in coding exons were in Notchl, Mycn, Map3k8, Ccr7, Piml and
Jundm?2, and in all cases, insertions were at the 3° end of the gene, close to the 3 UTR.
In the case of Mycn and PimI, which also contained a large number of 3’ UTR insertions,
these insertions cause premature termination of gene transcription that result in the
removal of mRNA-destabilising motifs and, therefore, the generation of a more stable
gene transcript (Cuypers et al., 1984; Selten et al., 1985; van Lohuizen et al., 1989).
Insertions within Pim/ are shown in Figure 3.4C. It is possible that Ccr7 and Jundm?2 are
disrupted by the same mechanism, since both contained sense insertions in the final
coding exon and the 3° UTR. The near-exclusivity of sense insertions in these genes
suggests that the polyadenylation site in the forward orientation of the retrovirus may
have a stronger signal than the cryptic site in the reverse orientation. In summary, the
density of insertions in exons and UTRs was higher than for introns, suggesting the
importance of promoter insertions and “stabilising” insertions as mechanisms of

mutagenesis.

For each candidate cancer gene, the distribution of insertions was used to predict the
likely mechanisms of mutagenesis and, therefore, the likely structures of mutated gene
products. Sense insertions that were upstream of the gene, within the 5 UTR or in an
intron flanked by exons of the 5 UTR were classified as promoter mutations. Upstream
insertions in the antisense orientation were classified as enhancer mutations. Insertions in
the 3> UTR were classified as “stability” mutations, i.e. insertions that may result in the

removal of mRNA-destabilising motifs, while sense and antisense insertions in exons or
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introns in the coding region were classified as C- or N-terminally and C-terminally
truncating mutations, respectively. Finally, antisense insertions in introns within the 5’
UTR remained unclassified, since these have a number of possible effects (see above).
This yielded 360 genes with enhancer insertions, 309 with promoter insertions, 45 with
stability mutations, 183 with C-terminally truncating insertions, 202 with C- or N-
terminally truncating mutations, and 92 with antisense insertions in introns within the 5’
UTR. Most genes are associated with multiple types of insertion (see Table 3.3). Genes
were further classified according to the predicted protein generated by the mutations.
Genes containing any combination of promoter, enhancer and stability mutations should
generate the wildtype protein at increased levels compared with the endogenous gene. It
was assumed that where both sense and antisense insertions occurred in the same exon
and intron, the gene was C-terminally truncated, whereas if only sense insertions
occurred, the gene was N-terminally truncated. Sense insertions in the last intron were
classified as C-terminally truncating, as commonly observed, for example, in Pim/ and
Mycn. This generated 7 types of mutant — upregulated wildtype (201 genes), C-
terminally truncated (30 genes), N-terminally truncated (2 genes), C- and N-terminally
truncated (4 genes), and upregulated wildtype plus C-terminally truncated (122 genes), N-
terminally truncated (56 genes) or C- and N-terminally truncated (24 genes). This
suggests that a high proportion of genes contribute to tumourigenesis by increased
production of the wildtype protein. C-terminally truncating mutations appear to be more
common than N-terminally truncating mutations, but this may reflect the fact that
insertions in the sense orientation were assumed to be C-terminally truncating if antisense
insertions were also present, and therefore some may have been misclassified. The genes

associated with each mutation type are presented in Table 3.3.

Elucidation of the mechanisms of mutagenesis is complicated by insertional bias and the
ability of MuLV to disrupt a gene in multiple ways. Therefore, predictions must be
experimentally validated, e.g. by measuring the length of transcripts generated by
insertion-containing genes and by analysis of gene expression in MuLV-induced tumours
(see Section 3.4.5). Reducing the number of ways in which an insertional mutagen can
disrupt a gene would facilitate the analysis of insertions within genes. For example, by
using a transposon engineered with a splice acceptor site and polyadenylation site on one
strand only, it would be possible to distinguish C- and N-terminal truncations with a high

degree of certainty.
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Table 3.3. The predicted mutation types and mechanisms of mutagenesis based on
the distribution of MuLV insertions within and around candidate cancer genes. C-
trunc = C-terminally truncated, N-trunc = N-terminally truncated, P = promoter insertion,
E = enhancer insertion, C = antisense intragenic insertion, C/N = sense intragenic
insertion, S = stabilising insertion, CT = antisense insertion 5’ of first coding exon (i.e.
truncating, leading to inactivation or use of cryptic transcription start site, or enhancer

mutation).
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3.4.2 Analysing co-occurring insertions in candidate genes disrupted by
MuLV and T2/Onc

The co-occurrence of MuLV and T2/Onc insertions in distinct regions of genes provides
strong evidence that the insertions do not result from insertional bias and that they play an
important role in oncogenesis. Such insertions can provide important clues about the
mechanism of mutation and, therefore, about the structure and function of genes and
oncoproteins involved in cancer. In this section, the distributions of MuLV and T2/Onc
insertions are compared within known and implicated cancer genes that overlap between
the MuLV kernel convolution (KC)-based list of candidates and Sleeping Beauty (SB)
candidates from the KC list, i.e. Notchl, Myb, Flil, Erg and lkzfl, and from the Monte
Carlo (Efi=0.005) list, i.e. Rasgrpl and Etv6.

In Notchl, MuLV and T2/Onc insertions co-occurred in the same orientation in 3 distinct
regions of the gene (Figure 3.5A). Antisense MuLV and T2/Onc insertions were
identified in the second intron. The retroviral insertions could be assumed to be enhancer
mutations, yet T2/Onc has low enhancer activity. Therefore, these are more likely to be
truncating mutations, and this is consistent with the observation that radiation-induced
deletions in the 5° region of Notchl result in truncated proteins that lead to the
development of mouse thymic lymphomas (Tsuji et al., 2003). The authors showed that
deletion of, or MuLV insertion into, the juxtamembrane extracellular region encoded by
exons 1 and 2 results in transcription from cryptic transcription start sites further
downstream in Notchl and leads to the production of an active protein lacking most of the
extracellular domain. Co-occurring sense insertions were also identified in the 28™ and
29" introns. Based on their orientation, these insertions are expected to produce N-
terminally truncated proteins containing only the intracellular domain of Notchl. This
form of Notchl, called NotchlIC, is constitutively active and is associated with
leukaemogenesis (for review, see Aster et al., 2008). Finally, there were co-occurring
insertions, again mostly in the sense orientation, within the final coding exon. These
insertions were upstream of the PEST domain, which regulates turnover of NotchlIC
(Aster et al., 2008). Deletion of the PEST domain, by MuLV insertion in T-cell
lymphomas and by radiation in the study by Tsuji et al. (2003), is believed to contribute
to tumourigenesis in collaboration with other activated oncogenes (Feldman et al., 2000;
Hoemann et al., 2000; Tsuji et al., 2003). 184 human tumour samples out of 1,909 tested
contain NOTCHI mutations in the COSMIC database. Of these, 180 are in
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haematopoietic and lymphoid tissue, which corresponds to 24% of all samples of this
cancer type tested. NOTCHI] is therefore specifically, and significantly, associated with

cancers of this type.

Co-occurring MuLV and T2/Onc insertions were also identified in the first intron,
preceding the first coding exon, of Rasgrpl (Figure 3.5B). These insertions, which are in
the sense orientation with respect to the gene, are likely to be promoter mutations that
result in overexpression of the full-length transcript. MuLV enhancer mutations were
also found upstream in the antisense orientation but, unsurprisingly, these were not
identified in the SB screen since T2/Onc has low enhancer activity. There were no
intragenic insertions beyond the first intron, suggesting that only the full-length gene
contributes to oncogenesis. This is supported by the observation that, among 273 tumour
samples tested, there are none with somatic mutations in RASGRPI in the COSMIC
database. Deregulated expression of full-length murine Rasgrpl contributes to the
development of T lymphocytic leukaemias (Klinger ef al., 2005), and to the progression
of skin carcinogenesis through the activation of the Ras oncogene (Luke et al., 2007).
Interestingly, in previous screens, insertions that are ~60-100 kb upstream have been
assigned to Rasgrpl (Hansen et al., 2000; Hwang et al., 2002; Kim et al., 2003a; Mikkers
et al., 2002; Stewart et al., 2007; Suzuki et al., 2006; Suzuki et al., 2002). However,
analysis of the insertions in the context of Ensembl shows that they are flanking an
Ensembl EST gene for which there is no associated Ensembl gene transcript (Figure
3.5B). Expression analysis of Rasgrpl in the affected tumours is required to determine
whether it is indeed disrupted by these insertions, but this observation suggests that the
analysis of insertion sites in the context of the mouse genome could potentially help in the

identification of “new” mouse transcripts.

All of the MuLV and T2/Onc insertions identified in gene E#v6 were in the second intron,
in both orientations (Figure 3.5C). Since sense insertions can form both N-terminal and
C-terminal truncations but antisense insertions can form only C-terminal truncations, it is
likely that where insertions occur in both orientations in the same intron of an oncogene,
they are causing premature termination of gene transcription that results in C-terminally
truncated gene products. In the case of Etrv6, this would result in the production of
polypeptide lacking both of its functional domains. Etv6 is a transcriptional repressor that
is essential for haematopoietic stem cell function. The N-terminal sterile alpha

motif/pointed (SAM_PNT) domain (IPR0003118) is responsible for hetero- and
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homodimerisation with other ETV6 and Ets (erythroblast transformation specific)-family
proteins. Deletion of this domain decreases the inhibition of macrophage colony
stimulating factor receptor (MCSFR) promoter activation by CBFA2B and C/EBPa, but
does not completely abrogate it (Fears ef al., 1997). However, the SAM_PNT domain is
necessary for interaction with, and inhibition of, the FL/I oncogene (Kwiatkowski et al.,
1998). The winged helix DNA-binding Ets domain (IPR000418) is essential for
inhibiting the activation of MCSFR (Fears et al., 1997). Therefore, deletion of both these
domains in the mouse most likely produces a non-functional protein, resulting in the
overexpression of Etv6 target genes, such as Flil. As mentioned previously, ETV6 forms
a fusion with 4BL, but also with many other genes, in human leukaemias (for review, see
Bohlander, 2005). Interestingly, while most fusions with tyrosine kinase genes contain a
breakpoint in intron 4 or 5 of ETV6, and, for example, fusions with RUNXI contain a
breakpoint in intron 5, there are also fusions with unique or rare recurrent gene partners in
which ETV6 has a breakpoint in intron 2. It has been suggested that promoters in the
latter ETV6 truncation upregulate nearby oncogenes (Jalali ef al., 2008; Panagopoulos et
al., 2006). However, the distribution of MuLV and T2/Onc insertions within ETV6
suggests that the nonfunctional truncation may also itself contribute to leukaemogenesis.
The ETV6-RUNXI fusion is consistently associated with deletion of the normal E7TV6
allele, suggesting that normal ETV6 represses ETV6-RUNXI1 by interaction via the
SAM_PNT domain (Hart and Foroni, 2002; Raynaud et al, 1996). Homo- and
heterodimerisation are believed to repress the activity of Ets proteins (Carrere et al.,
1998; see discussion below in relation to the Erg gene) and therefore, it is possible that by
deleting one allele, fewer heterodimers will be formed with other Ets proteins, resulting in
increased activity of those proteins. Incidentally, 1 sense and 1 antisense MuLV insertion
were identified 91.05 kb and 147.04 kb, respectively, upstream of the E#v6 gene. It could
be assumed that these insertions are not oncogenic, since they are a considerable distance
from the gene. However, the sense insertion is just 1.22 kb upstream of an Ensembl EST
gene for which there is no associated Ensembl gene transcript, which suggests that there

may be an unannotated alternative transcript of Efv6 (see Figure 3.5C).

