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The incidence of acute myeloid leukaemia (AML) increases with age 
and mortality exceeds 90% when diagnosed after age 65. Most cases 
arise without any detectable early symptoms and patients usually 
present with the acute complications of bone marrow failure1. 
The onset of such de novo AML cases is typically preceded by the 
accumulation of somatic mutations in preleukaemic haematopoietic 
stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. 
However, recurrent AML mutations also accumulate in HSPCs 
during ageing of healthy individuals who do not develop AML, 
a phenomenon referred to as age-related clonal haematopoiesis 
(ARCH)4–8. Here we use deep sequencing to analyse genes that are 
recurrently mutated in AML to distinguish between individuals 
who have a high risk of developing AML and those with benign 
ARCH. We analysed peripheral blood cells from 95 individuals 
that were obtained on average 6.3 years before AML diagnosis 
(pre-AML group), together with 414 unselected age- and gender-
matched individuals (control group). Pre-AML cases were distinct 
from controls and had more mutations per sample, higher variant 
allele frequencies, indicating greater clonal expansion, and showed 
enrichment of mutations in specific genes. Genetic parameters were 
used to derive a model that accurately predicted AML-free survival; 
this model was validated in an independent cohort of 29 pre-AML 

cases and 262 controls. Because AML is rare, we also developed 
an AML predictive model using a large electronic health record 
database that identified individuals at greater risk. Collectively our 
findings provide proof-of-concept that it is possible to discriminate 
ARCH from pre-AML many years before malignant transformation. 
This could in future enable earlier detection and monitoring, and 
may help to inform intervention.

To examine the occurrence of somatic mutations before the develop-
ment of AML, we carried out deep error-corrected targeted sequencing 
of AML-associated genes in a discovery cohort of 95 pre-AML cases 
and 414 age- and gender-matched controls (Supplementary Table 1). 
A validation cohort comprising 29 pre-AML cases and 262 controls 
(Supplementary Table 1) was analysed using deep sequencing with 
an overlapping gene panel. Taking both cohorts together, ARCH, 
defined on the basis of putative driver mutations (ARCH-PD), was 
found in 73.4% of the pre-AML cases at a median of 7.6 years before 
diagnosis. By contrast, ARCH-PD was observed in 36.7% of controls 
(P < 2.2 × 10−16, two-sided Fisher’s exact test; Fig. 1a), consistent with 
data from a study of more than 2,000 unselected individuals assayed 
using a similarly sensitive method9,10. Additionally, 39% of pre-AML 
cases above the age of 50 had a driver mutation with a variant allele 
frequency (VAF) of more than 10%, compared to only 4% of controls, 
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a prevalence that is in line with the largest studies of ARCH in the 
general population4 (P < 2.2 × 10−16, two-sided Fisher’s exact test; 
Extended Data Fig. 1).

The median number of ARCH-PD mutations per individual 
increased with age and was significantly higher in the pre-AML group 
relative to controls (Fig. 1b and Supplementary Table 2). Furthermore, 
examination of ARCH-PD VAF distribution revealed significantly 
larger clones among the pre-AML cases (P = 1.2 × 10−13, two-
sided Wilcoxon rank-sum test; Fig. 1c). To gain insight into clonal  
growth dynamics, we examined serially collected samples that  
were available for a subset of the validation cohort. We did not find 
significant differences in clonal expansion rates between pre-AML 
cases and controls (Extended Data Fig. 2a, b), although this may 
in part reflect the shorter follow-up of pre-AML cases, small sam-
ple size and large variance in growth rates (Extended Data Fig. 2c).  
The observed differences between pre-AML cases and controls  
may arise through cell-intrinsic or -extrinsic factors. Although  
these variables have not been adequately studied in ARCH, a  
number of observations in different contexts, such as aplasia,  
advanced age and after chemotherapy, have shown that increased 
clonal fitness is associated with distinct mutations depending on 
context10–12. Notably, mutations in splicing factor genes were signif-
icantly enriched among the pre-AML cases relative to the controls 
(odds ratio, 17.5; 95% confidence interval, 8.1–40.4; P = 5.2 × 10−16, 
two-sided Fisher’s exact test) and were present in significantly younger 
individuals (median age 60.3 compared to 77.3 years, P = 1.7 × 10−4, 
two-sided Wilcoxon rank-sum test; Fig. 2a). Previous work suggests 
that spliceosome mutations appear to confer a competitive advantage 
in the context of ageing10. Therefore, it is possible that the signifi-
cantly higher prevalence of such clones in younger pre-AML cases 
may reflect extrinsic selection pressures rather than earlier mutation 
acquisition.

In line with previous reports5,6, we found that DNMT3A and TET2 
were the most commonly mutated genes in both groups (Fig. 2b). 
We could not identify any canonical NPM1 mutations nor any FLT3-
internal tandem duplication mutations, consistent with these arising 
late in leukaemogenesis10,13. Recurrent CEBPA mutations, which are 
implicated in around 10% of de novo AML14, were also absent, sug-
gesting that driver events in this gene may also be late events in AML 
evolution. In order to quantify the effect of different mutations on 
the likelihood of progression to AML, we ranked ARCH-PD muta-
tions based on the number of times that they have been reported 
in Catalogue of Somatic Mutations in Cancer (COSMIC) database 
among individuals with haematological malignancies15. We found that 
mutations that are highly recurrent in cancer specimens were more 
common in pre-AML cases than in controls with ARCH-PD, whereas  
driver events in the controls tended to affect loci that are less  
frequently mutated in haematological malignancies and occurred at 
significantly lower VAF (Fig. 2c, d). Overall, these findings demon-
strate notable differences in the mutational landscape of ARCH and 
pre-AML. Moreover, this work, in conjunction with recent insights 
into the origins of AML relapse16, suggests that AML progression 
typically occurs over many years through clonal evolution of pre- 
leukaemic HSPCs before acquisition of late mutations leads to overt 
malignant transformation.
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Fig. 1 | Prevalence of ARCH, number of mutations and clone size in 
individuals who developed AML. a, Prevalence of ARCH-PD among 
pre-AML cases (red) and controls (blue). b, The number of ARCH-PD 
mutations detected in cases and controls according to age. Box plot 
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rank-sum test with Bonferroni multiple testing correction. All panels show 
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On the basis of these findings, we next developed an approach to 
quantify the relative contributions of driver mutations and clone sizes 
to the risk of progressing to AML. We tested different regularised 
logistic and Cox proportional hazards regression approaches, which 
achieved similar performance in both the discovery cohort (concord-
ance (C) = 0.77 ± 0.03) and the validation cohort (C = 0.84 ± 0.05; 
Extended Data Figs. 3, 4 and Supplementary Table 3). Models that were 
only trained on data from the discovery or validation cohort had sim-
ilar coefficients (Fig. 3a). We therefore combined the datasets for a 
more accurate analysis of the contributions of mutations in individual 
genes to risk (C = 0.77 ± 0.05; area under curve, 0.79; Supplementary 
Table 3). Quantitatively, we found that driver mutations in most genes 
conferred an approximately twofold increased risk of developing AML 
per 5% increase in clone size (Fig. 3a and Supplementary Table 3). 
Notable exceptions to this trend are the most frequently mutated ARCH 
genes, DNMT3A and TET2, which confer a lower risk of progression to 
AML (Fig. 3a, b and Supplementary Table 3). By contrast, a larger effect 
size was apparent for TP53 (hazard ratio, 12.5; 95% confidence inter-
val, 5.0–160.5) and U2AF1 (hazard ratio, 7.9; 95% confidence interval,  
4.1–192.2) mutations (Fig. 3a, b). However, we note that other ARCH-PD  
genes, such as SRSF2, can contribute a similar relative risk owing to 
their presence at a higher VAF in pre-AML cases (Fig. 3a, Extended 
Data Fig. 5a and Supplementary Note). Of note, mutations in TP53 and 
spliceosome genes (including U2AF1) are also associated with a poorer 
prognosis in AML14. Because the effect of each ARCH-PD mutation 
is deleterious and the effect of multiple mutations that are present in 
the same individual is multiplicative, a higher number of mutations is 
predicted to increase the risk of progression to AML (Fig. 3c). Similarly, 

the size of the largest driver clone was also strongly associated with the 
risk of progression to AML, in agreement with the risk of individual 
mutations generally being proportional to VAF (Fig. 3c). Collectively, 
although the VAF and the number of mutations confer much of the 
predictive value, this model does demonstrate distinct gene-level risk 
factors, and is able to quantify the cumulative impact of multiple muta-
tions and clonal size on the likelihood of progression to AML.

Although our predictive model performs well in identifying those 
at risk of developing AML in our experimental cohorts, AML inci-
dence rates in the general population are low (4:100,000)1, and thus 
millions of individuals would need to be screened to identify the 
few pre-AML cases, with many false positives. We therefore sought 
to determine whether routinely available clinical information could 
improve prediction accuracy or identify a high-risk population for 
targeted genetic screening. We first analysed complete blood count 
and biochemistry data that were available for 37 of the pre-AML cases 
and 262 controls. As reported previously5,10,17, ARCH-PD was over-
whelmingly associated with normal blood counts and this was also 
the case for pre-AML cases, indicating that these did not represent 
undiagnosed myelodysplastic syndrome18. We identified a significant 
association between higher red blood cell distribution width (RDW) 
and risk of progression to AML (P = 0.0016, Wald test with Bonferroni 
multiple-testing correction, Fig. 3d). Although traditionally used in the 
evaluation of anaemia, raised RDW has been correlated with inflam-
mation, ineffective erythropoiesis, cardiovascular disease and adverse 
outcomes in several inflammatory and malignant conditions19. The 
correlation between RDW and risk of AML development remained 
highly significant when controls without ARCH-PD were excluded 
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from the analysis (P = 3.5 × 10−6, Wald test with Bonferroni multiple 
testing correction; Extended Data Fig. 5b). Higher RDW has previously 
been associated with ARCH and overall mortality5, but has never been 
shown to distinguish ARCH from pre-leukaemia. In order to verify 
RDW as a predictive factor and determine whether additional clinical 
parameters are associated with risk of AML development, we studied 
the Clalit database20, which contains electronic health records that 
include an average of 3.45 million individuals per year and data that 
were collected over a 15-year period21. We identified 875 cases with 
AML using stringent criteria based on diagnostic codes and treatment 
records (Extended Data Fig. 6 and Supplementary Table 4). Analysis 
of RDW trends revealed significantly raised measurements several 
years before AML diagnosis relative to age and sex-matched controls 
(Fig. 4a). Additional parameters that correlated with risk of AML 
development included reductions in monocyte, platelet, red blood 
cell and white blood cell counts, albeit usually remaining above the 
thresholds for clinically relevant cytopenias18 (Fig. 4a and Extended 
Data Fig. 7). These findings suggest that evolving de novo AML may 
sometimes have a considerable prodrome with subtle but discernible 
clinical manifestations. We next applied a machine-learning approach 
to construct an AML prediction model based entirely on variables that 
are routinely documented in electronic health records (Extended Data 
Fig. 8 and Supplementary Table 4). This model was able to predict AML 
6–12 months before diagnosis with a sensitivity of 25.7% and overall 
specificity of 98.2%. The model performed consistently across different 
age groups with an increased relative risk of 28 and 24 for males and 
females, respectively, between the age of 60 and 70 years (Fig. 4b). To 
better understand which patients are most likely to be accurately clas-
sified by this model, we compared absolute laboratory values for true 
positives and false negatives. We found that 35.5% of false-negative 
predictions were for patients for whom infrequent blood count data 
were available (Extended Data Fig. 9). Some of the true-positive cases 

had mildly abnormal blood counts that would not initiate a diagnostic 
work-up (Fig. 4c), and cytopenias that would be compatible with undi-
agnosed myelodysplastic syndrome18 were uncommon.

Collectively, our findings provide new insights into the pre-clinical 
evolution of AML and support the hypothesis that individuals at high 
risk of AML development can be identified years before they develop 
overt disease. To this end, we present two distinct models for the pre-
diction of de novo AML: one based on somatic point mutations and 
the other on routinely documented clinical information. We find that 
basic clinical and laboratory data can identify a high-risk subgroup 
6–12 months before AML presentation, while genetic information can 
identify a substantial fraction of cases several years to more than a 
decade before diagnosis. By characterizing features that distinguish 
benign ARCH from pre-leukaemia, our models give valuable insights 
into leukaemogenesis. It is evident from the current study, together with 
our recent analysis of mutation acquisition from pre-leukaemic devel-
opment through to relapse16, that long-term pre-leukaemic HSPCs fre-
quently carry mutations and undergo considerable clonal expansion 
while retaining differentiation capacity for years before AML diagnosis. 
Furthermore, it is clear that some mutations, particularly those affect-
ing TP53 and U2AF1, impart a relatively high risk of subsequent AML, 
whereas mutations in other genes, for example DNMT3A and TET2, 
confer a lesser risk of malignant transformation. Previous studies sug-
gest that oncogenic mutations in TP53 and spliceosome genes confer 
little or no competitive advantage in the absence of particular selective 
pressures11,22, indicating that cell-extrinsic factors may be important 
determinants of clonal trajectory.

Cancer predictive models have enabled successful early detection 
and intervention programmes for several solid tumours23–25. However, 
screening tests are unavailable for the sub-clinical stages of most  
haematological malignancies. Our study provides proof-of-concept 
for the feasibility of early detection of healthy individuals at high risk 
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of developing AML, and is a first step in the design of future clinical 
studies to investigate the potential benefits of early interventions in 
this deadly disease. However, the infrequency of AML necessitates 
that future screening tests provide high sensitivity and specificity. Our 
findings suggest that basic clinical data may identify a higher risk pop-
ulation that might benefit from targeted genetic screening. Equally, 
combining clinical and genetic information in a single model and 
including structural driver events is likely to improve model accuracy 
further. Nevertheless, establishing the utility of such a tandem approach 
will require extensive clinical and genetic analysis on the same popula-
tion cohort, in a prospective setting. Furthermore, ARCH is associated 
with several non-malignant conditions4,5, and may have a causal role in 
cardiovascular disease26,27. Therefore, genetic testing for ARCH may 
also prove useful in the management of common age-related diseases. 
Moreover, this study has broader implications for cancer screening and 
early intervention beyond AML. Advances in sequencing technologies 
have revealed a remarkable degree of somatic genetic diversity in nor-
mal ageing tissues, often characterized by the presence of clones that 
have canonical oncogenic mutations28. The degree to which clones at 
high risk of malignant transformation can be reliably distinguished 
from their indolent counterparts is an important biological question 
with compelling clinical ramifications. Understanding the selective 
pressures and cell-intrinsic mechanisms governing clonal fate is the 
next important step in developing strategies to predict and prevent 
progression to overt malignancy.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
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METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Study participants. Samples for both the discovery and validation cohort were 
obtained from participants in the EPIC study29. All relevant ethical regulations 
were followed. Written informed consent was obtained from all participants in 
accordance with the Declaration of Helsinki and protocols were approved by 
the relevant ethics committees (IARC Ethics Committee approval #14-31, the 
Weizmann Institute of Science Ethics board approval #60-1 and East of England–
Cambridgeshire and Hertfordshire Research Ethics Committee reference num-
ber 98CN01). Patients with AML were identified based on the following ICD9 
codes: 9861/3, 9860/3, 9801/3, 9866/3, 9891/3, 9867/3, 9874/3, 9840/3, 9872/3, 
9895/3, 9873/3, which included only cases of de novo AML, and no secondary 
AML. All patients provided peripheral blood samples for which the buffy coat 
fractions were separated and aliquoted for long-term storage in liquid nitrogen 
before DNA extraction.
Discovery cohort. In total, 509 DNA samples were collected from individuals 
upon enrolment into the EPIC study between 1993 and 1998 across 17 different  
centres29 (Supplementary Table 1). Altogether, 95 individuals who developed AML 
an average of 6.3 years (interquartile range (IQR) = 4.8 years) after the sample was 
collected were included in the pre-AML group. For the control group, 414 age- and 
gender-matched individuals were selected, as they did not develop any haematolog-
ical disorders during the average follow-up period of 11.6 years (IQR = 2.1 years). 
The median age at recruitment was 56.7 years (range, 36.08–74.42). In order to 
minimize any possible demographic biases, an approximate 1:4.5 pre-AML to con-
trol ratio was maintained across the different centres.
Validation cohort. Samples were obtained from individuals enrolled in the EPIC-
Norfolk longitudinal cohort study between 1994 and 2010. Samples and clinical 
metadata were available from 37 patients with AML (of which 8 were already 
included in the discovery cohort) and 262 age- and gender-matched controls with-
out a history of cancer or any haematological conditions. The average time between 
the first blood sampling and AML diagnosis was 10.5 years (IQR = 8.3 years). The 
average follow-up period for the control cohort was 17.5 years (IQR = 3.8). For 
12 individuals in the pre-AML cohort, 2–3 blood specimens were available, taken 
a median of 3.4 years apart. Of the 262 controls, 141 had multiple blood samples 
available, spanning a median of 10.5 years. Blood counts and other clinical param-
eters were available for all study participants (Supplementary Table 1).
Targeted sequencing. Discovery cohort sequencing. Targeted deep sequencing was 
performed using error-corrected sequencing as follows.

Shearing of genomic DNA, preparation of pre-capture sequencing libraries, 
hybridization-based enrichment, assessment of the libraries quality and enrich-
ment following hybridization were performed as previously described30. In brief, 
100 ng of genomic DNA was sheared before library construction (KAPA Hyper 
Prep Kit KK8504, Kapa Biosystems) with a Covaris E220 instrument using the 
recommended settings for 250-bp fragments. Following end repair and A-tailing, 
adaptor ligation was performed using 100-fold molar excess of Molecular Index 
Adaptor. Library clean-up was performed with Agencourt AMPure XP beads 
(Beckman-Coulter) and the ligated fragments were then amplified for eight cycles 
using 0.5 µM Illumina universal and indexing primers.

Targeted capture was carried out on pools containing three indexed libraries. 
Each pool of adaptor-ligated DNA was combined with 5 µl of 1 mg ml−1 Cot-I 
DNA (Invitrogen), and 1 nmol each of xGEN Universal Blocking Oligo, TS-p5, 
and xGen Universal Blocking Oligo, TS-p7 (8 nucleotides). The mixture was 
dried using a SpeedVac and then re-suspended in 1.1 µl water, 8.5 µl NimbleGen 
2× hybridization buffer and 3.4 µl NimbleGen hybridization component A. The 
mixture was heat denatured at 95 °C for 10 min before addition of 4 µl of xGen 
Lockdown Probes (xGen AML Cancer Panel v.1.0, 3 pmol). Each pool was then 
hybridized at 47 °C for 72 h. Washing and recovery of the captured DNA was 
performed according to the manufacturer’s specifications. In brief, 100 µl of clean 
streptavidin beads was added to each capture. Following separation and removal 
of the supernatant using a magnet, 200 µl 1× Stringent Wash Buffer was added and 
the reaction was incubated at 65 °C for 5 min. The supernatant containing unbound 
DNA was removed before repeating the high stringency wash one additional time. 
Then, the bound DNA was washed as follows: (1) 200 µl 1× Wash Buffer I and 
separation of the supernatants by magnetic separation; (2) 200 µl 1× Wash Buffer 
II after magnetic separation; (3) 200 µl 1× Wash Buffer III and removal of the 
supernatants using magnetic separation. The captured DNA on beads was resus-
pended in 40 µl of Nuclease-Free water before dividing the total volume into two 
PCR tubes and subjecting the libraries to 10 cycles of post-capture amplification 
(manufacturer-recommended conditions; Kapa Biosystems). Before sequencing, 
libraries were spiked with 2% PhiX.
Validation cohort sequencing. Targeted sequencing was performed using a  
custom complementary RNA bait set (SureSelect, Agilent, ELID 0537771) designed 

complementary to all coding exons of 111 genes that have been implicated in mye-
loid leukaemogenesis (Extended Data Table 1). Genomic DNA was extracted from 
peripheral whole blood and sheared using the Covaris M220. Equimolar pools of 
10 libraries were prepared and sequenced on the Illumina HiSeq 2000 using 75-bp 
paired-end sequencing as per Illumina and Agilent SureSelect protocols.
Variant calling. Discovery cohort variant calling and error correction. The 126-bp  
paired-end reads sequencing data from the Illumina platform were converted  
to FASTQ format, the 2-bp molecular barcode information at each read of the 
pair was trimmed and was written in the reads’ name. The thymine nucleotide 
required for ligation was removed from the sequences. Burrows–Wheeler aligner 
(BWA-mem)31 was used for alignment of the processed FASTQ files to the refer-
ence hg19 genome, after realignment of insertions and deletions (indels) using 
GATK32. An in-house algorithm was written to collapse read families that share 
the same molecular barcode sequence, the left-most genomic position of where 
each read of the pair maps to the reference and the CIGAR string. Families that 
consisted of at least two reads were used to generate consensus reads and a con-
sensus base was called when there was at least 70% agreement. When a consensus 
base was called, it was assigned with the maximum base quality score observed in 
its corresponding pre-collapsed reads. Furthermore, when possible, duplex reads33 
were generated from two consensus reads, from a singleton read and a consensus 
read, or from two singleton reads. For each sequenced sample, we generated two 
BAM files, called BAM1 and BAM2. BAM1 consisted of duplex reads, consensus 
reads and singleton reads, thereby including some error-corrected and non-error 
corrected reads, while still containing all the genomic information encoded in the 
data in the form of unique DNA molecules. BAM2 consisted of duplex reads and 
consensus reads but not singleton reads. Both files were then analysed to detect 
single nucleotide variants (SNVs) and small indels using Varscan234. To further 
remove sequencing artefacts and improve sensitivity, we applied a two-step pol-
ishing statistical approach that models the error rate for each sequenced genomic 
position. For both steps, BAM1 was used and all samples except the sample that 
was investigated were included for error rate modelling. At step one, as previously 
described30, the error rates were modelled by fitting Weibull distribution curves to 
the non-reference allele fractions. SNVs with allele fractions that were statistically 
distinguishable from the background error rates (P = 0) were further analysed. 
At step 2, the coverage of the non-reference allele fractions was considered using 
linear line fitting that describes the negative correlation that exist between the 
log(non-reference allele fraction) and the corresponding log(coverage) values. This 
allowed us to estimate different error rates at different coverage depths. Because 
indel errors are rare and cannot be appropriately modelled by the same statistical 
framework, they were called using barcode-mediated error correction alone. At 
least 10 consensus reads, 5 supporting reads on the forward strand, 5 supporting 
reads on the reverse strand and 2 duplex reads were required to call an indel. 
Additional post-processing steps applied to data from both the discovery cohort 
and validation cohort are detailed in ‘Additional post-processing filters applied to 
discovery and validation cohort data’. Variants were annotated using Annovar35.
Validation cohort variant calling. Sequencing reads were aligned to the refer-
ence genome (GRCh37d5) using the Burrows–Wheeler aligner (BWA-aln)31. 
Unmapped reads, PCR duplicates and reads mapping to regions outside the target 
regions (merged exonic regions and 10 bp either side of each exon) were excluded 
from analysis. Sequencing depth at each base was assessed using Bedtools coverage 
v.2.24.036.