The rest of the genes that were disrupted by both MuLV and SB showed variation in the
distribution of insertions. In some cases, this reflects differences in the mutational
mechanisms of the two mutagens. For example, 1 retroviral insertion and 1 transposon
insertion were found to co-occur just upstream of Myb (Figure 3.6A) in the sense

orientation, where they are likely to be causing promoter mutation, but the vast majority
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of retroviral insertions were putative enhancer mutations, occurring upstream in the
antisense orientation, or downstream, predominantly in the sense orientation with respect
to Myb. The presence of MuLV sense and antisense insertions, and 1 SB sense insertion,
just upstream of an Ensembl EST gene suggests that, as for E#v6, there is an additional
Mpyb transcript that has not been annotated as an Ensembl gene transcript. The remaining
T2/Onc insertions were intragenic. 3 were in the last (13™) intron in the antisense
orientation with respect to Myb, while 1 was in the 10™ intron in the sense orientation. A
C-terminal truncation caused by the latter would truncate the C-terminal Myb domain
(IPRO15395), which is known to bind the inhibitor Cyp-40 (Leverson and Ness, 1998).
Oncogenic v-Myb contains a mutated binding site that prevents binding of Cyp-40 and so
prevents negative regulation (Leverson and Ness, 1998). The contribution of insertions
within the last intron is unclear since a C-terminally truncated protein would contain an
intact binding domain. It is possible that the last exon of Myb encodes a protein sequence

with a hitherto uncharacterised role in oncogenesis.

Variation in the patterns of MuLV and T2/Onc insertions in F/il also reflect differences
in mutational mechanism. All of the MuLV insertions were upstream in the sense and
antisense orientation, acting as promoter and enhancer mutations, respectively. Again,
some of the upstream MuLV insertions were a considerable distance from F/i/ but 3
sense insertions were within the first exon of an Ensembl EST gene for which there is no
associated Ensembl gene transcript, suggesting the presence of an additional, unannotated
Flil gene transcript (Figure 3.6B). While 2 of the SB insertions were also upstream in the
sense orientation, the remaining 3 were in the first intron in the sense orientation, most
likely producing an overexpressed, N-terminally truncated transcript in which none of the

functional domains are deleted.

Similarly, both mutagens were found upstream of Erg (Figure 3.6C) in the sense
orientation, and MuLV insertions also occurred upstream in the antisense orientation.
However, 19 intragenic T2/Onc insertions were found in the sense orientation within a
1,531 bp region in the 1 intron, while 3 MuLV sense insertions were found in the 2™
intron. Like Etv6, Erg encodes a SAM_PNT and an Ets domain and, assuming that the
insertions are producing N-terminally truncated transcripts, the T2/Onc insertions may
give rise to truncated proteins containing both domains, while the MuLV insertions would

give rise to proteins with a disrupted SAM_PNT domain but full-length Ets domain. The
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Figure 3.6. Variation in the distribution of MuLV and T2/Onc insertions in Myb (A),
Flil (B) and Erg (C) may reflect differences in the mechanisms of mutagenesis.
MuLV insertions are shown in black, T2/Onc insertions are shown in pink. Ensembl gene
transcripts are shown in red and blue. ESTs are shown in purple. Insertions above and
below the blue bar labelled DNA(contigs) are in the forward and reverse orientation,

respectively.
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apparent presence of functional domains in the Erg truncations, but not in the Etvo
truncations, may reflect the fact that Erg is a transcriptional activator (Duterque-
Coquillaud et al., 1993), whereas Etv6 is a transcriptional repressor (see above). The
closely aligned T2/Onc insertions in the first intron of Erg could be contaminants, but it is
also possible that, in the absence of enhancer activity, the production of an overexpressed,
N-terminally truncated protein is the most effective way to mutate the gene. The
SAM_PNT domain is involved in the formation of heterodimers with other Ets proteins.
Erg/Ets-2 dimer formation prevents Ets-2 from acting as a transcriptional activator of
Mmp3 (Basuyaux et al., 1997; Buttice et al., 1996) and dimerisation may prevent Ets
proteins from binding to genomic DNA target sites (Carrere et al., 1998). Therefore, it is
possible that the 3 MuLV insertions in the 2™ intron that appear to disrupt the SAM_PNT
domain prevent dimerisation and so cause an increase in the transcriptional activity of Erg
and other Ets proteins that bind to Erg. The high proportion of MuLV promoter and
enhancer insertions suggests that this may be a less efficient way of upregulating the
gene, although it could also reflect the tendency of MuLV to insert close to transcription
start sites. All of the MuLV insertions, and one of the T2/Onc insertions, that were
identified upstream in the sense orientation were greater than 40 kb upstream of the Erg
gene, which is a considerable distance for promoter mutation. However, the insertions
resided within an Ensembl EST gene that overlaps with the Erg gene, suggesting that
there may be an additional, unannotated, Erg transcript that is targeted by insertional

mutagenesis.

In summary, differences in the distribution of MuLV and T2/Onc insertions may help to
distinguish oncogenes and tumour suppressor genes. Intragenic insertions in oncogenes
are more likely to be localised, since specific mutations, such as those described in
Notchl, may be required for oncogenesis. However, it is more likely that tumour
suppressor genes can be inactivated in multiple ways, and the distribution of insertions
may be less defined, as demonstrated in lkzf1, where MuLV and T2/Onc insertions were

scattered throughout the gene (see also Section 3.4.3, below).

3.4.3 Identification of tumour suppressor genes inactivated by MuLV

Although retroviral insertional mutagenesis identifies predominantly oncogenes, tumour
suppressor genes also featured in the list of candidate cancer genes. The most prevalent,

with 93 insertions, was lkaros (lkzf1). Ikaros encodes a haematopoietic-specific zinc
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finger DNA-binding domain protein that regulates B- and T-cell differentiation
(Georgopoulos et al., 1997). Mice with reduced lkaros expression develop leukaemias
and lymphomas with complete penetrance (Winandy et al., 1995). 31 insertions were
also identified in Aiolos (Ikzf3), which is also a member of the Ikaros family. Ikaros and
Aiolos appear to play dual roles in T cell development since they can regulate the
activation or repression of lineage-specific genes through the formation of chromatin
remodelling complexes in lymphocytes (Georgopoulos, 2002; Kim et al, 1999).
However, the importance of [lkaros and Aiolos as tumour suppressor genes is
demonstrated by their frequent deletion in paediatric acute lymphoblastic leukaemia
(ALL) (Mullighan et al., 2007), and lkaros is deleted in 83.7% of ALLs containing the
BCR-ABL translocation (Mullighan et al., 2008).

Other implicated tumour suppressor genes in the candidate list included Wwox (22
insertions), E2f2 (17 insertions), Mobki2a (Mobl; 16 insertions), Xrcc6 (Ku70; 10
insertions), Ovca?2 (9 insertions) and Adrbkl (Grk2; 8 insertions). Wwox spans the human
FRA16D fragile site and is frequently disrupted in human cancers (Bednarek ef al., 2000).
Wwox™" mice develop significantly more ethyl nitrosurea (ENU)-induced lung tumours
and lymphomas than wildtype mice, suggesting that Wwox can act as a haploinsufficient
tumour suppressor gene (Aqeilan et al., 2007). Loss of E2f2 accelerates Myc-induced
lymphomagenesis in mice (Opavsky et al., 2007), while Xrcc6-deficient mice develop
thymic and disseminated T cell lymphomas (Li ef al., 1998). MOBI activates the tumour
suppressor LATSI, which is inactivated in human sarcomas and ovarian and breast
cancers (Hergovich et al., 2006), and inactivating insertions in Mobl may therefore
contribute to tumourigenesis by preventing the activation of Latsl. OVCA2 is one of two
adjacent genes that are frequently deleted in human ovarian, brain, breast and lung
tumours (Schultz ef al., 1996). GRK2 acts in a negative feedback loop to control TGFf
signal transduction, which is often dysregulated in cancer (Ho et al., 2005), and was
shown to significantly reduce proliferation of thyroid cancer cell lines (Metaye et al.,

2008).

There is no straightforward approach for identifying candidate tumour suppressor genes
because, while they are likely to contain only intragenic insertions, some oncogenes, such
as Notchl and Piml, are also mutated predominantly by intragenic insertions. However,
as mentioned in Section 3.4.2, insertions in oncogenes are more likely to form specific

oncogenic mutants and may therefore be more localised within the gene. In addition,
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tumour suppressor genes are likely to contain multiple insertion sites within the same
tumour, as described for Pfen and QOsk in Section 3.3, because both copies of the gene
must be inactivated. This does not hold for haploinsufficient tumour suppressor genes,
which require only one inactivating insertion for tumourigenesis and are therefore more
likely to be identified by insertional mutagenesis than genes requiring an insertion in both
genes. 14 tumours contained multiple insertions within /kzf1, while 1 contained multiple
insertions in /kzf3. However, none of the other genes so far discussed in this section were
mutated by multiple insertions. This suggests either that they are haploinsufficient
tumour suppressor genes, as demonstrated for Wwox, or that the coverage of the screen
was too low, such that multiple insertions occurred but were not identified. To further
complicate matters, oncogenes may also contain multiple insertion sites within the same
tumour, either because the gene is a preferential target site for the virus, or because
upregulation of both gene copies provides an even greater growth advantage to the cell.
However, taken together, the distribution of insertions and the number of insertion sites

within each tumour can help to identify potential tumour suppressor candidates.