Somatic SNVs were called using shearwater, an algorithm developed for 
detecting subclonal mutations in deep-sequencing experiments (https://github.
com/gerstung-lab/deepSNV v.1.21.5)37–39 considering only reads with minimum 
nucleotide and mapping quality of 25 and 40, respectively. This algorithm models 
the error rate at individual loci using information from multiple unrelated sam-
ples. Additionally, allele counts at the recurrent AML mutation hotspots listed in 
‘Curation of oncogenic variants’ were generated using an in-house script (https://
github.com/cancerit/alleleCount) and manually inspected in the Jbrowse genome 
browser40. To further complement our SNV calling approach, we applied an exten-
sively validated in-house version of CaVEMan v.1.11.2 (Cancer variants through 
expectation maximization)41. CaVEMan compares sequencing reads between 
study and nominated normal samples and uses a naive Bayesian model and  
expectation-maximization approach to calculate the probability of a somatic  
variant at each base (https://github.com/cancerit/CaVEMan).

Post-processing filters required that the following criteria were met for 
CaVEMan to call a somatic substitution. (1) If coverage of the mutant allele was 
less than 8, at least one mutant allele was detected in the first two-thirds of the 
read. (2) Less than 3% of the mutant alleles with base quality ≥15 were found in 
the nominated normal sample. (3) Mean mapping quality of the mutant allele reads 
was ≥21. (4) The mutation does not fall in a simple repeat or centromeric region. 
(5) Fewer than 10% of the reads covering the position contained an indel according 
to mapping. (6) Less than 80% of the reads report the mutant allele at the same 
read position. (7) At least a third of the reads calling the variant had a base quality 
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of 25 or higher. (8) Not all mutant alleles reported in the second half of the read. 
(9) Position does not fall within a germline insertion or deletion.

The following additional post-processing criteria were applied to all SNV calls. 
(1) Minimum VAF = 0.5% with a minimum of five bidirectional calls reporting 
the mutant allele (with at least two reads in forward and reverse directions). (2) No 
indel called within a read length (75 bp) of the putative substitution.

Small indels were sought using two complementary bioinformatics approaches. 
First, an in-house version of Pindel v.2.242 (https://github.com/cancerit/cgpPindel) 
was applied. We additionally used the aforementioned deepSNV algorithm in order 
to increase sensitivity for indels present at low VAF. VAF correction was performed 
using an in-house script (https://github.com/cancerit/vafCorrect).

Post-processing filters required that the following criteria were met for a variant 
to be called. (1) A minimum of five reads supporting the variant with a minimum 
of two reads in each direction. For Pindel, the total read count was based on the 
union of the BWA and Pindel reads reporting the mutant allele. (2) VAF ≥ 0.5%. 
(3) Variant not present within an unmatched normal panel of approximately 400 
samples. (4) No reads supporting the variant identified in the nominated normal 
sample.

Mutations were annotated according to ENSEMBL v.58 using VAGrENT43 
for transcript and protein effects (https://github.com/cancerit/VAGrENT) and 
Annovar35 for additional functional annotation.
Additional post-processing filters applied to discovery and validation cohort data. The 
following variants were flagged for additional inspection for potential artefacts, 
germline contamination or index-jumping event. (1) Any mutant allele reported 
within 75 bp of another variant. (2) Any mutant allele with a population allele 
frequency >1 in 1,000 according to any of five large polymorphism databases 
(ExAC, 1000 Genomes Project, ESP6500, CG46 and Kaviar) that is not a canon-
ical hotspot driver mutation with COSMIC recurrence >100. (3) Mutations that 
were present in >10% of the control cohort but not recurrent in COSMIC were 
flagged as potential germline variants or sequencing artefacts. (4) As artefactual 
indels tend to be recurrent, any indels occurring in >2 samples were flagged as 
for additional inspection.
Curation of oncogenic variants. Putative oncogenic variants were identified 
according to evidence for functional relevance in AML as previously described 
and used to define ARCH-PD14.

Variants were annotated as likely driver events if they fulfilled any of the follow-
ing criteria. (1) Truncating mutations (nonsense, essential splice site or frameshift 
indel) in the following genes implicated in AML pathogenesis by loss-of-function: 
NF1, DNMT3A, TET2, IKZF1, RAD21, WT1, KMT2D, SH2B3, TP53, CEBPA, 
ASXL1, RUNX1, BCOR, KDM6A, STAG2, PHF6 and KMT2C. (2) Truncating vari-
ants in CALR exon 9. (3) JAK2V617F. (4) FLT3 internal tandem duplication. (5) Non-
synonymous variants at the following hotspot residues: CBL E366, L380, C384, 
C404, R420 and C396; DNMT3A R882; FLT3 D835; IDH1 R132; IDH2 R172 and 
R140; KIT W557, V559 and D816; KRAS A146, Q61, G13 and G12; MPL W515; 
NRAS Q61, G12 and G13; SF3B1 K700 and K666; SRSF2 P95; U2AF1 Q157, R156 
and S34. (6) Non-synonymous variants reported at least 10 times in COSMIC 
with VAF <42% and population allele frequency <0.003. (7) Non-synonymous 
variants clustering within a functionally validated locus or within four amino acids 
of a hotspot variant with population allele frequency <0.003 and VAF <42%. (8) 
Non-synonymous variants reported in COSMIC >100 times with population allele 
frequency <0.003 regardless of VAF.

Our driver curation strategy inevitably runs a small risk of including germline 
variants in familial AML genes. We feel that in the real world, where a matched 
constitutional DNA sample would be unavailable, this is the best approach.
Statistical analysis. All statistical analyses were performed in the R statistical 
programming environment. A two-sided Wilcoxon rank-sum test was used to 
assign significance level for differences in the median number of somatic mutations 
among the pre-AML and control groups, the median VAF of mutations among 
groups. and the age of individuals with spliceosome mutations. Fisher’s exact test 
was used to assess the significance of differences in the prevalence of ARCH among 
the groups and spliceosome mutations in the pre-AML group.
Predictive modelling. Cox proportional hazards model with random effects. We 
used a Cox proportional hazards regression to model AML progression-free sur-
vival as previously described14,38. We used random effects for the Cox proportional 
hazards model in the CoxHD R package (http://github.com/gerstung-lab/CoxHD). 
A key strength of this approach is the ability to include many variables in one 
model while shrinking estimated effects for parameters with weak support in the 
data, thus controlling for overfitting. We used weighting to minimize the biases 
introduced by the artificial case–control ratio44,45 and calculated hazard ratios 
relative to the (approximate) true cumulative incidence of about 1–3/1,000 in the 
given age range over a follow up of 10–20 years. The observed driver mutation 
frequency and VAF in pre-AML cases closely resembled values expected based 
on the estimated risks, indicating that risk model and driver prevalence are well 
aligned (Extended Data Fig. 4). Full details of model derivation and comparisons 

with alternative methods are included in the accompanying code (Supplementary 
Note, also available at https://github.com/gerstung-lab/preAML). In brief, variables 
comprised age, gender and the VAF of putative driver mutations (see ‘Curation of 
oncogenic variants’ for details of variant curation). We performed agnostic impu-
tation of missing variables by mean and linear rescaling of gene variables by a 
power of 10 to a magnitude of 1. The model was first trained separately on the 
discovery cohort and validation cohort. For each of these two models, we evalu-
ated the following measures of predictive accuracy before and after leave-one-out 
cross-validation (LOOCV): concordance (C)46 and time-dependent area under 
the receiver-operating characteristic curve (AUC)47. The models trained on the 
validation and discovery cohorts were then cross-validated using the data from the 
other cohort. In view of the cross-validation results and close correlation between 
coefficients (Supplementary Table 3), we derived a model on the combined cohorts 
using both cohorts in order to achieve greater accuracy on the individual effects. 
Confidence intervals were calculated using 100 bootstrap samples. The coeffi-
cients and performance metrics for each iteration of the model are included in 
Supplementary Table 3.

Concordance measures were obtained using the survConcordance() function 
implemented in the survival R package45. Dynamic AUC was calculated with 
AUC.uno() implemented in the survAUC package. Time-independent AUCs were 
calculated using the performance function implemented in the ROCR package. 
The expected incidence of AML was calculated from the UK office of national 
statistics, available at http://www.cancerresearchuk.org/health-professional/ 
cancer-statistics/statistics-by-cancer-type/leukaemia-aml/incidence. All-cause 
mortality data was obtained from the office of national statistics (https://www.ons.
gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectan-
cies/datasets/nationallifetablesunitedkingdomreferencetables).
Ridge-regularized logistic regression. Using the same covariates as in ‘Cox propor-
tional hazards model with random effects’, we fitted a ridge-regularized logistic 
regression model to dichotomised outcome data. While logistic regression is a 
common choice for case–control analyses, a downside of this approach is the 
inability to explicitly use time-dependent covariates. The penalty parameter was 
chosen using LOOCV on the full cohort; this value was then used on the discovery 
cohort and validation cohort to yield the same scaling of coefficients. Confidence 
intervals were calculated using 100 bootstrap samples. Fitting was performed using 
the glmnet R package. AUC as the primary performance metric was calculated 
using the ROCR R package.
Additional regression models. Two alternative predictive models were developed. 
Model 1 performs logistic-regression-based predictions using four types of  
features: gender, age at blood sampling, the sum of the VAFs ARCH-PD reported 
in COSMIC v.80 to be recurrent (at least two case reports in haematopoietic and 
lymphoid tissues) and somatic mutation burden of selected genes, where each gene 
was represented by the sum of the VAFs corresponding to ARCH-PD mutations 
in that gene. We measured the predictive performance of each gene via the AUC 
obtained in a fivefold cross-validation when using only the gene as a predictive 
feature, and only retained genes with AUC > 55% in the final model.

For model 2 we applied LASSO regression as implemented in the glmnet R 
package, while enabling LOOCV to fit a Cox regression model. A minimal subset 
of ARCH-PD variants was selected for which the respective weighted combined 
VAFs were highly predictive of AML development in the training set. Scores were 
calculated for each patient as a linear combination of VAF of mutations weighted by 
regression coefficients that were estimated from the training data. As most scores 
were zero in the training subset, non-zero scores were discretized to take on a value 
of 1 that corresponds to AML prediction.