Smg6 contained 53 insertions and was mutated by multiple insertions in 4 tumours. All
insertions were intragenic and were distributed throughout the gene in both orientations,
although many were clustered within a single intron (Figure 3.7A). The human
orthologue, ESTIA/SMG6, has been shown to interact with telomerase and the human
telomerase reverse transcriptase (W"TERT) (Redon et al., 2007), and overexpression in
kidney 293T cells leads to progressive telomere shortening (Snow et al., 2003). Early in
tumourigenesis, telomere shortening contributes to chromosomal destabilisation and
therefore promotes genomic instability and cancer progression (see Sections 1.2.3.3 and
1.3.3.1). A telomere maintenance mechanism is subsequently activated and is required
for tumour progression and immortality (Stewart, 2005). Therefore, SMG6 could play an
oncogenic or tumour suppressive role in this process. SMG®6 is also an essential factor in
the nonsense-mediated mRNA decay (NMD) pathway, which degrades mRNAs carrying
premature stop codons and regulates the expression of naturally occurring transcripts,
including those involved in cell cycle progression (Rehwinkel et al., 2005). SMG6 may
therefore play a tumour suppressive role by negatively regulating oncogene expression
via NMD. The presence of both sense and antisense insertions in the 9" intron suggests
that they are involved in C-terminal truncation of the gene product. This would result in
the removal of the PINc nucleotide binding domain (IPR006596), which is required for

degradation of single-stranded RNA, and an inactivated domain has been shown to inhibit
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Figure 3.7. Smg6 (A) and Foxpl (B) are putative tumour suppressor genes identified
by MuLV insertional mutagenesis. MuLV insertions are shown in black. Ensembl
gene transcripts are shown in red. ESTs are shown in purple. Insertions above and below
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respectively.
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NMD in Drosophila (Glavan et al., 2006). This suggests that abrogation of NMD activity
is the mechanism by which Smg6 contributes to MuLV-induced lymphomagenesis.
SMG6 also resides within a deleted region containing 383 genes identified in 2.6% of
human B-cell ALLs and 4.0% of T-cell ALLs in Mullighan ef al. (2007).

Rassf2 contained 12 insertions, 2 of which were identified in a single tumour. Rassf2 is a
negative regulator of Ras that is silenced by CpG island hypermethylation in a range of
cancers, including gastric (Endoh et al., 2005), liver (Nishida et al., 2008), breast and
lung (Cooper et al., 2008; Kaira et al., 2007). It has been shown to prevent cell

transformation in primary colorectal cancers (Akino et al., 2005).

Foxpl contained 29 insertions, including 2 insertions in one tumour (Figure 3.7B).
Overexpression of Foxpl is associated with poor prognosis in lymphomas (Banham et al.,
2005), but loss of Foxpl expression in breast cancer is also associated with poor
prognosis (Fox et al., 2004) and Foxpl maps to a region on chromosome 3 (p14.1) that
frequently shows loss of heterozygosity in a range of human cancers (Banham et al.,
2001). This suggests that Foxpl can act as an oncogene or a tumour suppressor gene,
depending on the tissue type (Koon et al., 2007). The distribution of insertions in and
around Foxpl suggests that many are upstream, and therefore that the gene is being
upregulated, which is consistent with the oncogenic role of Foxp/ in lymphomas.
However, there is an Ensembl EST gene with no associated Ensembl gene transcript that

spans the entire Foxpl CIS, suggesting that the insertions could in fact be intragenic.

This section suggests that the MuLV screen can be helpful in identifying candidate
tumour suppressor genes. However, computational analysis of insertions in and around
genes can only provide an indication of whether a candidate cancer gene is likely to be
oncogenic or tumour suppressive, and analysis of gene expression in MuLV-induced

tumours, followed by functional validation, is essential for further confirmation.

3.4.4 Identifying retroviral insertions in regulatory features

The orientation and distribution of insertions around genes helps to identify promoter and
enhancer mutations and insertions that prematurely terminate gene transcription.
However, it is also possible that insertions could disrupt a gene by inserting into

regulatory elements, thereby preventing the binding of transcriptional activators or
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repressors. In Ensembl version 45, regulatory features were available for the human, but
not the mouse, genome. Features were built using 3 genome-wide anchor datasets:
DNasel hypersensitivity sites identified by ChIP-seq analysis (Boyle et al., 2008),
CCCTC-binding factor (CTCF) binding sites identified by ChIP-Chip (Kim et al,
2007b), and histone 3 lysine 4 tri-methylation (H3K4me3) also identified by ChIP-chip.
ChIP-chip, ChIP-seq and DNasel hypersensitivity (a marker of open chromatin) are
discussed in Section 1.3.5. The DNasel hypersensitivity sites were identified in CD4+ T
cells, but most were also found in CD8+ T cells and B cells and around 10% were
lymphocyte-specific. This dataset is therefore particularly relevant to the MuLV screen,
which generated predominantly lymphomas (see Section 2.2.1). CTCF is an insulator
protein that prevents the spread of heterochromatin and prevents enhancers from
activating unrelated promoters. CTCF binding sites were identified in primary human
fibroblasts but were largely conserved across cell types (Kim et al., 2007b). The histone
modification H3K4me3 is associated with transcription start sites of active genes. 5
supporting ChIP-Chip datasets of histone modifications (H4K20me3, H3K27me3,
H3K36me3, H3K79me3 and H3K9me3) were also used. In the Ensembl regulatory
build, overlapping elements identified in each analysis were merged into a single element,
and each element was classified based on the datasets in which it was identified.
Elements associated with DNasel hypersensitivity and H3K36me3 were classified as
promoter-associated elements, while elements associated with DNasel and either
H3K4me3 or H3K79me3, or DNasel and H3K4me3 and either CTCF or H3K36me3,
were classified as gene-associated elements. It is worth noting that elements in the
regulatory build define regions that are much larger than individual transcription factor

binding sites and only define regions that are likely to be involved in regulation.

Since the regulatory build was only available for the human genome, elements and their
classifications were downloaded from ftp://anonymous@ftp.ensembl.org/pub/release-
45/homo_sapiens_45 36g/data/reg build/ and were mapped to the NCBI m36 mouse
genome assembly using UCSC LiftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver).
Out of 113,230 features, 77,446 (68.4%) were successfully mapped to the mouse build.
Of those that failed to convert, 30 were split (i.e. they mapped to 2 locations in the mouse
genome due to breaks in synteny), 466 were duplicated, 1,285 were partially deleted and
34,003 were completely deleted. It is not surprising that such a large number of elements

did not map, since only a fraction of the human and mouse genomes align confidently and
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LiftOver uses these alignments to find corresponding positions between human and

mouse.

It has been estimated that 32-40% of human transcription factor binding sites are not
functional in rodents, suggesting a high evolutionary turnover of sites (Dermitzakis and
Clark, 2002). However, highly conserved elements have also been identified, and are
particularly prominent around vertebrate developmental genes (Woolfe et al., 2005). The
parameters of LiftOver were set such that the minimum ratio of bases that must remap
was 0.1, and therefore it is possible that some of the mapped elements are poorly
conserved. However, while this could suggest that the elements are not functional in the
mouse, there is evidence to suggest that regulatory function can be conserved without
sequence similarity, e.g. in the case of the RET locus in humans and zebrafish (Fisher et
al., 2006). Therefore, a decision was made to be inclusive, rather than to reject elements

of low sequence similarity.

2,036 (10.1%) of the 20,114 insertion sites mapped to regulatory features, of which 21
(0.02%) were promoter-associated and 1,394 (68.5%) were gene-associated. This
compared with 743 (9.9%) of the 7,518 insertion sites associated with the 439 candidate
cancer genes, of which 11 (0.02%) were promoter-associated and 443 (59.6%) were gene-
associated. 228 candidate genes had insertions within regulatory features. There was no
significant difference (P=0.38) between the number of insertions assigned to candidate
cancer genes in regulatory features and the number of other insertions in regulatory
features. However, insertions assigned to candidate cancer genes were under-represented
in gene-associated elements (P=7.48x10™'"). This result was surprising since it might be
assumed that oncogenic insertions would be more likely to be associated with regulatory

elements.

Since many insertions may map to the same regulatory region, therefore skewing the
results, the number of regions containing insertions was also counted. Insertions were
identified in 1,483 regulatory features, of which 14 (0.94%) were promoter-associated
and 971 (65.5%) were gene-associated. Insertions associated with candidate cancer genes
were identified in 343 regulatory features, of which 5 (1.5%) were promoter-associated
and 160 (46.6%) were gene-associated. Once again, gene-associated elements were
under-represented among insertions associated with candidate cancer genes (#=6.00x10"

'7).  Counting the number of regulatory features of each type that contained insertions

144



Chapter 3

revealed an under-representation of features associated with H3K36me3 (P=2.04x107),
H3K4me3 (P=3.38x10"), H3K79me3 (P=1.65x10"") and DNasel hypersensitivity sites
(P=0.012). All significance tests were performed using the Chi-squared test for
independence. Interestingly, DNasel hypersensitivity and all of the histone modifications
stated above are known to be associated with active genes, while those histone
modifications that showed no significant difference (H3K27me3, H3K9me3 and
H4K20me3) are associated with gene repression (Barski et al., 2007). H3K4me3 and
H3K27me3 have also been shown to be associated with active genes and silent genes,
respectively, in human T cells (Roh et al., 2006), which is of particular relevance to this
MuLV dataset of lymphomas. Insertions that are not associated with candidate cancer
genes are less likely to be oncogenic, and their over-representation in regulatory features
associated with active genes may reflect the preference of MuLV for inserting within
active genes. Since none of the regulatory features are over-represented among candidate
genes, it appears that disruption of regulatory features may not be a common mechanism

of mutagenesis of the MuLV retrovirus.