Models 1 and 2 were trained on the discovery cohort and tested for their asso-
ciation with AML development using the validation cohort data. Survival analysis 
was performed using the Kaplan–Meier and Cox proportional hazards models. 
Wald’s test was used to evaluate the significance of hazard ratios. Logistic regression 
models were used with the positive predictive value metric to determine the ability 
of various mutations and other patient parameters to predict AML development. 
The rms R package was used for logistic regression analysis, and the pROC 1.8 R 
package was used for receiver-operating characteristic curve analysis.
AML-predictive model based on electronic health records. Clalit database. The 
Clalit database includes information from patients covered by the Clalit health 
services in Israel20 during the years 2002–2017. The Clalit training-set data, con-
tains the electronic health records (EHR) of 3.45 million individuals per year on 
average. All data was anonymized through hashing of personal identifiers and 
addresses and randomization of dates by sampling a random number of weeks 
for each patient and adding it to all dates in the patient diagnoses, laboratory 
and medication records. This approach maintained differential data analysis per 
patient. Diagnoses codes were acquired from both primary care and hospitalization 
records, and were mapped to the ICD-9 coding system for historical reasons, with 
few exceptions that used a partial ICD-10 coding system. Laboratory records were 
normalized for age and gender by subtracting raw test values from the median 

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
A 115



LETTER RESEARCH

levels observed among all test values with matching gender and age (using a bin 
size of five years). We observed some chronological biases in laboratory ranges, 
but avoid normalizing these and instead insured case and controls are matched 
for chronological distributions.
Defining AML cases. We screened for all active patients (18 < age < 100) who 
were diagnosed with AML (ICD-9 code 205.0*) between the years 2003 and 2016. 
We then excluded cases based on the following criteria. (1) We excluded patients 
with prior myeloid malignancies to omit secondary AML, consistent with the 
case selection for the genetic model. The following diagnosis were excluded if  
documented within five years before the diagnosis of AML: essential thrombo-
cythemia (ICD-9 238.71), low-grade myelodysplastic syndrome (MDS) (ICD-9 
238.72); high-grade MDS lesions (ICD-9 238.73); MDS with 5q deletion (ICD-9 
238.74); MDS, unspecified (ICD-9 238.75); polycythemia vera (ICD-9 238.4);  
myelofibrosis (ICD-9 289.83); chronic myelomonocytic leukaemia (ICD-9 206.10-
206.22).

(2) Patients that had any procedures performed on bone marrow or spleen 
(ICD-10 code Z41) in the five-year period before first mention of AML diagnosis 
code in their record. These patients were presumed to have an inaccurate AML 
diagnosis date or misdiagnosis recorded.

(3) Patients that received medications suggestive of an alternative diagnosis 
of chronic myeloid leukaemia, lymphoid malignancy or acute promyelocytic 
leukaemia (APL). At any time before diagnosis: imatinib, dasatinib, anagrelide, 
hydroxycarbamide, asparaginase, pegaspargase or arsenic trioxide. At any time 
after diagnosis: imatinib, dasatinib, methotrexate, tretinoin or arsenic trioxide. At 
any time after diagnosis, along with any acute lymphoblastic leukaemia diagnosis 
(ICD-9 204) or more than single dose: mercaptopurine. APL cases were excluded 
as early diagnosis of APL will most probably not change its outcome, as treatment 
is successful already.

(4) Patients without a hospitalization record within three months before or after 
the onset diagnosis. This parameter was used as it is unlikely that a patient with 
AML will not be hospitalized close to diagnosis. This filter reduced false-positive 
cases and better defined the onset date.

We refined the estimated time of onset using the earliest time at which any of the 
following diagnosis appeared in the patient’s history: amyloidosis (ICD-9 277.3), 
lymphoid leukaemia (ICD-9 204), myeloid leukaemia (ICD-9 205), leukaemia of 
unspecified cell type (ICD-9 208).

This strategy retained 875 AML cases in the training set for further analysis. 
These were further validated by manual expert inspection of the complete records 
of 8% of the cases.

To define the control set, we included all Clalit individuals that were not cases. 
Since our analysis was aggregating data from a historical time window of 15 years, 
we associated each control with a randomized time point for evaluation. Using this 
approach, both cases and controls represented a specific time point in the historical 
record of a patient, with matching calendric, age and gender distributions. Through 
this strategy 5,238,528 controls were used.
Defining features for construction of a predictive a score. We extracted the follow-
ing features for discriminative analysis of cases and controls (this procedure was 
applied repeatedly in cross-validation as discussed below). (1) Age (in years) at time 
point. (2) Gender. (3) Laboratory features. Out of 2,770 different types of labora-
tory tests, we selected the top 50 most frequent laboratory tests (Supplementary 
Table 4). For each laboratory measurement, we used median age- and gender- 
normalized test values per patient in three time windows for 6–12 months before 
onset, 1–2 years before onset and 2–3 years before onset. In addition, we compute 
the slope of the normalized laboratory measurements for the 6–12 month time 
window using a linear regression model. (4) Diagnosis features. Of the 1780 differ-
ent major ICD-9 diagnosis codes, we selected only diagnoses that were previously 
observed in at least 10 different cases and have an increased relative risk for AML 
>twofold (as observed in the training set, Supplementary Table 4). For each diag-
nosis code, we mark whether it appeared in each of the patients in time intervals of 
6 months to 3 years, and 3–5 years before onset. (5) BMI features. For each patient 
in the cohort, we extracted median BMI, weight and height as measured in time 
intervals of 6 months to 2 years, and 2–3 years before onset.
Gradient boosting. We used the R package xgboost to infer parameters for a clas-
sifier given cases and controls. Objective was set to binary:logistic, the evaluation 
metric to AUC. We set nrounds = 5000, eta = 0.001, gamma = 0.1, lambda = 0.01, 
alpha = 0.01, max_depth = 6, min_child_weight = 2, subsample = 0.7 and col-
sample_bytree = 0.7. The boosting algorithm reports a function f that computes 
a predictive score given the features. Given a threshold T the expression f(patient 
features) > T defines a classifier. To standardise thresholds we estimate quantiles 
for the scores on the training set T(p) = quantile(f(train),p) and define the clas-
sifier for specificity level p as f(patient features) > T(p) (Supplementary Table 4).
Cross-validation and relative risk evaluation. To evaluate the predictive value 
of the classification scheme while considering the strong age and gender biases in 
the incidence of AML, we performed fivefold cross-validation after splitting the 

cases and controls into five age- and gender-matched groups. For each fold, we 
sampled 100,000 controls and combined with the cases, constructed the feature 
set and trained the model. The model was then tested on the fold cases along 
with 200,000 sampled controls. We used standardized classifier parameters and 
standardized thresholds that were inferred based on each training set to generate 
a series of classifications on each test set and merged these based on the control 
quantiles in the test as described above. Given a threshold p to define high and 
low prediction score, we counted for each bin b that defines a patient in a specific 
age (<40, 40–50, 50–60, 60–70, 70–80, >80) and gender group: the number of 
cases in bin b (Nb

case) and the number of controls in bin b (Nb
control) where Nb is 

the number of patients in bin b (entire database minus recall controls that are only 
a sample of the cohort). Nb(case, high score) = Nb

TP indicates the number of true 
positives (TP); Nb(case, low score) = Nb

FN indicates the number of false negatives 
(FN); Nb(control, high score) = Nb

FP indicates the number of false positives (FP); 
Nb(control, low score) = Nb

TN indicates number of true negatives (TN).
For each age and gender group, the absolute risk for AML in the bin is com-

puted by rb
abs = Nb

case/Nb. The absolute risk given a high score is estimated 
as rb

abs,high = Nb
TP/(Nb

FP+ Nb
TP). The relative risk in the bin is defined by 

rrb = rb
abs,high/rb

abs where the sensitivity level for the classifier threshold level is 
defined as senseb = Nb

TP/Nb
case.

=
+

+

×
+

×
+

×
+rr cases

cases controls

TP cases
(TP FN)

TP cases
(TP FN)

FP controls
(FP TN)

Clonal growth rate calculation. Individual clones were defined by different muta-
tions in different study participants. Per clone we calculated α according to the 
following equation:

= / / −a V V T Tlog( ) ( )0 0

where T and T0 indicate the age of the individual at the two measurement time 
points. V and V0 correspond to the VAF at T and T0, respectively.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Code for derivation of the prediction model is publically availa-
ble on Github (https://github.com/gerstung-lab/preAML). Code for the analysis of 
error-corrected sequencing is available from the Shlush lab upon request.
Data availability. Targeted sequencing data for the discovery cohort are deposited 
as BAM files at the European Genome-phenome Archive (http://www.ebi.ac.uk/
ega/) under accession number EGAD00001003583. All other data are available 
from the corresponding authors upon reasonable request. Sequencing data for the 
validation cohort are deposited at the European Genome-phenome Archive with 
accession number EGAD00001003703.
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Meningiomas arise from arachnoidal cells of the meninges and are classi!ed as grade I (80% of cases), grade II 
(10–20%) or grade III (1–3%). Grade III meningiomas comprise papillary, rhabdoid and anaplastic histological 
subtypes, with anaplastic tumors accounting for the vast majority of grade III diagnoses1,2. Nearly half of anaplas-
tic meningiomas represent progression of a previously resected lower grade tumor, whereas the remainder arise 
de novo3,4. Recurrence rates are 5–20% and 20–40%, respectively, for grade I and II tumors2,5. By contrast, the 
majority of anaplastic meningioma patients su"er from inexorable recurrences with progressively diminishing 
bene!t from repeated surgery and radiotherapy and 5-year overall survival of 30–60%4,6.

A recent study of 775 grade I and grade II meningiomas identi!ed !ve molecular subgroups de!ned by driver 
mutation pro!le7. In keeping with previous smaller studies, mutually exclusive mutations in NF2 and TRAF7 were 
the most frequent driver events, followed by mutations a"ecting key mediators of PI3K and Hedgehog signal-
ling7,8. Recurrent hotspot mutations were also identi!ed in the catalytic unit of RNA polymerase II (POLR2A) in 
6% of grade I tumors7. More recently, a study comparing benign versus de novo atypical (grade II) meningiomas 
found the latter to be signi!cantly associated with NF2 and SMARCB1 mutations9. Atypical meningiomas were 
further de!ned by DNA and chromatin methylation patterns consistent with upregulated PRC2 activity, aber-
rant Homeobox domain methylation and transcriptional dysregulation of pathways involved in proliferation and 
di"erentiation9.

Despite the high mortality rate of anaplastic meningiomas, e"orts to identify adjuvant treatment strategies 
have been hampered by a limited understanding of the distinctive molecular features of this aggressive subtype. 
A recent analysis of meningioma methylation pro!les identi!ed distinct subgroups within Grade III tumors pre-
dictive of survival outcomes, though the biology underpinning these di"erences and any therapeutic implications 
remain unknown10. Here, we present an analysis of the genomic, transcriptional and DNA methylation patterns 
de!ning anaplastic meningioma. Our results reveal molecular hallmarks of aggressive disease and suggest novel 
approaches to risk strati!cation and targeted therapy.

Results
��������������������������������������������������������������������������������Ǥ� We 
performed whole genome sequencing (WGS) on a discovery set of 19 anaplastic meningiomas resected at !rst 
presentation (‘primary’). A subsequent validation cohort comprised 31 primary tumors characterised by targeted 
sequencing of 366 cancer genes. We integrated genomic !ndings with RNA sequencing and methylation array 
pro!ling in a subset of samples (Supplementary Table S1). Somatic copy number alterations and rearrangements 
were derived from whole genome sequencing reads, with RNA sequences providing corroborating evidence for 
gene fusions. Given the propensity of anaplastic meningioma to recur, we studied by whole genome sequencing 
13 recurrences from 7 patients.

Excluding a hypermutated tumor (PD23359a, see Supplementary Discussion), the somatic point mutation 
burden of primary anaplastic meningioma was low with a median of 28 somatic coding mutations per tumor 
(range 11 to 71; mean sequencing coverage 66X) (Supplementary Fig. S1). Mutational signatures analysis of 
substitutions identi!ed in whole genome sequences revealed the age-related, ubiquitous processes 1 and 5 as 
the predominant source of substitutions (Supplementary Fig. S2)11. $e rearrangement landscape was also rel-
atively quiet, with a median of 12 structural rearrangements (range 0–79) in the 18 primary tumor genomes 
(Supplementary Fig. S3, Table S3). Somatic retrotransposition events, a signi!cant source of structural variants in 
over half of human cancers, were scarce (Supplementary Fig. S4, Table S4)12. Analysis of expressed gene fusions 
did not reveal any recurrent events involving putative cancer genes (Supplementary Table S5).