3.4.5 Expression analysis of MuLV-induced tumours

Computational approaches can be used to predict candidate cancer genes and the likely
mechanisms of mutation, but these must be confirmed using experimental methods. Gene
expression analysis is a useful tool towards validating candidates, since it is expected that
genes that are disrupted by MuLV will be differentially expressed in insertion-containing
tumours versus those that do not contain insertions. Although widespread expression
analysis has not been performed on the MuLV-induced tumours, expression data was
available for 18 tumours. The analysis was performed by David Adams using high
density Nimblegen 5045 MMS8 60mer expression arrays, where MM8 is the mouse build
(the UCSC equivalent to NCBI m36) and 60mer is the length of the oligonucleotide
probes on the array. The array covers 18,879 transcripts with unique RefSeq NM
accession numbers, and 6,751 with RefSeq XM accession numbers. NM and XM refer to
reported and predicted transcripts, respectively. Each NM transcript has three probes,
while 1,861 XM transcripts have 3 probes and the rest have 2 probes. The normalised
expression values across all probes in each transcript, as provided by Nimblegen, were

used in this analysis.
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81 candidate cancer genes from the MuLV screen contained MuLV insertions in at least 1
of the 18 tumours, and 20 contained insertions in at least 2 tumours. RefSeq accession
numbers, Entrez Gene identifiers and MGI symbols were extracted from BioMart
(version 49) for each of the 439 candidate cancer genes from the MuLV screen. All of
the genes except mmu-mir-17, ENSMUSG00000074675, Rnf157 and Pvtl were identified
on the array. Genes directly flanking each candidate gene were identified using the
coordinates of all genes in Ensembl version 45. For candidate genes with insertions in 2
or more tumours, a two-sided #-test was performed to determine whether the level of
expression in tumours containing an insertion in the gene was significantly different to
the level in tumours that did not contain an insertion in the gene. The results are shown in
Table 3.4. The #-test was also performed on genes flanking the candidate cancer genes, in

order to ascertain whether the insertions had been assigned to the correct gene.

Only 1 of the candidates, Trpml, showed significant differential expression in tumours
containing an insertion compared to those that did not, and the insertions appeared to
cause a decrease in gene expression. Loss of TrpmI, also known as melastatin, correlates
with metastatic potential in human and mouse melanoma cells (Deeds et al., 2000).
Interestingly, the insertions in tumours used in this analysis were 11.7 kb and 21.2 kb
upstream of Trpmli, which suggests either that there is a longer transcript that is not
annotated in Ensembl, or that the gene is disrupted by insertion into upstream regulatory
elements, although the insertions did not overlap with regulatory features in the dataset
described in Section 3.4.4. Although the difference was not significant, the mean
expression level in insertion-containing tumours was at least 2-fold higher than in other
tumours for genes Notchl, Rasgrpl, Pik3r5, Jundm?2, Piml and Rras2. None of the genes
flanking the candidate genes showed significant differential expression, but Sponi,
Lrre8b and Fos, which flank genes Rras2, LrrcSc and Jundm?2, respectively, had a mean
expression level that was at least 2-fold higher in insertion-containing tumours. Due to
their enhancer activity, MuLV insertions can have long-range effects, and therefore it is
possible that Sponl and Fos are also affected by insertions disrupting Rras2 and Jundm2,
respectively. On the other hand, Lrrc8b showed a greater difference in expression than

did Lrrc8c, and it is possible that Lrre8b is the true candidate cancer gene in this region.
The scale of this analysis was too small to provide any definitive evidence that the correct

candidate cancer gene has been selected. The results suggest that there may not be a

strong association between insertion-containing genes and higher expression levels. It is
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Number of
tumours with

Gene name _insertions Mean 1 SD 1 Mean 2 SD 2 P-value

Notch1 2 5815.239 6599.7549 1078.072 126.6176 0.1773
Mad1l1 2 4708.679 875.3291 5297.206 1253.8023 0.6712
Rasgrp1 2 14100.646 1935.705 7066.692 4240.0499 0.1195
Pik3r5 2 3813.572 2155.5715 800.739 2405.31807 0.1531
Jundm?2 2 3250.289 3778.6357 579.06 571.0842 0.2024
Hnrpf 2 36521.059 7138.7373 37617.657 2704.6885 0.8494
Trpm1 2 153.399 27.9747 398.287 37.2045 0.0002
B3gnt2 2 2291.355 1024.3581 1947.636 857.7561 0.7632
Spn 2 1882.812 264.2865 1629.536 646.2697 0.7024
Hibadh 3 4449.752 1192.4941 5461.04 1742.7667 0.6032
Pim1 3 10856.253 13210.2491 1640.201 962.0191 0.4871
Myb 4 11458.869 5636.9595 8207.643 2707.9078 0.5177
Lrrc8c 4 1939.271 247.5314 1891.16 488.6951 0.927
Evi5 4 867.045 875.3993 797.081 706.3382 0.9485
Ccnd3 6 8402.866 4375.7706 7656.238 2977.1405 0.8832
Rras2 7 21102.81 4947.9028 6690.916 8678.9839 0.16
Myc 7 21190.356 7534.8977 19642.481 8734.1825 0.8881
Gfil 8 7495.101 2592.9975 4365.898 2676.8333 0.3846

Table 3.4. Gene expression values for candidate cancer genes in insertion-containing
tumours compared with tumours that do not contain insertions. Mean 1 and SD 1 are
the mean and standard deviation of expression levels for genes in tumours containing
insertions, and Mean 2 and SD 2 are the mean and standard deviation for genes in
tumours that do not contain insertions. P-values were calculated using the #-test.
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possible that, over time, insertions may lose their ability to disrupt cellular genes by
promoter or enhancer mutation, e.g. because the retroviral LTRs are silenced by
hypermethylation.  Alternatively, since tumours are heterogeneous, and the tumour
samples may also contain stromal cells, the effect of the insertion may be diluted by the
presence of wildtype gene expression in contaminating cells. An analysis of gene
expression across all tumours, with replicates, is required to substantiate these

suggestions.

3.5 Identification of co-operating cancer genes in the MuLV dataset

As discussed in Section 1.4.2.1.3, there are two main approaches for identifying
collaborating cancer genes using insertional mutagenesis. By conducting the screen in
genetically engineered mice in which oncogenes are overexpressed or tumour suppressor
genes are inactivated, it is possible to identify genes that collaborate with the gain or loss,
respectively, of those cancer genes in oncogenesis. An alternative approach involves
identifying co-occurring CIS genes in individual tumours. Both approaches have been

employed to analyse the MuLV dataset of 439 statistically significant CIS genes.

3.5.1 Genotype-specific cancer genes

The retroviral screen described in this thesis was performed on mice deficient in a range
of tumour suppressor genes (see Section 2.2.1). For each gene identified using the kernel
convolution-based method for determining significant CISs, the number of insertions
assigned to the gene and the number of insertions of each genotype were counted. See
Section 2.9 for a description of the methods used to assign insertions to genes. The 2-
tailed Fisher Exact Test was used to determine whether there was any significant
difference between the number of insertions of a particular genotype within each gene
and the number in the rest of the genome, and also between the number of insertions of a
particular genotype and the number of wildtype insertions within a gene compared to the

proportions in the rest of the genome:

S

a = Number of insertions of a given genotype assigned to the gene

148



Chapter 3

b = Number of insertions of a given genotype not assigned to the gene

¢ = Number of insertions of other genotypes assigned to the gene, or number of wildtype
insertions assigned to the gene

d = Number of insertions of other genotypes not assigned to the gene, or number of

wildtype insertions not assigned to the gene

Significance tests were performed for each genotype, and also for groups of genotypes to
increase the power of the analyses. For example, in order to test for a significant bias
towards any p2I/-deficient background, all insertions on a p2/-null homozygous or
heterozygous background, and all insertions on a homozygous or heterozygous p2/-null
and p27-null double mutant background, were counted. In order to account for multiple
testing, the R package QVALUE (Storey and Tibshirani, 2003) was used to generate a g-
value for each test. The g-value is a measure of the minimum false discovery rate
incurred if the test is called significant, where the false discovery rate is the number of
false positives divided by the number of significant tests. This differs from the P-value,
which is a measure of the minimum false positive rate incurred when the test is called
significant, where the false positive rate is the number of false positives divided by the
number of true null tests. Using a P-value of 0.05, 5% of tests will be called significant
when they are in fact null, which would result in a very high number of false positives if a
large number of tests were performed. On the other hand, using a g-value of 0.05, 5% of
the tests that have been called significant will be false positives, which is more
manageable for large numbers of tests. The QVALUE bootstrap method was used to
estimate the overall proportion of true null hypotheses, since this method is deemed most
appropriate for situations in which the distribution of null P-values is skewed towards a
value of 1, as is the case in this analysis. The shape of the distribution also means that the
calculated g-values are very conservative, but this method is still more inclusive than
using, for example, the Bonferroni correction. The most significant tests, where the g-
value is less than 0.05 for the comparison with insertions of all other genotypes and/or
with only wildtype insertions, and that therefore suggest a bias towards, or away from, a
particular tumour genotype, are presented in Tables 3.5A and 3.5B, respectively. Results
are grouped by gene, with genes ordered according to the most significant association
obtained from the comparison with insertions of all other genotypes. The two methods
gave similar results, although the comparison of a given genotype versus wildtype gave

fewer significant results. This may be because some genes always require the co-
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vs. insertions of all
other genotypes