Recurrent large copy number changes were in keeping with known patterns in aggressive meningiomas, nota-
bly frequent deletions a"ecting chromosomes 1p, 6q, 14 and 22q (Fig. 1b, Supplementary Table S6)7,9,13.

����������������������������������������������������������������Ǥ� Over 80% of low grade men-
ingiomas segregate into 5 distinct subgroups based on driver mutation pro!le7,9. In anaplastic meningioma, how-
ever, we found a more uniform driver landscape dominated by deleterious mutations in NF2 (Fig. 1a). A key 
feature distinguishing anaplastic meningioma from its lower grade counterparts were driver events in genes of 
the SWI/SNF chromatin regulatory complex (Fig. 1a; Supplementary Fig. S7). $e SWI/SNF (mSWI/SNF or 
BAF) complex is the most commonly mutated chromatin-regulatory complex in cancer14,15, and acts as a tumor 
suppressor in many cell types by antagonising the chromatin modifying PRC216–18. $e most frequently mutated 
SWI/SNF component was ARID1A, which harbored at least one deleterious somatic change in 12% of our cohort 
of 50 primary tumors (Supplementary Table S1). ARID1A has not been implicated as a driver in grade I or grade 
II meningiomas7,9. Single variants in SMARCB1, SMARCA4 and PBRM1 were also detected in three tumors 
(Supplementary Fig. S7). In total, 16% of anaplastic meningiomas contained a damaging SWI/SNF gene muta-
tion. By contrast, SWI/SNF genes are mutated in <5% of benign and atypical meningiomas7,9.

In the combined cohort of 50 primary tumors, we found at least one driver mutation in NF2 in 70%, similar 
to the prevalence reported in atypical meningiomas and more than twice that found in grade I tumors7,9. As 
observed in other cancer types, it is possible that non-mutational mechanisms may contribute to NF2 loss of 
function in a proportion of anaplastic meningiomas19,20. We considered promoter hypermethylation as a source 
of additional NF2 inactivation, but found no evidence of this (Supplementary Table S7). $ere was no signi!cant 
di"erence in NF2 expression between NF2 mutant and wild-type tumors (p-value 0.960; Supplementary Fig. S8), 
suggesting that a truncated dysfunctional protein may be expressed.

Other driver genes commonly implicated in low grade tumors were not mutated, or very infrequently 
(Fig. 1a). Furthermore, and consistent with the most recent reports7,9, we did not observe an increased frequency 
of TERT promoter mutations, previously associated with progressive or high grade tumors21. Notably13, meth-
ylation analysis revealed CDKN2A and PTEN promoter hypermethylation in 17% and 11% of primary tumors, 
respectively (Fig. 1a). We did not !nd evidence of novel cancer genes in our cohort, applying established methods 
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to search for enrichment of non-synonymous mutations22. $e full driver landscape of anaplastic meningioma, 
considering point mutations, structural variants with resulting copy number changes and promoter hypermeth-
ylation is presented in Supplementary Fig. S7.

$e genomic landscape of recurrent tumors was largely static both with respect to driver mutations and struc-
tural variation. Driver mutations di"ered between primary and recurrent tumors for only two of eleven patients 
with serial resections available. For seven sets of recurrent tumors studied by whole genome sequencing, only two 
demonstrated any discrepancies in large copy number variants (PD23344 and PD23346; Supplementary Fig. S5). 
Similarly, matched primary and recurrent samples clustered closely together by PCA of transcriptome data, sug-
gesting minimal phenotypic evolution (Supplementary Fig. S6).

��ơ���������������������������Ƥ��������������������������������������������������������
����������������Ƥ�����Ǥ� We performed messenger RNA (mRNA) sequencing of 31 anaplastic meningioma 
samples from a total of 28 patients (26 primary tumors and 5 recurrences). Gene expression variability within 
the cohort did not correlate with clinical parameters including prior radiotherapy, anatomical location or clin-
ical presentation (de novo versus progressive tumor) (Supplementary Fig. S6). However, unsupervised hierar-
chical clustering demonstrated segregation of tumors into two main groups, herea%er referred to as C1 and C2 
(Fig. 2a). $ese groups were recapitulated by principal component analysis (PCA) of normalised transcript counts 
(Fig. 2b), which delineated C1 as a well-demarcated cluster clearly de!ned by the !rst two principal components 
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Figure 1. $e landscape of driver mutations and copy number alterations in anaplastic meningioma. (a) $e 
landscape of somatic driver variants in primary anaplastic meningioma. Somatic mutation and promoter 
methylation data is shown for a discovery cohort of 18 primary tumors characterised by whole genome 
sequencing. Mutations in recurrently altered genes, established meningioma genes and SWI/SNF complex 
subunits are included. Samples are annotated for chromosome 22q LOH, prior radiotherapy exposure, and 
clinical presentation (de novo verus progression from a lower grade meningioma). $e bar plot to the right 
indicates mutation frequency in a validation cohort of 31 primary tumors sequenced with a 366 cancer gene 
panel. Asterisks indicate genes not included in the targeted sequencing assay. (b) Aggregate copy number pro!le 
of primary anaplastic meningioma. For the 18 tumors characterized by whole genome sequencing, the median 
relative copy number change was calculated across the genome in 10 kilobase segments, adjusting for ploidy. 
$e grey shaded area indicates the !rst and third quantile of copy number for each genomic segment. $e solid 
red and blue lines represent the median relative copy number gain and loss, respectively, with zero indicating 
no copy number change. X-axis: Chromosomal position. Y-axis: median relative copy number change. Potential 
target genes are noted. AM, anaplastic meningioma; LOH, loss of heterozygosity; RT, radiotherapy.
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(PC). Of note, all SWI/SNF mutations were con!ned to the poor prognosis (C1) subgroup (Fig. 2c). C1 consti-
tuted a more di"use group on PCA, distinguished from C2 mainly along the !rst principal component. We next 
retrospectively sought follow-up survival data from the time of !rst surgery, which was available for 25 of the 28 
patients included in the transcriptome analysis (12 patients in C1, 13 in C2; mean follow-up of 1,403 days from 
surgery). We observed a signi!cantly worse overall survival outcome in C1 compared to C2 (P < 0.0001; hazard 
ratio 17.0, 95% CI 5.2–56.0) (Fig. 2g; Supplementary Table S8). $e subgroups were well balanced with respect 
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Figure 2. Transcriptomic classi!cation of anaplastic meningioma. (a) Unsupervised hierarchical clustering and 
(b) principal component analysis of anaplastic meningioma gene expression revealed two subgroups (denoted 
C1 and C2). (c) Dendrogram obtained by unsupervised clustering annotated with clinical and genomic features. 
(d) Volcano plot depicting genes di"erentially expressed between C1 versus C2 anaplastic meningioma samples. 
X-axis, log2 fold change; y-axis, −log10 adjusted P-value. Genes with an adjusted P-value < 0.01 and absolute 
log2 fold change >2 are highlighted in red. (e,f) Box plots of (e) CXLC14 and (f) HOTAIR expression across 31 
anaplastic meningomas classi!ed into C1 and C2 subgroups, 100 primary breast tumors, and 219 cancer cell 
lines from 11 tumor types. Upper and lower box hinges correspond to !rst and third quartiles, horizontal line 
and whiskers indicate the median and 1.5-fold the interquartile range, respectively. Underlying violin plots show 
data distribution and are color-coded according to specimen source (blue, cell line; green, primary tumor). 
X-axis indicates tumor type and number of samples; y-axis shows log10 TPM values. (g) Kaplan-Meier curves 
showing overall survival for 25 anaplastic meningioma patients in C1 and C2 subgroups for whom follow-up 
data was available. Dashes indicate timepoints at which subjects were censored at time of last follow-up. TPM, 
transcripts per kilobase million; AM, anaplastic meningioma; TNBC, triple negative breast carcinoma; wt, wild-
type; mt, mutated; PC, principal component.
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to potential confounding features such as gender, age, radiotherapy, anatomical location and amount of residual 
tumor remaining a%er surgery (Supplementary Table S9).

Recent work has demonstrated that anaplastic meningiomas segregate into 2–3 prognostically signi!cant 
subgroups on the basis of methylation pro!le10. Unsupervised hierarchical clustering using methylation data 
available for a subset of the cohort (n = 19) demonstrated segregation into two main groups largely overlapping 
the subgroups delineated on the basis of gene expression pro!le, though correlation with survival outcomes was 
less marked (Supplementary Fig. S8).

Transcriptional programs segregating indolent and aggressive anaplastic meningiǦ
���Ǥ� Nineteen hundred genes underpinned the di"erentiation of anaplastic meningioma into subgroups C1 
and C2, which could be reduced to only 6 transcripts selected on the basis of PCA coe&cient and di"erential 
expression analysis (see Methods; Supplementary Tables S10 and S11, Fig. S9). Pathway enrichment analysis 
was most signi!cant for evidence of epithelial-mesenchymal transition (EMT) in the C1 tumors, with concord-
ant loss of E-cadherin (CDH1) and upregulation of CXCL14, both prognostic biomarkers in diverse other can-
cers (Supplementary Table S12, Fig. 2d–f)23–25. EMT, which involves reprogramming of adherent epithelial cells 
into migratory mesenchymal cells, is critical for embryogenesis and tissue plasticity, and can play an important 
role in malignant progression, metastasis and therapy resistance24,26. Interestingly, NF2 and the closely related 
cytoskeletal protein ezrin normally help maintain E-cadherin expression at adherence junctions, whereas HOXB7 
and HOXB9, both overexpressed in C1 tumors, suppress CDH1 expression27–29. It is increasingly recognised that 
CXCL14 and other EMT mediators are o%en derived from cancer-associated !broblasts (CAFs) and function in 
a paracrine manner25,30,31. It is hence possible that some of the gene expression patterns we observed may re'ect 
di"erences in the tumor stromal compartment, itself an increasingly recognised therapeutic target30,32,33.

The C1 tumors were further characterised by upregulation of transcriptional programs associated with 
increased proliferation, PRC2 activity and stem cell phenotype (Supplementary Table S13). Hox genes constituted 
a notable proportion of the transcripts distinguishing the two anaplastic meningioma subgroups, largely under-
pinning the signi!cance of pathways involved in tissue morphogenesis. Furthermore, di"erentially methylated 
genes were also signi!cantly enriched for Hox genes, with pathway analysis results corroborating the main bio-
logical themes apparent from the transcriptome (Supplementary Tables S14 and S15). Given the transcriptional 
evidence of increased PRC2 activity in the C1 subgroup, is noteworthy that SWI/SNF gene mutations occurred 
exclusively in C1 tumors (P = 0.016, Fisher’s exact test).

����������������������������������������������������������������Ǥ� Previous studies investi-
gating the relationship between meningioma WHO grade and gene expression pro!les have included few ana-
plastic tumors34,35. We therefore extended our analysis to include published RNA sequences from 19 benign 
grade I meningiomas. External data was processed using our in-house pipeline with additional measures taken to 
minimise batch e"ects (Methods, Supplementary Tables S16 and S17). Unsupervised hierarchical clustering and 
principal component analysis demonstrated clear tumor segregation by histological grade (Fig. 3a,b). In keeping 
with previous reports, the anaplastic tumors demonstrated marked upregulation of major growth factor receptor 
and kinase circuits implicated in meningioma pathogenesis, notably epidermal growth factor receptor (EGFR), 
insulin-like growth factor (IGFR), vascular endothelial growth factor receptor (VEGFR) and mTOR complex 1 
(mTORC1) kinase complex36–41.

Consistent with there being a coherent biological trend across histological grades and anaplastic meningi-
oma subgroups, we noted signi!cant overlap between genes di"erentially expressed between grades and between 
C1 and C2 tumors (hypergeometric distribution P = 5.08 × 10−9). In keeping with this !nding, formal pathway 
analysis identi!ed signi!cant dysregulation of stemness, proliferation, EMT and PRC2 activity (Supplementary 
Tables S18 and S19). $e most signi!cantly dysregulated pathways also included TGF-beta, Wnt and integrin 
signalling, mediators of invasion and mesenchymal di"erentiation that are normally in part controlled by NF2 
and other Hippo pathway members20,24,42. Yes-associated protein 1 (Yap1), a cornerstone of oncogenic Hippo 
signalling, is frequently overexpressed in cancer and synergises with Wnt signalling to induce EMT43,44. YAP1 
was upregulated in anaplastic tumors along with MYL9, a key downstream e"ector essential for Yap1-mediated 
stromal reprogramming (Fig. 3c)43.

����������
Meningiomas constitute a common, yet diverse tumor type with few therapeutic options6,7,9,45. E"orts to improve 
clinical outcomes have been hampered by limited understanding of the molecular determinants of aggressive 
disease. Here, we explored genomic, epigenetic and transcriptional features of anaplastic meningioma, the most 
lethal meningioma subtype4.

Frequent somatic changes in SWI/SNF complex genes, predominantly ARID1A, constitute the main genomic 
distinction between anaplastic and lower grade meningiomas7,9. SWI/SNF inactivation is associated with aberrant 
PRC2 activation, stem cell-like phenotype and poor outcomes in diverse cancer types46–48.

Although anaplastic tumors resist comprehensive classi!cation based on driver mutation patterns, transcrip-
tional pro!ling revealed two biologically distinct subgroups with dramatically divergent survival outcomes. $is 
!nding is emblematic of the limitations of histopathological grading as a risk strati!cation system for meningi-
oma2,4,10,45,49. All SWI/SNF mutations were con!ned to the poor prognosis (C1) subgroup, which was further 
characterised by transcriptional signatures of PRC2 target activation, stemness, proliferation and mesenchymal 
di"erentiation. $ese !ndings were in part underpinned by di"erential expression of Hox genes. Acquisition of 
invasive capacity and stem cell traits are frequently co-ordinately dysregulated in cancer, o%en through subversion 
of Hox gene programs integral to normal tissue morphogenesis50–52. Hox genes have a central role in orchestrating 
vertebrate development and act as highly context-dependent oncogenes and tumor suppressors in cancer51,53. 
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Several of the most starkly upregulated Hox genes in the C1 tumors consistently function as oncogenes across 
a range of solid and haematological malignancies, including HOTAIR, HOXB7, HOXA4, HOXA-AS2, HOXC11, 
and NKX2-228,29,51,54–62. Like many other long non-coding RNAs (lncRNA), HOTAIR and HOXA-AS2 modulate 
gene expression primarily by interacting directly with chromatin remodelling complexes, exerting oncogenic 
activity by recruiting PRC2 to target genes54,56,61–65. HOXA-AS2 has been shown to mediate transcriptional repres-
sion of the tumor suppressor gene CDKN2A (p16INK4A), deletion of which is associated with poor meningioma 
survival54,61,62,66,67. Given the antagonistic relationship between the SWI/SNF and PRC2 chromatin regulators, 
deleterious SWI/SNF mutations and overexpression of lncRNAs known to mediate PRC2 activity emerge as 
potentially convergent mechanisms underpinning the di"erences between C1 and C2 tumors68. Further endors-
ing a link between transcriptional subgroups and chromatin dysregulation, 15 of the di"erentially expressed tran-
scripts delineating C1 and C2 subgroups (absolute log2 fold change >2 and FDR < 0.01) are among the 50 genes 
most o%en associated with frequently bivalent chromatin segments (FBS) in cancer, including 11 transcripts from 
the HOXB cluster on chromosome 1769. $is overlap was highly statistically signi!cant (hypergeometric distribu-
tion P = 1.98 × 10−11). Bivalent, or epigenetically ‘poised’, chromatin is characterised by !nely balanced activating 
(H3K4me1/H3K4me3) and repressive (H3K27me3) histone marks and pre-loaded DNA polymerase II poised 
to transcribe in response to modest epigenetic changes70. Bivalent chromatin most o%en marks genes involved in 
developmental reprogramming, in particular Hox cluster genes and homeotic non-coding transcripts, and is a 
frequent target of aberrant chromatin modi!cation in cancer65,69,71.
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Figure 3. Di"erences in gene expression pro!le between grade I and anaplastic meningomas. (a,b) Normalised 
transcript counts from grade I and anaplastic meningioma samples clustered by (a) Pearson’s correlation 
coe&cient and (b) principal component analysis. (c) Volcano plot illustrating di"erences in gene expression 
between anaplastic versus grade I meningiomas with selected genes indicated. $e horizontal axis shows 
the log2 fold change and the vertical axis indicates the −log10 adjusted P-value. Genes with an adjusted P-
value < 0.01 and absolute log2 fold change >2 are highlighted in red. PC, principal component.
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In the context of recent studies of lower grade meningiomas, our !ndings raise the possibility that the bal-
ance between PRC2 and SWI/SNF activity may have broader relevance to meningioma pathogenesis. Compared 
to grade I tumors, atypical meningiomas are more likely to harbor SMARCB1 mutations and large deletions 
encompassing chromosomes 1q, 6q and 14q. Notably, these genomic regions encompass ARID1A and several 
other SWI/SNF subunit genes. Both SMARCB1 mutations and the aforementioned copy number changes were 
associated with epigenetic evidence of increased PRC2 activity, di"erential Homeobox domain methylation, and 
upregulation of proliferation and stemness programs in atypical grade II meningiomas9.

$e extent to which SWI/SNF depletion plays a role in meningioma development may be therapeutically 
relevant. Diverse SWI/SNF mutated cancers exhibit dependence on both catalytic and non-catalytic functions 
of EZH2, a core subunit of PRC272–74. Several EZH2 inhibitors are in development with promising initial clinical 
results75. Other modulators of PRC2 activity, including HOTAIR, may also be relevant therapeutic targets76,77. 
Furthermore, growing recognition of the relationship between EMT and resistance to conventional and targeted 
anti-cancer agents has profound implications for rational integration of treatment approaches32,33. Notably, EGFR 
inhibition has yielded disappointing response rates in meningioma despite high EGFR expression37,78. A mesen-
chymal phenotype is strongly associated with resistance to EGFR inhibitors in lung and colorectal cancer32,33,79–81. 
Combining agents that abrogate EMT with other therapies is a promising strategy for addressing cell-autonomous 
and extrinsic determinants of disease progression and may warrant further investigation in meningioma32,33.

$is study has revealed biologically and prognostically signi!cant anaplastic meningioma subgroups and 
identi!ed potentially actionable alternations in SWI/SNF genes, PRC2 activity and EMT regulatory networks. 
However, a substantially larger series of tumors, ideally nested in a prospective multicentre observational study, 
will be required to expand upon our main !ndings and explore mechanistic and therapeutic rami!cations of 
meningioma diversity.

�������
����������������Ǥ� DNA was extracted from 70 anaplastic meningiomas; 51 samples at !rst resection (‘pri-
mary’) and 19 from subsequent recurrences. Matched normal DNA was derived from peripheral blood lympho-
cytes. Written informed consent was obtained for sample collection and DNA sequencing from all patients in 
accordance with the Declaration of Helsinki and protocols approved by the NREC/Health Research Authority 
(REC reference 7/YH/0101) and Ethics Committee at University Hospital Carl Gustav Carus, Technische 
Universität Dresden, Germany (EK 323122008). Samples underwent independent specialist pathology review 
(V.P.C and K.A). DNA extracted from fresh-frozen material was submitted for whole genome sequencing whereas 
that derived from formalin-!xed para&n-embedded (FFPE) material underwent deep targeted sequencing of 366 
cancer genes.

One tumor sample PD23348 (and two subsequent recurrences) separated from the main study samples in 
a principal components analysis of transcriptomic data (Supplementary Fig. S10). Analysis of WGS and RNA 
sequencing data identi!ed an expressed gene fusion, NAB2-STAT6. $is fusion is pathognomonic of menin-
geal hemangiopericytoma, now classi!ed as a separate entity, solitary !brous tumors82–84. We therefore excluded 
three samples from this tumor from further study. A second sample (PD23354a), diagnosed as an anaplastic 
meningioma with papillary features, was found to have a strong APOBEC mutational signature as well as an 
EML4-ALK gene fusion (exon 6 EML4, exon 19 ALK) (Supplementary Fig. S11)85. $erefore this sample was 
also removed as a likely metastasis from a primary lung adenocarcinoma. $e hypermutator sample PD23359a 
underwent additional pathological review to con!rm the diagnosis of anaplastic meningioma (K.A., Department 
of Histopathology, Cambridge University Hospital, Cambridge, UK).

RNA was extracted from fresh-frozen material from 34 primary and recurrent tumors, 3 of which were from 
PD23348 and were subsequently excluded from !nal analyses (Supplementary Table S1).

Whole genome sequencing. Short insert 500 bp genomic libraries were constructed, 'owcells prepared and 
sequencing clusters generated according to Illumina library protocols86. 108 base/100 base (genomic), or 75 base 
(transcriptomic) paired-end sequencing were performed on Illumina X10 genome analyzers in accordance with 
the Illumina Genome Analyzer operating manual. $e average sequence coverage was 65.8X for tumor samples 
and 33.8X for matched normal samples (Supplementary Table S1).

���������������������������Ǥ� For targeted sequencing we used a custom cRNA bait set (Agilent) to 
enrich for all coding exons of 366 cancer genes (Supplementary Table S20). Short insert libraries (150 bp) were 
prepared and sequenced on the Illumina HiSeq 2000 using 75 base paired-end sequencing as per Illumina proto-
col. $e average sequence coverage was 469X for the tumor samples.

����������������������������������Ǥ� For transcriptome sequencing, 350 bp poly-A selected RNA 
libraries were prepared on the Agilent Bravo platform using the Stranded mRNA library prep kit from KAPA 
Biosystems. Processing steps were unchanged from those speci!ed in the KAPA manual except for use of an 
in-house indexing set. Reads were mapped to the GRCh37 reference genome using STAR (v2.5.0c)87. Mean 
sequence coverage was 128X. Read counts per gene, based on the union of all exons from all possible transcripts, 
were then extracted BAM !les using HTseq (v0.6.1)88. Transcripts Per kilobase per Million reads (TPM) were 
generated using an in-house python script (https://github.com/TravisCG/SI_scripts/blob/master/tpm.py)87,88. We 
downloaded archived RNA sequencing FASTQ !les for 19 grade I meningioma samples representing the major 
mutational groups (NF2/chr22 loss, POLR2A, KLF4/TRAF7, PI3K mutant) (ArrayExpress: GSE85133)7. Reads 
were then processed using STAR and HTseq as described above. Cancer cell line (n = 252) and triple-negative 
breast cancer (n = 100) RNA sequencing data was generated in-house by the aforementioned sequencing and 
bioinformatic pipeline.
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Expressed gene fusions were sought using an in-house pipeline incorporating three algorithms: 
TopHat-Fusion (v2.1.0), STAR-Fusion (v0.1.1) and deFuse (v0.7.0) (https://github.com/cancerit/cgpRna)87,89,90. 
Fusions identi!ed by one or two algorithms or also detected in the matched normal sample were 'agged as likely 
artefacts. Fusions were further annotated according to whether they involved a kinase or known oncogene and 
whether they occurred near known fragile sites or rearrangement break points91 (Supplementary Table S5).