vs. wildtype insertions

Total Insertions
number of of given
Gene Ensembl Gene ID insertions Genotype genotype P-value g-value P-value g-value
Evi5 ENSMUSG00000011831 466 p27 all 134 1.87E-29  8.19E-27 1.77E-15 4.50E-13
p21 all 100 1.57E-10  3.45E-08 2.30E-06 5.06E-04
p21, p27 71 7.83E-10 1.72E-07 7.17E-07 1.57E-04
p27 66 2.93E-09 1.29E-06 7.91E-07 3.47E-04
p27 ko 40 3.89E-08 1.71E-05 9.34E-07 4.10E-04
p21 ko, p27 ko 35 1.38E-06  3.03E-04 8.50E-06 1.86E-03
Gfil ENSMUSG00000029275 458 p27 all 127 2.44E-26 5.35E-24 2.05E-15 4.50E-13
p21, p27 77 1.01E-12  4.44E-10 1.40E-09 6.16E-07
p21 all 102 1.19E-11 5.23E-09 7.63E-08 3.35E-05
p21 ko, p27 ko 37 6.98E-08  3.07E-05 2.07E-07 9.10E-05
p27 ko 35 4.21E-06  9.24E-04 8.24E-06 1.81E-03
p27 55 1.27E-05 2.79E-03 3.97E-05 8.71E-03
p21 ko, p27 het 35 8.59E-05 3.77E-02 8.13E-05 3.57E-02
Map3k8 ENSMUSG00000024235 37 p16 ko, p19 ko 27 2.77E-21 1.21E-18 5.59E-10 2.45E-07
p16 all 28 1.67E-20  7.33E-18 5.33E-09 2.34E-06
pl6, p19 28 1.67E-20  7.33E-18 5.33E-09 2.34E-06
p19 all 31 2.13E-09  7.57E-07 6.05E-03 5.67E-01
Myc ENSMUSG00000022346 359 p27 all 74 6.14E-09  8.98E-07 3.56E-06 5.20E-04
Myb ENSMUSG00000019982 247 p27 all 51 1.30E-06 1.35E-04 1.37E-03 1.00E-01
Art2b ENSMUSG00000030651 11 p27 all 8 1.53E-06 1.35E-04 1.99E-03 1.22E-01
Pvtl ENSMUSG00000072566 296 p27 all 55 1.72E-05 1.26E-03 2.23E-03 1.22E-01
A530013C23Rik ENSMUSG00000006462 43 p16 all 15 1.75E-05  3.57E-03 7.46E-04 8.08E-02
pl6, p19 15 1.75E-05  3.57E-03 7.46E-04 8.08E-02
p16 het, p19 het 6 1.22E-04  5.36E-02 8.57E-02 1.95E-02
Cend3 ENSMUSG00000034165 206 p53 ko 59 2.23E-05  9.79E-03 1.75E-06 7.68E-04
p53 59 5.64E-05  2.47E-02 3.18E-06 7.68E-04
Zfp438 ENSMUSG00000050945 51 p19 ko 27 2.51E-05  3.67E-03 7.06E-03 8.13E-01
ENSMUSG00000059894 170 p27 all 36 3.30E-05  2.07E-03 1.80E-02 6.64E-01
Pim1 ENSMUSG00000024014 118 p21 all 29 4.81E-05 7.04E-03 4.72E-03 4.14E-01
Rras2 ENSMUSG00000055723 224 p27 all 43 5.42E-05  2.97E-03 2.19E-04 2.40E-02
OTTMUSG00000012358 ENSMUSG00000052248 40 p16 ko, p19 ko 11 4.48E-04  3.93E-02 8.20E-03 5.14E-01
Zeb2 ENSMUSG00000026872 40 p16 ko, p19 ko 11 4.48E-04  3.93E-02 8.20E-03 5.14E-01
Mycn ENSMUSG00000037169 81 p27 all 19 6.07E-04  2.96E-02 2.80E-04 2.46E-02
Ahil ENSMUSG00000019986 124 p27 all 25 9.15E-04  4.02E-02 5.17E-02 8.61E-01
B vs. insertions of all
other genotypes vs. wildtype insertions
Total Insertions
number of of given
Gene Ensembl Gene ID insertions Genotype genotype P-value g-value P-value g-value
Evi5 ENSMUSG00000011831 466 p19 ko 71 2.43E-07 1.07E-04 7.20E-03 8.13E-01
Gfil ENSMUSG00000029275 458 p19 all 114 9.17E-07 1.34E-04 1.56E-01 1.00E+00
p19 ko 76 1.51E-05  3.31E-03 9.18E-02 1.00E+00
Rasgrp1 ENSMUSG00000027347 237 p16 all 7 2.44E-05  3.57E-03 2.76E-05 6.06E-03
pl6, p19 7 2.44E-05  3.57E-03 2.76E-05 6.06E-03
p16 ko, p19 ko 6 1.73E-04  2.53E-02 1.65E-04 2.41E-02
Ccnd3 ENSMUSG00000034165 206 p16 ko, p19 ko 4 9.19E-05  2.02E-02 1.25E-01 1.00E+00
p16 all 7 2.27E-04 2.49E-02 3.15E-01 1.00E+00
pl6, p19 7 2.27E-04 2.49E-02 3.15E-01 1.00E+00
Ikzf1 ENSMUSG00000018654 93 p53 4 2.75E-04  5.30E-02 5.99E-05 8.76E-03
p53 ko 2 4.14E-04  7.49E-02 6.54E-05 9.58E-03
Zmiz1 ENSMUSG00000007817 62 p16 ko, p19 ko 2 5.79E-03  2.06E-01 9.60E-05 2.11E-02
p53 0 6.36E-03 1.99E-01 4.95E-05 8.76E-03
p53 ko 2 9.62E-03  3.02E-01 5.37E-05 9.58E-03
) .
Table 3.5. Genes containing an over-representation (A) or wunder-

representation (B) of insertions on a given tumour background compared
with all other backgrounds and compared with wild-type insertions only. All
genes identified in tests with a g-value of less than 0.05 for one or both methods
are shown. p27 all = all genotypes that include a mutation in p27 (homozygous or
heterozygous, single or double mutant); p27 = single homozygous or heterozygous
mutation of p27; p27 ko = single homozygous mutation of p27. All other
genotypes follow the same rules. Genes are listed in order of decreasing
significance (increasing P-value) with respect to the comparison with insertions
from all other genotypes.
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operation of other cancer genes and are therefore rarely or never mutated on a wildtype

background.

The most significant result was the bias of insertions in Evi5/Gfil towards p27-deficient
genetic backgrounds. Interestingly, while insertions within this locus were identified in
an MuLV screen performed on p27-deficient mice by Hwang and coworkers (2002), no
significant difference was observed between the frequency of insertions in p27” and
wildtype mice. The screen, which involved 50 tumours, was smaller than the screen
described in this thesis, and therefore the difference may reflect the increased power of
this larger dataset and supports the use of larger insertional mutagenesis screens for
identifying co-operating oncogenes. In accordance with the observations of Hwang et al.
(2002), insertions in Myc showed a significant bias towards p27-deficient genotypes.
This is also supported by the finding that p27-deficient lymphomas show an increased
frequency of Myc activation, and that Myc-induced tumourigenesis may be enhanced
upon loss of p27 (Martins and Berns, 2002). Mycn, which is structurally and functionally
related to Myc, was also associated with p27-deficient tumours. MYCN amplification in
human neuroblastomas is associated with poor prognosis (Seeger et al, 1985). Low
expression of p27 is also correlated with poor prognosis in patients with neuroblastoma,
yet p27 expression and MYCN amplification are prognostic independent and are not
significantly associated in neuroblastomas (Bergmann et al., 2001). While this seems to
suggest that disrupted p27 and MYCN are not collaborating in neuroblastoma, it does
indicate that the genes may act in different genetic pathways, as is generally expected for

genes that collaborate in tumourigenesis.

Insertions in Map3k8 showed the most significant bias to the p/6”p19” (or Cdkn2a™)
tumour genotype. Map3k8 has previously been identified as Cdkn2a”"-specific in an
MuLV screen performed on 115 mice (Lund ef al., 2002). Activation of Mek by Map3k8
in the mitogen-activated protein kinase (MAPK) signalling pathway (Salmeron et al.,
1996) induces p16 and p53, resulting in the permanent arrest of mouse fibroblasts (Lin et
al., 1998). However, in the absence of pl16 or p53, the activation of the MAPK cascade

causes cells to undergo uncontrolled mitogenesis and transformation (Lin et al., 1998).
Insertions affecting the gene encoding zinc finger E-box-binding homeobox 2 (Zeb2 or

Sip1) were also significantly associated with the Cdkn2a™ genotype. SIPI plays a role in

replicative senescence, which controls the number of cell divisions in human somatic
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tissues and so prevents the indefinite proliferation associated with tumour cells (Ozturk et
al., 2006). Inactivation of SIPI causes reactivation of the human telomerase reverse
transcriptase (ATERT), resulting in the rescue of hepatocellular carcinoma cells from
senescence arrest (Ozturk et al., 2006). Replicative immortality also requires the
inactivation of Trp53 and pl6 (Ozturk et al., 2006), therefore suggesting co-operation
between pl6 and SIPI in tumourigenesis. Interestingly, all of the insertions within Zeb?2
are flanking an internal gene, and most are in the upstream sense orientation, suggesting
that they are promoter insertions that upregulate the internal gene. This internal gene is a
natural antisense transcript that, when overexpressed in epithelial cells, prevents splicing
of the Zeb2 5 UTR (Beltran et al., 2008). However, this is proposed to increase the
levels of Zeb2 (Beltran et al., 2008), which conflicts with the observations described
above. Zeb2 also directly represses cyclin D1, resulting in initiation of the epithelial-
mesenchymal transition (EMT), in which cells switch from a proliferative to an invasive
state (Mejlvang et al., 2007). Cyclin DI (Ccndl) was also biased towards the Cdkn2a™
tumour background, albeit with lower significance (P=2.16x107, g=0.135). p16 binds to
CDK4 and prevents it from forming a complex with cyclin D1, resulting in cell cycle
arrest at the G1/S transition (Serrano et al, 1993). An enhanced gene ratio of
CCNDI:CDKN24, i.e. a high copy number of CCNDI combined with deletion of
CDKN2A, correlates with poor survival in patients with squamous cell carcinoma of the
head and neck (Akervall et al., 2003), while the combined loss of p/6 and overexpression
of cyclin DI has been observed in 49% of gastric carcinomas (Kishimoto et al., 2008). It
therefore appears that Ccndl, Zeb2 and Cdkn2a may collaborate in tumourigenesis, where
Ccndl causes uncontrolled cell growth in the absence of Cdnk2a, and Zeb2 represses

Ccndl, causing hyperproliferating cells to undergo EMT.

Insertions in the oncogene Piml were associated with p2/-deficient tumours.
Phosphorylation of p2/ by Piml results in the cytoplasmic localisation (Wang et al.,
2002b) or stabilisation of p21 (Zhang et al., 2007), and this is proposed to be a
contributing factor in the tumourigenesis of cells overexpressing Piml (Zhang et al.,
2007). However, the fact that Pim/ mutagenesis is favoured in a p2/-deficient
background suggests that overexpression of Pim/ alone cannot fully inactivate p2/ and
the genes may have a more complex relationship that has not been elucidated. Insertions

in RunxI were biased towards the p53”" genetic background.
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If a gene contains fewer insertions than expected in tumours bearing a particular
inactivated tumour suppressor gene, this suggests that the CIS gene and the inactivated
tumour suppressor gene may act in the same cancer pathway. Insertions in Zmiz/ and
Tkaros (Ikzf1) were under-represented in p53” tumours. Zmizl is a transcriptional co-
activator of p53 (Lee et al., 2007) and therefore, in the absence of p53, mutation of Zmiz/
does not provide any additional growth advantage. The results for /karos are more
surprising since, in chemically induced murine lymphomas, allelic loss of lkaros was
more frequently found in p53” lymphomas than in wildtype p53 lymphomas, suggesting
cooperation in lymphomagenesis (Okano et al, 1999). Further functional evidence is
required to validate this proposal. None of the genes identified as containing p53 binding
sites in Section 3.2 were positively or negatively associated with the p53” tumour
background. Some of the genes contained few insertions, and there may not be enough
power to identify a significant association. For example, Chdl did not contain any
insertions in p53” tumours but only contained 7 insertions overall. Alternatively, the
relationship with p53 may not be relevant in the setting of MuLV-induced
lymphomagenesis. For example, p53-mediated upregulation of Notchl contributes to cell
fate determination (Alimirah et a/., 2007), but in MuLV insertional mutagenesis, Notchl
is activated by truncating mutations and is therefore not dependent on p53 (P=3.73x10™,

¢=5.30x107).