The C1 and C2 subgroups were defined by unsupervised hierarchical clustering using Poisson distance 
between samples92,93. Poisson distance was calculated using the PoissonDistance function implemented in the 
‘PoiClaClu’ R package92 and unsupervised hierarchical clustering performed with the stats::hclust() function 
using the 250 transcripts with the most variable expression across tumors. Silhouette information was computed 
using the cluster::silhouette() function. $e highest mean silhouette score was consistently achieved with two 
clusters.

������������������������������������������������������������Ǥ� The DESeq2 R package was 
used for all di"erential gene expression analyses94,95. DESeq2 uses shrinkage estimation of dispersion for the 
sample-speci!c count normalization and subsequently applies a linear regression method to identify di"erentially 
expressed genes (DEGs)94,95.

Preliminary comparison of anaplastic and externally-generated grade I meningioma data revealed evidence 
of laboratory batch e"ects, which we mitigated with two batch-correction methods: RUVg and PEER96,97. RUVg 
estimates the factor attributed to spurious variation using control genes that are assumed to have constant expres-
sion across samples98–100. We selected control genes (RPL37A, EIF2B1, CASC3, IPO8, MRPL19, PGK1 and POP4) 
on the basis of previous studies of suitable control genes for transcript-based assays in meningioma101. PEER 
(‘probabilistic estimation of expression residuals’) is based on factor analysis methods that infer broad variance 
components in the measurements. PEER can !nd hidden factors that are orthogonal to the known covariates. We 
applied this feature of PEER to remove additional hidden e"ect biases. $e !nal !tted linear regression model 
consists of the factor identi!ed by RUVg method that represents the unwanted laboratory batch e"ect and 13 
additional hidden factors found by PEER that are orthogonal to the estimated laboratory batch e"ect. Using this 
approach we were able to reduce the number of DEGs from more than 18000 to 8930, of which <4,000 are pre-
dicted to be protein-coding.

To identify biological pathways di"erentially expressed between meningioma grades and anaplastic menin-
gioma subgroups we applied a functional class scoring algorithm using a collection of 461 published gene sets 
mapped to 10 canonical cancer hallmarks (Supplementary Table S21)50,102–106. We further corroborated these 
!ndings with a more general Gene Ontology (GO) pathway analysis107.

������Ƥ����������ͼ����������������������������������������������������������Ǥ� Mapped RNA 
sequencing reads were normalised using the regularised logarithm (rlog) function implemented by the DESeq2 
package94,95. PCA was performed using the top 500 most variably expressed transcripts and the R stats::prcomp 
function108. Given that primary component 1 (PC1) was the vector most clearly distinguishing the closely clus-
tered C2 subgroup from the more di"usely clustered C1 (Fig. 3a), we extracted the top 50 transcripts with the 
highest absolute PC1 coe&cients. We then identi!ed the subset that overlapped with the most signi!cantly di"er-
entially expressed genes (absolute log2 fold change >4 and adjust p-value < 0.0001) between i) the C1 and C2 ana-
plastic meningioma subgroups and ii) the C1 anaplastic meningiomas and the 19 grade I tumors (Supplementary 
Tables S10 and S17). Iteratively reducing the number of PC1 components identi!ed the minimum number of 
transcripts that recapitulated segregation of C1 and C2 tumors upon unsupervised hierarchical clustering and 
PCA (Supplementary Table S11, Fig. S9).

�������������������������������������Ǥ� Genomic reads were aligned to the reference human 
genome (GRCh37) using the Burrows-Wheeler Aligner, BWA (v0.5.9)109. CaVEMan (Cancer Variants $rough 
Expectation Maximization: http://cancerit.github.io/CaVEMan/) was used for calling somatic substitutions. 
Small insertions and deletions (indels) in tumor and normal reads were called using a modi!ed Pindel ver-
sion 2.0. (http://cancerit.github.io/cgpPindel/) on the NCBI37 genome build110,111. Annotation was according to 
ENSEMBL version 58. Structural variants were called using a bespoke algorithm, BRASS (BReakpoint AnalySiS) 
(https://github.com/cancerit/BRASS) as previously described112.

$e ascatNGS algorithm was used to estimate tumor purity and ploidy and to construct copy number pro!les 
from whole genome data113.

����������������������������������������������������������������������Ǥ� To identify recur-
rently mutated driver genes, we applied an established dN/dS method that considers the mutation spectrum, the 
sequence of each gene, the impact of coding substitutions (synonymous, missense, nonsense, splice site) and the 
variation of the mutation rate across genes22.

��������������������������������������������������������Ǥ� Non-synonymous coding variants 
detected by Caveman and Pindel algorithms were 'agged as putative driver mutations according to set crite-
ria and further curated following manual inspection in the Jbrowse genome browser114. Variants were screened 
against lists of somatic mutations identi!ed by a recent study of 11,119 human tumors encompassing 41 can-
cer types and also against a database of validated somatic drivers identi!ed in cancer sequencing studies at the 
Wellcome Trust Sanger Institute (Supplementary Tables S22 and S23)115.

Copy number data was analysed for homozygous deletions encompassing tumor suppressor genes and for 
oncogene ampli!cations exceeding 5 or 9 copies for diploid and tetraploid genomes, respectively. Only focal 
(<1 Mb) copy number variants meeting these criteria were considered potential drivers. Additional truncating 
events (disruptive rearrangement break points, nonsense point mutations, essential splice site mutations and 
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frameshi% indels) in established tumor suppressors were also 'agged as potential drivers. Only rearrangements 
with breakpoints able to be reassembled at base pair resolution are included in this dataset.

���	�����������������������������������������������������Ǥ� For the identi!cation of putative solo-L1 
and L1-transduction integration sites, we used the TraFiC (Transposome Finder in Cancer) algorithm12. TraFiC 
uses paired-end sequencing data for the detection of somatic insertions of transposable elements (TEs) and exog-
enous viruses. $e identi!cation of somatic TEs (solo-L1, Alu, SINE, and ERV) is performed in three steps: (i) 
selection of candidate reads, (ii) transposable element masking, (iii) clustering and prediction of TE integration 
sites and (iv) !ltering of germline events12.

�������������������������������Ǥ� We performed quantitative methylation analysis of 850,000 CpG sites 
in 25 anaplastic meningiomas. Bisul!te-converted DNA (bs-DNA) was hybridized on the Ilumina In!nium 
HumanMethylationEPIC BeadChip array following the manufacturer’s instructions. All patient DNA samples 
were assessed for integrity, quantity and purity by electrophoresis in a 1.3% agarose gel, picogreen quanti!ca-
tion and Nanodrop measurements. Bisul!te conversion of 500 ng of genomic DNA was done using the EZ DNA 
Methylation Kit (Zymo Research), following the manufacturer’s instructions. Resulting raw intensity data (IDATs) 
were normalized using the Illumina normalization method developed under the min! R package (v1.19.10). 
Normalized intensities were then used to calculate DNA methylation levels (beta values). We then excluded from 
the analysis the positions with background signal levels in methylated and unmethylated channels (p > 0.01). 
Finally we removed probes with one or more single nucleotide polymorphisms (SNPs) with a minor allele fre-
quency (MAF) >1% in the !rst 10 bp of the interrogated CpG, as well as the probes related to X and Y chromo-
somes. From the !ltered positions, we selected only CpG sites present both in promoter regions (TSS, 5′UTR and 
1st exon) and CpG islands (UCSC database, genome version hg19).

For the supervised analysis of the probes, CpG sites were selected by applying an ANOVA test to identify 
statistically signi!cant CpG positions (FDR adjusted p-value < 0.01) that were di"erentially methylated among 
the compared groups (∆β > 0.2). Selected CpG sites were later clustered based on the Manhattan distances aggre-
gated by ward’s linkage. Finally, the genes corresponding to the selected CpGs were used to perform a Gene Set 
Enrichment Analysis (GSEA) with curated gene sets in the Molecular Signatures Database116. $e gene sets used 
were: H: hallmark gene sets, BP: GO biological process, CC: GO cellular component, MF: GO molecular function 
and C3: motif gene sets (http://so%ware.broadinstitute.org/gsea/msigdb/collections.jsp). $e gene clusters result-
ing from the hypergeometric test with a FDR adjusted p-value < 0.05 were !nally considered. We observed high 
levels of methylation for CREBBP in the majority of tumor samples, however, similar patterns were manifest in 
normal tissue controls, hence CREBBP hypermethyation does not appear to be a feature of oncogenesis in these 
samples.

For principal component analysis, we used the R function prcomp to calculate the Singular Value 
Decomposition of the beta value matrix a%er removing the CpGs without methylation information. We plotted 
the !rst two principal components which contain most variation by using the ggbiplot R package (http://github.
com/vqv/ggbiplot). For each group we plotted a normal data ellipse with size de!ned as a normal probability 
equal to 0.68. Unsupervised hierarchical clustering was performed with the stats::hclust() function using the 75 
probes with the highest variance in methylation beta values.

�����������������������������Ǥ� Mutational signature extraction was performed using the nonnegative 
matrix factorization (NNMF) algorithm11. Brie'y, the algorithm identi!es a minimal set of mutational signatures 
that optimally explains the proportions of mutation types found across a given mutational catalogue and then 
estimates the contribution of each identi!ed signature to the mutation spectra of each sample.

�������������������������Ǥ� $e Kaplan-Meier method was used to analyze survival outcomes by the log-rank 
Mantel-Cox test, with hazard ratio and two-sided 95% con!dence intervals calculated using the Mantel_Haenszel 
test (GraphPad Prism, ver 7.02). Overall survival data from time of !rst surgery for each anaplastic meningioma 
within gene-expression de!ned subgroups C1 and C2 was collected and used to plot a Kaplan-Meier survival 
curve.

������������������������
����������������������������������������������������������Ǥ� One primary anaplastic menin-
gioma resected from an 85-year old female (PD23359a) had a hypermutator phenotype, with 27,332 point muta-
tions and LOH across nearly its entire genome (Supplementary Fig. S12, Table S24). Independent pathological 
review con!rmed the original diagnosis of anaplastic meningioma, and transcriptome analysis demonstrated 
that this tumor clustered appropriately with the rest of the cohort (Fig. 3a,b). $e majority of the mutations were 
substitutions, 72% of which were C > T transitions. We identi!ed two deleterious mutations in DNA damage 
repair mediators: a TP53 p.R248Q missense mutation and a homozygous truncating variant in the mismatch 
repair gene MSH6 (p.L1330Vfs*9). Despite the latter !nding, mutational signatures analysis was dominated by 
signature 1, with no evidence of signatures typically associated with defects in homologous recombination, mis-
match repair or POLE activity (signatures 3, 6, 10, 15, 20 or 26). $e copy number pro!le is most consistent with 
this tumor having !rst undergone haploidization of its genome, with the exception of chromosomes 7, 19 and 
20, followed by whole genome duplication (Supplementary Fig. S12). Of note, several important oncogenes are 
located on chromosome 7, including EGFR, MET and BRAF. Widespread LOH has been described in a signi!cant 
proportion of oncocytic follicular thyroid cancers where preservation of chromosome 7 heterozygosity has also 
been observed117.
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�����������������
All sequencing data that support the !ndings of this study have been deposited in the European Genome-Phe-
nome Archive and are accessible through the accession numbers EGAS00001000377, EGAS00001000828, 
EGAS00001000859, EGAS00001001155 and EGAS00001001873. All other relevant data are available from the 
corresponding author on request.
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Recurrent intragenic rearrangements of EGFR
and BRAF in soft tissue tumors of infants
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Soft tissue tumors of infancy encompass an overlapping spectrum of diseases that pose