Further genes for which there was a strong bias towards or against a particular tumour
genotype are listed in Table 3.5. Supporting evidence in the literature for the genes
described above indicates that this may be a powerful method for identifying cooperating

cancer gencs.

3.5.2 Co-occurrence and mutual exclusivity of disrupted genes

The “genotype-specific” approach for identifying collaborating cancer genes only allows
for the identification of collaborations with selected oncogenes or tumour suppressor
genes. Identifying CIS genes that co-occur in tumours more often than expected by
chance enables the identification of collaborations without any predetermined conditions.
In Section 1.4.2.1.3, oligoclonality is cited as a potential disadvantage of this approach.
However, since only significant CISs are utilised, insertions within these CISs are likely
to be present, and to co-occur, in the dominant clone, rather than being rare insertions in

less successful sublines of the tumour.
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For each pair of CIS genes, the number of tumours that contained an insertion in both
genes, or in one or other gene, was counted. The 2-tailed Fisher Exact Test was used to
determine whether the number of tumours containing a co-occurrence of each gene pair

was significantly different to the number expected by chance.

a = Number of tumours containing an insertion in both genes
b = Number of tumours containing an insertion in first gene
¢ = Number of tumours containing an insertion in second gene

d = Number of tumours containing an insertion in neither gene

To account for multiple testing, the R package QVALUE (Storey and Tibshirani, 2003),
and specifically the Bootstrap method, was applied to all tests in which one or more co-
occurrences were observed. Over- and under-represented co-occurrences with a g-value

of less than 0.05 are shown in Tables 3.6A and 3.6B, respectively.

The most significant association was between genes A530013C23Rik and leukocyte-
specific protein tyrosine kinase Lck. Lck initiates a tyrosine phosphorylation cascade in
lymphocytes that results in T-cell antigen receptor signal transduction, and it is
overexpressed in lymphomas, breast cancer and colon cancer (for review, see Palacios
and Weiss, 2004). Interestingly, insertions in both Lck and 4530013C23Rik were biased
towards a Cdkn2a™ genotype (Lck: P=9.12x10* and ¢=5.01x102; 4530013C23Rik: see

Table 3.5A), suggesting that all 3 genes collaborate in tumourigenesis.

Co-occuring insertions were also identified in Lck and signal transducer and activation of
transcription 5b (Stat5b). LCK has been shown to interact with STATS5b in cells, and
induces tyrosine phosphorylation and DNA-binding of STATSb (Shi et al., 2006).
Exogenous expression of wildtype S7AT5b increases LCK-mediated cellular
transformation (Shi et al., 2006). This is consistent with the pattern of insertions in and
around Stat5h, which suggests that the gene is upregulated by promoter and enhancer
mutations that increase the levels of the wildtype protein. Finally, activation of Lck was
also significantly associated with activation of the c-src tyrosine kinase gene Csk. Csk
negatively regulates Lck by phosphorylation of a C-terminal tyrosine (Tyr-505) (Bergman
etal., 1992). The distribution of insertions in and around Csk suggests that the gene is
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Total tumours
in which Gene

Total tumours in
which Gene 2

Number of tumours
in which Gene 1 and

Gene name 1 Ensembl ID 1 1 disrupted Gene name 2 Ensembl ID 2 disrupted Gene 2 disrupted P-value g-value
A530013C23Rik  ENSMUSG00000006462 43 Lck ENSMUSG00000000409 26 10  2.47263E-08 8.59E-06
Tkzf1 ENSMUSG00000018654 93 Notchl ENSMUSG00000026923 127 30 1.6337E-07 4.80E-05
Zfp438 ENSMUSG00000050945 51 Ntni ENSMUSG00000020902 59 14 3.41404E-07 9.66E-05
Pik3r5 ENSMUSG00000020901 64 Zfp438 ENSMUSG00000050945 51 14 1.02005E-06 2.52E-04
Epha6 ENSMUSG00000055540 20 Pim1 ENSMUSG00000024014 118 11  2.78357E-06 6.26E-04
Runx1 ENSMUSG00000022952 143 Rasgrpl ENSMUSG00000027347 237 54  4.93807E-05 9.95E-03
Stat5b ENSMUSG00000020919 18 Lck ENSMUSG00000000409 26 5 5.55279E-05 1.06E-02
Nid1 ENSMUSG00000005397 12 Cd3e ENSMUSG00000032093 8 3 7.27389E-05 1.32E-02
Lfng ENSMUSG00000029570 33 Notch1 ENSMUSG00000026923 127 13 7.96187E-05 1.38E-02
Ppp2r5a ENSMUSG00000026626 10 Vps13d ENSMUSG00000020220 10 3 8.4762E-05 1.44E-02
Cd48 ENSMUSG00000015355 10 Arhgap26 ENSMUSG00000036452 11 3 1.16E-04 1.81E-02
Psmal ENSMUSG00000030751 9 mmu-mir-17  ENSMUSG00000065508 33 4 1.13E-04 1.81E-02
Fgr ENSMUSG00000028874 7 Dad1 ENSMUSG00000022174 16 3 1.15E-04 1.81E-02
Ubxd5 ENSMUSG00000012126 14 Thra ENSMUSG00000058756 9 3 1.78E-04 2.56E-02
Rras2 ENSMUSG00000055723 224 Rasgrpl ENSMUSG00000027347 237 75 1.75E-04 2.56E-02
Sdk1 ENSMUSG00000039683 13 Mns1 ENSMUSG00000032221 10 3 1.99E-04 2.77E-02
Zbtb7b ENSMUSG00000028042 12 Notch1 ENSMUSG00000026923 127 7 2.15E-04 2.94E-02
Evil ENSMUSG00000027684 45 AB041803 ENSMUSG00000044471 14 5 2.23E-04 3.00E-02
Cd48 ENSMUSG00000015355 10 Fgfr2 ENSMUSG00000030849 14 3 2.52E-04 3.12E-02
Hvenl ENSMUSG00000064267 7 Pygm ENSMUSG00000032648 4 2 2.53E-04 3.12E-02
D12Ertd553e ENSMUSG00000020589 14 Ptpre ENSMUSG00000041836 10 3 2.52E-04 3.12E-02
Eng ENSMUSG00000026814 6 Gsel ENSMUSG00000031822 25 3 2.67E-04 3.24E-02
Mylc2pl ENSMUSG00000005474 11 Bcl11a ENSMUSG00000000861 13 3 2.71E-04 3.24E-02
mmu-mir-802 ENSMUSG00000076457 143 Rasgrpl ENSMUSG00000027347 237 52 2.79E-04 3.28E-02
Csk ENSMUSG00000032312 14 Lck ENSMUSG00000000409 26 4 3.08E-04 3.57E-02
Smg6 ENSMUSG00000038290 45 Pik3r5 ENSMUSG00000020901 64 10 3.18E-04 3.63E-02
Fgfr2 ENSMUSG00000030849 14 Plac8 ENSMUSG00000029322 11 3 3.43E-04 3.86E-02
A530013C23Rik ENSMUSG00000006462 43 Hhex ENSMUSG00000024986 16 5 3.66E-04 4.00E-02
A530013C23Rik  ENSMUSG00000006462 43 Exoc6 ENSMUSG00000053799 16 5 3.66E-04 4.00E-02
Spsb4 ENSMUSG00000046997 7 6430598A04Rik ENSMUSG00000045348 5 2 4.20E-04 4.23E-02
Arid3a ENSMUSG00000019564 6 Rrebl ENSMUSG00000039087 29 3 4.21E-04 4.23E-02
Tcfap4 ENSMUSG00000005718 7 Jph4 ENSMUSG00000022208 5 2 4.20E-04 4.23E-02
Zfp608 ENSMUSG00000052713 24 Olfr56 ENSMUSG00000040328 7 3 4.06E-04 4.23E-02
Parvg ENSMUSG00000022439 6 Prré ENSMUSG00000018509 6 2 4.50E-04 4.29E-02
Frmd8 ENSMUSG00000043488 12 Ubxd5 ENSMUSG00000012126 14 3 4.54E-04 4.29E-02
Frmd8 ENSMUSG00000043488 12 AB041803 ENSMUSG00000044471 14 3 4.54E-04 4.29E-02
Ubxd5 ENSMUSG00000012126 14 Scyl1 ENSMUSG00000024941 12 3 4.54E-04 4.29E-02
AB041803 ENSMUSG00000044471 14 Scyl1 ENSMUSG00000024941 12 3 4.54E-04 4.29E-02
Gimap6 ENSMUSG00000047867 3 Bclila ENSMUSG00000000861 13 2 4.70E-04 4.38E-02
Zmizl ENSMUSG00000007817 62 Notchl ENSMUSG00000026923 127 18 4.96E-04 4.58E-02
Cecr5 ENSMUSG00000058979 16 Nfkb1 ENSMUSG00000028163 11 3 5.22E-04 4.59E-02
B3gntl1 ENSMUSG00000046605 11 Hhex ENSMUSG00000024986 16 3 5.22E-04 4.59E-02
B3gntl1 ENSMUSG00000046605 11 Exoc6 ENSMUSG00000053799 16 3 5.22E-04 4.59E-02
Irf2bp2 ENSMUSG00000051495 26 Nsmcel ENSMUSG00000030750 7 3 5.18E-04 4.59E-02
Jundm2 ENSMUSG00000034271 105 Runx1 ENSMUSG00000022952 143 28 5.67E-04 4.87E-02
Myb ENSMUSG00000019982 247 Rras2 ENSMUSG00000055723 224 76 5.79E-04 4.92E-02

Total tumours Total tumours in Number of tumours
in which Gene which Gene 2 in which Gene 1 and

Gene name 1 Ensembl ID 1 1 disrupted Gene name 2 Ensembl ID 2 disrupted Gene 2 disrupted P-value g-value
Ikzf1 ENSMUSG00000018654 93 Evi5 ENSMUSG00000011831 11 6.30E-14 3.01E-11
Evi5 ENSMUSG00000011831 466 Notchl ENSMUSG00000026923 127 25 1.79E-11 8.06E-09
Tkzf1 ENSMUSG00000018654 93 Gfi1 ENSMUSG00000029275 458 16 1.41E-09 5.68E-07
Evi5 ENSMUSG00000011831 466 Rasgrpl ENSMUSG00000027347 237 71 1.92E-09 7.35E-07
Gfil ENSMUSG00000029275 458 Rasgrpl ENSMUSG00000027347 237 72 2.73E-08 9.08E-06
Tkzf1 ENSMUSG00000018654 93 Myc ENSMUSG00000022346 359 11 5.30E-08 1.69E-05
Gfil ENSMUSG00000029275 458 Jundm2 ENSMUSG00000034271 105 23 8.30E-08 2.54E-05
Jundm2 ENSMUSG00000034271 105 Evi5 ENSMUSG00000011831 466 25 4.60E-07 1.26E-04
Gfil ENSMUSG00000029275 458 Notch1 ENSMUSG00000026923 127 33 9.12E-07 2.41E-04
Myc ENSMUSG00000022346 359 Notch1 ENSMUSG00000026923 127 22 9.88E-07 2.52E-04
Map3k8 ENSMUSG00000024235 37 Myc ENSMUSG00000022346 359 1 1.68E-06 4.02E-04
Gfil ENSMUSG00000029275 458 Lck ENSMUSG00000000409 26 1 2.60E-06 6.03E-04
Mycn ENSMUSG00000037169 81 Myc ENSMUSG00000022346 359 12 1.74E-05 3.70E-03
Evi5 ENSMUSG00000011831 466 Lck ENSMUSG00000000409 26 2 2.57E-05 5.31E-03
Gfil ENSMUSG00000029275 458 Zfp438 ENSMUSG00000050945 51 10 7.48E-05 1.33E-02
A530013C23Rik ENSMUSG00000006462 43 Evi5 ENSMUSG00000011831 466 8 1.25E-04 1.92E-02
Ccnd3 ENSMUSG00000034165 206 Ikzf1 ENSMUSG00000018654 93 6 1.34E-04 2.00E-02
Mycn ENSMUSG00000037169 81 Notchl ENSMUSG00000026923 127 1 1.99E-04 2.77€-02
Gfil ENSMUSG00000029275 458 Rras2 ENSMUSG00000055723 224 79 2.51E-04 3.12E-02
Cer7 ENSMUSG00000037944 50 Evi5 ENSMUSG00000011831 466 11 2.42E-04 3.12E-02
Pvtl ENSMUSG00000072566 296 Mycn ENSMUSG00000037169 81 11 5.62E-04 4.87E-02

Table 3.6. Gene pairs in which insertions co-occur more often (A) or less often (B)
than expected by chance. All tests with a g-value of less than 0.05 are shown.
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upregulated by promoter and enhancer insertions, rather than being inactivated, as would
be expected for co-operation in tumourigenesis. The distribution of Lck-associated
insertions suggests that the full-length protein is produced (see Section 3.4.1), and can
therefore be phosphorylated by Csk. Further experimental analysis of these genes is

therefore required to understand their cooperative role.

A highly significant association was also identified between lkaros (Ikzf1) and Notchl.
An MuLV screen performed on transgenic mice expressing the oncogenic Notchl
intracellular domain has previously identified the disruption of /karos as a co-operating
event in lymphomagenesis (Beverly and Capobianco, 2003). Loss of heterozygosity of
lkaros and activation of Notchl have also been shown to co-occur in mouse thymic
lymphomas induced by gamma-irradiation (Lopez-Nieva et al., 2004; Ohi et al., 2007).
Activating insertions also co-occurred in Notchl and lunatic fringe (Lfng). Lfng encodes
a glycosyltransferase that initiates elongation of O-linked fucose residues attached to the
extracellular epidermal growth factor-like domain of Notch1l (Moloney ef al., 2000). This
increases the sensitivity of Notchl to Delta-like, rather than Jagged, Notch ligands and so
promotes T cell, rather than B cell, development from haematopoietic progenitors
(Besseyrias et al., 2007; Haines and Irvine, 2003; Visan et al., 2006). Upregulation of
Lfng by insertional mutagenesis may therefore contribute to tumourigenesis by mediating

an increase in the binding of oncogenic Notchl to Delta-like ligands.

A significant co-occurrence was also identified between Runx! and Rasgrpl. The RunxI
gene encodes the DNA binding alpha subunit of the Runt domain transcription factor
PEBP2/CBF. RunxI translocations and point mutations are frequently implicated in
human leukaemias and are often associated with activation of the Ras pathway (Goemans
et al., 2005). Rasgrpl is a Ras GTPase-specific guanine nucleotide exchange factor that
activates Ras in lymphocytes (Roose et al., 2007) and, in support of the observed co-
occurrence, it was shown to be preferentially targeted by the endogenous retrovirus in

BXH2-Runx!"" mice (Yamashita ez al., 2005).

There were also numerous genes for which the number of co-occurrences was lower than
expected. The lack of co-operation between Myc and Mycn reflects the fact that they are
structurally and functionally related. Co-occurring insertions disrupting Myc and either
lkaros or Notchl were also under-represented. Myc is a transcriptional target of the

Notch signalling pathway in T cell acute lymphoblastic leukaemia, and Notchl is
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required to sustain the high levels of Myc that are required for continued growth and
survival of the cancer (Sharma et al., 2007). The mutual exclusivity of activated Notchl
and Myc in mouse tumours suggests that Notchl activation may not provide a significant
growth advantage when high levels of Myc are sustained by constitutive overexpression.
Mycn and Notchl were also mutually exclusive, suggesting that Notchl may play a
similar role in the maintenance of Mycn expression during tumourigenesis. Co-occurring
insertions that disrupt Gfi/ and either Rras2 or Rasgrpl were also under-represented.
Rasgrpl and Ras-related Rras2 were significantly associated, suggesting that Rasgrpl
activates Rras2 and that overexpression of both genes contributes to tumourigenesis. The
mutual exclusivity of disrupted Gfil with both of these activated genes suggests that they

may act in a common cancer pathway.

Many of the significant associations identified in this analysis are supported by
observations in the literature, yet there are many more for which there is no evidence, in
many cases because little is known about the genes involved. The list of co-occurring and
mutually exclusive genes therefore provides a basis for future functional analyses, and
demonstrates the potential of large scale insertional mutagenesis screens in the

identification of cancer gene collaborations in mouse, and human, tumourigenesis.

3.6 Discussion

The purpose of the work described in this chapter was to characterise the candidate cancer
genes identified by insertional mutagenesis, and to demonstrate their relevance to human
tumourigenesis. The candidates showed a significant overlap with human mutation
datasets associated with, or biased towards, cancers of haematopoietic and lymphoid
tissue, but not with breast and colon candidate cancer genes. This suggests that the screen
may only be effective in identifying novel candidates involved in the development of
lymphomas and/or leukaemias. A number of the over-represented GO terms were also
associated with the development, differentiation or carcinogenesis of T- and B-cells, but
others were associated with general features of cancers, such as cell proliferation and
apoptosis. An exciting observation to be followed up was the positive association
between candidate genes and genes containing Nanog and Oct4 binding sites. This
suggests that a significant proportion of the candidate genes may be involved in tumour
cell self-renewal, which has not been previously reported in insertional mutagenesis

screens. This chapter also presents evidence for an overlap between genes identified by
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insertional mutagenesis and regions of copy number change in human acute
lymphoblastic leukaemias, therefore providing a justification for the cross-species

comparative analyses performed in Chapters 4 and 5.

The comparison of candidate genes identified in the MuLV and Sleeping Beauty screens
demonstrated differences in the mutational profiles of the two mutagens. This suggests
that the use of different mutagens can increase the spectrum of candidate cancer genes,
but the difference in profiles can only be fully appreciated by comparing fully saturated
screens, since some CISs may be missing from one screen simply because of an
insufficient number of PCRs or low sequencing depth. However, comparison of the
screens does provide strong evidence that overlapping genes are involved in
tumourigenesis, rather than resulting from insertional bias, which differs in MuLV and
Sleeping Beauty (see Section 1.4.2.1.1). sk was flagged as a promising candidate
following its identification in both screens. In light of this finding, Fanni Gergely at the
Cambridge Research Institute performed RNAi-mediated knockdown of OSK in HeLa
cells, which are an immortal cell line derived from human cervical cancer cells, and
scored chromosome lagging in 40 late anaphase/early telophase cells in 2 separate
experiments. Chromosome lagging was observed in 12.3 = 2.2 control cells and 28.1 =
4.0 cells with OSK knocked down by 95-100% (Figure 3.8). No other mitotic defects
were observed. Chromosome lagging at anaphase can result in the failure of a
chromosome or chromatid to become incorporated into one of the daughter nuclei
following cell division. This causes aneuploidy and can therefore contribute to genomic
instability and cancer formation. This study is ongoing, but suggests that OSK does play
an important role in tumourigenesis. Likewise, plI6Rip, Zmizl and
ENSMUSGO0000075015 contained both MuLV and T2/Onc insertions and are therefore

promising candidates for which functional validation is required.

Co-occurring MuLV and T2/Onc insertions were also used in the prediction of the
mechanisms of mutation of candidate cancer genes. While these may not always
recapitulate the mutations observed in human cancer, as demonstrated for F/t3, in other
cases, e.g. Notchl, similar mutations are observed. Identifying the structure and function
of the mutant products of oncogenes is valuable in the development of therapeutic drugs
that target those proteins. Experimental approaches are required to validate the
predictions, although the efficacy of gene expression analysis appears to be variable,

since in the limited analysis performed in Section 3.4.5, many CIS genes did not show
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Figure 3.8. Knockdown of OSK in human HeLa cells is associated with increased
chromosome lagging at anaphase. Figure shows a single cell at anaphase, with
chromosomes stained blue and spindle fibres stained red. Image provided by Fanni
Gergely at the Cambridge Research Institute.
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significant differential expression in tumours containing insertions versus those without.
Promoter and enhancer mutations appeared to be the most common mechanisms of
mutation, with upregulation of the wildtype gene being the most common type of
mutation overall. Initial comparison against a predicted set of regulatory features
suggests that disruption of regulatory elements is not a common mechanism of mutation
in insertional mutagenesis, although a more accurate analysis could be performed using a

set of regulatory features specific for the mouse, rather than human. Analysis of the
distribution of insertions within genes can also facilitate the identification of tumour
suppressor genes, which are expected to contain only intragenic, truncating mutations,
and may show a more random distribution of insertions that includes multiple insertions
from the same tumour. For a number of the genes studied in this chapter (i.e. Etrv6, Myb,
Flil, Erg, Foxpl), some of the insertions appeared to be associated with Ensembl EST
genes for which there was no associated Ensembl gene transcript. Therefore, analysis of
the distribution of insertions from insertional mutagenesis screens may also facilitate the

identification of novel gene transcripts.

The identification of collaborating cancer genes is important for the development of
targeted cancer therapies. As discussed in Section 1.2.7, cancers can develop resistance
to targeted therapies but this may be alleviated by developing therapies that target
multiple genes simultaneously. Collaborating cancer genes can also help in deciphering
the complex landscape of cancer genomes and the events involved in the multi-step
process of tumour evolution. The analyses described in Section 3.5 have identified a
number of collaborations for which there is supporting evidence in the literature, as well

as many novel collaborations.

In summary, this chapter demonstrates that insertional mutagenesis is a powerful tool for
identifying both novel candidate cancer genes and collaborations between candidate
cancer genes that are relevant to mouse and human tumourigenesis. In order to maximise
the candidates and collaborations identified by this approach, the combined use of a
variety of insertional mutagens and genetic backgrounds is recommended. In the future,
the development of mutagens that can induce the formation of solid tumours should

facilitate the identification of a larger repertoire of cancer gene candidates.
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Chapter 4 Using mouse candidate cancer genes to
narrow down the candidates in regions of copy

number change in human cancers

4.1 Introduction

As discussed in Section 1.3.3, copy number changes are a common feature of cancer
genomes, and can be identified using comparative genomic hybridisation (CGH)-based
techniques. However, regions of copy number change are often large and encompass
many genes, making it difficult to identify the “critical” genes that contribute to the
tumourigenic process. Candidate cancer genes identified by insertional mutagenesis in
the mouse can be used in a cross-species oncogenomics approach to narrow down the
candidates within regions of copy number change in human tumours. The use of cross-
species comparative analysis for cancer gene discovery is discussed in Section 1.5. In
this chapter, mouse candidate cancer genes are used to identify orthologous candidates
within regions of copy number change in 713 human cancer cell lines generated using
SNP array CGH. The analyses were performed as part of a collaboration with the
Netherlands Cancer Institute (NKI), published in Cell (Uren et al., 2008), and therefore,
rather than using the mouse candidate cancer genes generated from the work described in

Chapters 2 and 3, lists of candidates were provided by the NKI.

The datasets are introduced in Section 4.2. This is followed, in Section 4.3, by a
description of the methods used to process the copy number data into regions of copy
number change, and gains and losses within the human cancer cell lines are characterised
in Section 4.4. In Section 4.5.1, the mouse and human datasets are compared to
determine whether retroviral insertional mutagenesis is relevant to the discovery of
amplified and deleted cancer genes in humans. Promising cancer gene candidates that are
both disrupted by insertional mutagenesis in the mouse and amplified or deleted in human
cancers are presented in Section 4.5.2. A range of algorithms have been developed for
identifying regions of copy number change within CGH data, and these are described and
compared in Section 4.6. Finally, in Section 4.7, the mouse candidate cancer genes are
combined with copy number variation (CNV) data from apparently healthy individuals to

determine whether there is any overlap between candidates and regions of CNV.
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Since the ploidy of the cell lines, and therefore the exact copy number of alterations, is
difficult to establish, the terms “gain and “amplicon” are used interchangeably throughout
this thesis to mean any gain of copy number, irrespective of the size or nature of the

alteration.

4.2 Description of the datasets

As well as the datasets described below, the set of known cancer genes from the Cancer

Gene Census (Futreal et al., 2004) was also used. This is described in Section 2.2.3.

4.2.1 Mouse candidate cancer genes identified by retroviral insertional

mutagenesis

As mentioned in the introduction, some of the work described in this chapter was
undertaken as part of a collaboration with the NKI (Uren ef al., 2008, reprinted on p.365).
The gene lists used in this chapter were therefore provided by the NKI but were generated
from the analysis of insertion sites identified in the retroviral insertional mutagenesis
screen described in Chapter 2. There were 6 lists of putative tumour suppressor genes.
These included 3 lists comprising all genes in which there were insertions in the entire
transcribed region, including UTRs and introns, only in the translated region (no UTRs)
but including introns, and only in the coding region (no UTRs or introns). These lists are
described throughout this thesis as genes in the transcribed region, translated region, and
coding region, respectively. A further 3 lists contained genes with insertions in the same
regions, but only where insertions comprised 2 or more sequence reads. Insertions
represented by only 1 read are considered less likely to contribute to tumourigenesis (see
Section 2.8) and are therefore predicted to have a reduced overlap with human deletions.
2 additional lists contained genes that were closest to CISs with P-values of less than 0.05
and 0.001, as determined using the kernel convolution (KC)-based statistical method (de
Ridder et al., 2006, see Sections 1.4.2.1.2 and 2.10.2). From these, lists were also
generated for genes that were adjacent to CISs of P<0.05 and P<0.001 but were further
away than the closest gene. For each gene list, the human orthologues and their genomic
coordinates were extracted from Ensembl version 37 using Ensembl BioMart (see Section
3.2.1). Table 4.1 shows the number of mouse genes and human orthologues in each gene

list. The P<0.001 and P<0.05 CISs and their associated nearest and further mouse genes
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Number of mouse Number of human % of human
Number of genes with human orthologues in CIS orthologues in

Gene List mouse genes orthologues gene list CIS gene list

ORF only 266 240 41 17.1
ORF only (no singletons) 86 75 22 29.3
Translated region only 3024 2647 216 8.2
Translated region only (no singletons) 1331 1163 173 14.9
Transcribed region only 3773 3316 275 8.3
Transcribed region only (no singletons) 1706 1498 227 15.2
CIS nearest P<0.05 559 424 196 46.2
CIS nearest P<0.001 355 265 155 58.5
CIS further P<0.05 505 362 85 23.5
CIS further P<0.001 313 219 66 30.1

Table 4.1. Description of the lists of mouse candidate cancer genes used for
comparison with human cancer copy number data. “[ORF, Translated region,
Transcribed region] only” are lists of genes containing insertions only in the open reading
frame, translated region (but including introns) or transcribed region, respectively. “no
singletons” means that the list does not include genes that only contain insertions
represented by a single read. “CIS nearest P<0.05” and “CIS nearest P<0.001” contain
genes nearest to CISs identified by the kernel convolution (KC)-based method. “CIS
further P<0.05” and “CIS further P<0.001” contain genes that flank CISs identified by the
KC-based method but are not the nearest genes. The columns labelled “Number/% of
human orthologues in CIS gene lists” show the overlap of each list with the list of
candidate cancer genes generated and described in Chapters 2 and 3.
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are listed in Appendix D. Due to their length, the lists of candidate tumour suppressor

genes are not included, but are available on request.

Table 4.1 also shows the overlap of each gene list with the list of candidate cancer genes
generated and described in Chapters 2 and 3 (shown in Appendix B2 and referred to here
as the CIS gene list). The CIS gene list contains only genes that are associated with a
significant CIS and this, together with the fact that the screen identifies mainly
oncogenes, accounts for the small overlap with the tumour suppressor gene lists, in which
genes may contain any number of insertions. The differences between the CIS gene list
and the remaining lists may reflect differences in gene selection, i.e. a more sophisticated
method was used to assign insertions to genes in the CIS gene list, and in read and
insertion site processing, which were more conservative for the CIS gene list. Candidates
from the CIS gene list are used in Chapter 5, where it is compared to higher resolution
human CGH data (Section 5.3), as well as to the CGH data described in this chapter
(Section 5.4).

4.2.2 Copy number data for human cancer cell lines

Comparative genomic hybridisation (CGH) data were generated by the Wellcome Trust
Sanger Institute (WTSI) Cancer Genome Project for 713 human cancer cell lines from 29
tissues. A list of all cell lines and their tissue of origin is provided in Appendix E and is
summarised in Table 4.2. None of the chosen cell lines had a common ancestor,
according to cell line identity typing also performed by the WTSI Cancer Genome Project
(http://www.sanger.ac.uk/genetics/CGP/Genotyping/synlinestable.shtml). This is
important, since an amplicon or deletion might otherwise appear to be recurrent simply
because it is within synonymous cell lines. CGH was performed using two Affymetrix
GeneChip® Human Mapping Arrays. The 10K array, which comprises 11,555 SNPs,
was used for 313 cell lines, while the 10K 2.0 array, comprising 10,204 SNPs, was used
for the remaining 400 lines. 10,136 SNPs were shared between the two arrays, and both
used the Affymetrix GeneChip® Mapping 10K assay, described in Section 1.3.3.2. The
SNPs were mapped to the NCBI 35 human genome assembly. The mean distance
between SNPs was 258.50 (x634.21) kb in the 10K array, and 292.82 (x683.49) kb in the
10K 2.0 array. The minimum distance was 2 bp and 11 bp for the 10K and 10K 2.0
arrays, respectively, and the maximum distance was 24.81 Mb for both arrays. 9.4% of

human protein-coding genes in Ensembl v37 (extracted using Ensembl BioMart, see
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Number of
Tissue of origin cell lines
Lung 131
Haematopoietic and lymphoid 117
Breast 43
Skin 42
Central nervous system 40
Unknown 39
Large intestine 38
Autonomic ganglia 29
Bone 23
Kidney 21
Soft tissue 20
Oesophagus 20
Stomach 19
Upper aerodigestive tract 19
Ovary 18
Pancreas 14
Urinary tract 13
Liver 11
Thyroid 11
Cervix 11
Endometrium 10
Biliary Tract 6
Pleura 5
Testis 3
Vulva 2
Prostate 2
Eye 2
Placenta 2
Adrenal gland 1
Small intestine 1
Total 713

Table 4.2. Tissues of origin of human cancer cell lines used in the 10K SNP array
CGH analysis.
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Section 3.2.1) contained at least one SNP in the 10K array, while 9.0% contained at least
one SNP in the 10K 2.0 array. Genes were defined as the longest Ensembl gene
transcript. The 10K and 10K 2.0 arrays contained an average of 0.176 (x0.735) and 0.157
(£0.648) SNPs per protein-coding gene, respectively. The interSNP distances and
number of SNPs per gene are shown in Figures 4.1 and 4.2, respectively. The larg