unique diagnostic and clinical challenges. We studied genomes and transcriptomes of

cryptogenic congenital mesoblastic nephroma (CMN), and extended our findings to five

anatomically or histologically related soft tissue tumors: infantile fibrosarcoma (IFS),

nephroblastomatosis, Wilms tumor, malignant rhabdoid tumor, and clear cell sarcoma of the

kidney. A key finding is recurrent mutation of EGFR in CMN by internal tandem duplication of

the kinase domain, thus delineating CMN from other childhood renal tumors. Furthermore,

we identify BRAF intragenic rearrangements in CMN and IFS. Collectively these findings

reveal novel diagnostic markers and therapeutic strategies and highlight a prominent role of

isolated intragenic rearrangements as drivers of infant tumors.
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Many childhood tumors show a predilection for specific
developmental stages. Tumors that predominantly
occur in infancy include congenital mesoblastic

nephroma (CMN), which accounts for 4% of all childhood renal
malignancies and the majority of those diagnosed in children
under 6 months of age1,2. CMN is classified histologically into
classical, cellular, and mixed subtypes based primarily on degree
of cellularity and mitotic activity3. The cellular variant is char-
acterized by a sarcoma-like diffuse hypercellular morphology,
whereas classical CMN is composed of less proliferative spindle
cells3. Cellular CMN is driven by rearrangements involving the
tropomyosin receptor kinase (TRK) gene NTRK3, most com-
monly a t(12;15)(p13;q25) reciprocal translocation with the ETV6
transcription factor4,5. Less frequent somatic aberrations include
trisomies of chromosomes 8, 11, 17, and 206,7 and rarer TRK
fusions, involving NTRK1, NTRK2, or NTRK38. By contrast, the
genetic changes underpinning the classical variant, accounting for
>30% of cases, are unknown9. Cellular CMN shares its genetic
and morphological hallmarks with infantile fibrosarcoma (IFS), a
spindle cell tumor typically arising in the soft tissues of the
extremities or abdomen5,9,10.

Standard treatment for CMN and IFS is complete surgical
resection9–11. In the case of IFS, local control frequently requires
cytotoxic chemotherapy10,11. The role for up-front chemotherapy
in CMN is less clear9. Recently, a phase I/II clinical trial of a

selective TRK inhibitor, larotrectinib, reported high response
rates in diverse tumor types harboring TRK gene fusions,
including IFS and other soft tissue tumors of infancy12. Morbidity
and infrequent death result from tumor recurrence or from
treatment-related complications9–11.

Here, we investigated the genetic basis of CMN and IFS
lacking the canonical NTRK3-ETV6 fusion gene. We identify
oncogenic rearrangements in MAPK signaling genes across all
cases interrogated by unbiased sequencing, notably ther-
apeutically tractable intragenic rearrangements in EGFR and
BRAF.

Results
Overview of the genomic landscape of CMN. To identify the
genetic basis of cryptogenic CMN, we first applied whole genome
and transcriptome sequencing to a discovery cohort of ten clas-
sical CMN lacking an NTRK3 fusion (Supplementary Data 1).
Somatic variants were identified by comparing tumor and mat-
ched peripheral blood sequences (see Methods). The genomic
landscape was universally quiet, with a low burden of point
mutations (median of 45 substitutions and 9 insertions or dele-
tions per genome; Supplementary Data 2). The predominant
mutational signatures, as defined by the trinucleotide context of
substitutions, were the ubiquitous signatures 1 and 513
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Fig. 1 EGFR internal tandem duplication. a The genomic footprint of EGFR is depicted with exons represented by gray and green vertical lines. Green exons
encode the kinase domain. Blue lines superiorly show the tandem duplications found in the discovery cohort of ten congenital mesoblastic nephroma of
classical histology. b Schematic of the wild-type transcript. c Schematic of the fusion transcript annotated with cDNA sequence of rearrangements (sense
orientation) and protein translation. d Intragenic copy number of EGFR showing focal amplification over the kinase domain (x-axis: genomic coordinate;
y-axis: copy number derived from coverage). e Representative phospo-ERK immunohistochemistry
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(Supplementary Fig. 1). Copy number changes and structural
rearrangements were likewise scarce (Supplementary Fig. 2).

Internal tandem duplication of the EGFR kinase domain in
CMN. Annotating all cases for potential oncogenic variants
revealed a single intragenic, in-frame internal tandem duplication
(ITD) of the EGFR kinase domain in all ten tumors (Table 1;
Fig. 1; Supplementary Data 3). The breakpoints clustered in a
narrow genomic window around the kinase domain of EGFR
encoded in exons 18−25 (Fig. 1a). This rearrangement is rarely
observed in several other tumor types including in glioma and in
lung adenocarcinoma, and confers sensitivity to a targeted EGFR
inhibitor, afatinib14. We validated all rearrangements by genomic
copy number analysis and reconstruction of cDNA reads span-
ning the breakpoint junction (Fig. 1; see Methods). Of note, the
same mutant cDNA junction sequence was found in every case,
irrespective of the genomic location of breakpoints. A search for
additional known or novel driver variants revealed no further
plausible candidates in any of the EGFR-mutant tumors. We next
extended this investigation to seven non-classical CMN lacking
an NTRK3 fusion, including four mixed cellularity cases and three
cellular tumors (Table 1; Supplementary Data 1). Two of the four
mixed cellularity tumors surveyed also harbored an EGFR-ITD.
Of note, for one child with EGFR-ITD-positive mixed cellularity
CMN (PD37214), both primary tumor and recurrence were
studied, with no additional driver events apparent at relapse.

BRAF rearrangements in CMN and IFS. A further striking
finding was the discovery of mutations in the BRAF oncogene in 2/3
cellular histology CMNs. BRAF fusions have been implicated in a
minority of IFS but not in CMN15. In both cases the BRAF

rearrangement involved a compound deletion of conserved region 1
(CR1) and tandem duplication of exon 2 (Fig. 2; Table 1; Supple-
mentary Data 3). CR1 encompasses the negative regulatory Ras-
binding domain (RBD), loss of which is predicted to generate a
constitutively active form of BRAF16,17. Mutated tumors displayed
intense staining of phosphorylated ERK by immunohistochemistry,
consistent with activated signaling downstream of BRAF
(Figs. 1e and 2e). A further tumor harbored the KIAA1549-BRAF
fusion, a molecular hallmark of a childhood brain tumor, pilocytic
astrocytoma18,19. This fusion likewise results in loss of the N-
terminal portion of the BRAF protein containing the RBD17,18.

Other TRK fusions in CMN. The remaining two cases of CMN
interrogated by whole genome and transcriptome sequencing
were accounted for by gene fusions involving NTRK1, an alter-
nate kinase of the TRK family of protein kinases: TPR-NTRK1
and LMNA-NTRK1. Both of these fusions have been observed in
IFS and rarely in adult cancers, but not, to our knowledge, in
CMN20–23 (Table 1). Hence, every cryptogenic CMN interrogated
by whole-genome sequencing contained an oncogenic rearran-
gement in BRAF, EGFR, or NTRK1, all of which encode kinases
involved in MAPK signaling and are amenable to inhibition with
existing drugs9,12,14,17,24.

EGFR-ITD distinguishes CMN from other childhood renal
tumors. To validate and extend our findings, we screened IFS and
a range of childhood renal tumors for EGFR-ITD, BRAF-ID, and
ETV6-NTRK3 using PCR. Tumor types included additional cases
of CMN (n= 63), IFS (n= 26), Wilms tumor (n= 208), clear cell
sarcoma of the kidney without BCOR rearrangements (n= 20),
malignant rhabdoid tumor (n= 3), and nephroblastomatosis
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Fig. 2 Internal BRAF deletion. a The genomic footprint of BRAF is depicted with exons represented by gray, green, and orange vertical lines. Green and
orange exons encode the kinase domain and conserved region 1, respectively. Horizontal lines above exons demarcate rearrangements (blue: tandem
duplication; red: deletion). b Outline of wild-type transcript. c Outline of fusion transcript with cDNA sequence of rearrangements (sense orientation) with
translation. d Intragenic copy number of BRAF (x-axis: genomic coordinate; y-axis: copy number derived from coverage). e Representative phospho-ERK
immunohistochemistry
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(n= 12; Table 1; Supplementary Data 1). EGFR-ITD was most
prevalent in classical and mixed cellularity CMN, though was also
found in cellular CMN (2/17 cases). The frequency of EGFR
rearrangement in classical tumors was lower in the validation
cohort (20/35 cases) than in the initial discovery cohort (10/10
cases). None of the IFS cases, nor other childhood kidney tumors,
harbored EGFR-ITD. However, we encountered three cases of IFS
with intragenic BRAF deletions. Remarkably, in two cases BRAF-
ID co-occurred with NTRK3 fusions, the disease-defining muta-
tion of IFS. We were unable to accurately estimate relative allele
frequencies by nested PCR (see Methods). Hence, it is possible
that both fusions co-exist within the same clone or represent
independent clones that evolved in parallel within the same tumor.

Discussion
In this exploration of infant tumors we identify ITD of the EGFR
kinase domain that delineates a genetic subgroup of CMN
transcending histological subtypes. Additionally, we report a
novel rearrangement of BRAF present in both cellular CMN and
IFS. These mutations represent diagnostic markers that can be
readily integrated into routine clinical practice. Furthermore,
EGFR and BRAF emerge as therapeutic targets, which may be
exploited in certain clinical situations, e.g., large surgically
intractable tumors, disease recurrence or metastases.

It is noteworthy that an oncogenic mutation was identified in
every tumor that we studied by whole-genome sequencing. Of
these, 78% harbored either EGFR-ITD or BRAF-ID, while the
remaining 22% presented with non-canonical mutations invol-
ving BRAF, NTRK1, or NTRK3. This suggests that less recurrent
rearrangement variants, albeit implicated in the same signaling
circuity, may elude detection by targeted diagnostic assays.
Moreover, our results indicate that a subset of tumors harbor
multiple drivers with important implications for targeted therapy
efforts. The finding of co-mutation of NTRK3 and BRAF in IFS
raises the possibility of intrinsic resistance of some tumors to
TRK inhibition, regardless of whether these mutations occur in
the same clone or in independent competing clones. This finding
is pertinent to clinical trials of TRK inhibitors in CMN and IFS12.
In this vein a structurally similar BRAF fusion transcript, albeit
without duplication of exon 2, has recently been implicated as a
mechanism of resistance to certain BRAF/MEK inhibitors16,17.
These considerations underscore the need for adequate genomic
profiling in order to match patients to the most appropriate
basket studies and to enable meaningful interpretation of

treatment responses. Therefore, we would advocate extending the
diagnostic work-up of refractory or relapsed CMN and IFS to
whole genome sequencing, particularly in the context of clinical
trials.

Biologically our findings draw further parallels between CMN
and IFS. We identify BRAF and NTRK1 as additional cancer
genes operative in both malignancies, substantiating the view that
these diagnoses represent variants on the same disease spectrum
converging on aberrant RAS-RAF-MEK-ERK signaling5,8,9.
Furthermore, in the wider context of the childhood cancer
genome, our findings add to the growing body of studies that
identify short distance intragenic rearrangements as a dominant
source of oncogenic mutations in otherwise quiet genomes.
We note the parallel between CMN, clear cell sarcoma of
the kidney and low-grade glioma that are in large part driven
by ITDs often involving kinase domains, mostly as isolated
driver events18,25–29. Furthermore, even in acute myeloid
leukemia, where FLT3-ITD is a recurrent driver event in
adult disease, childhood AML demonstrates a distinct structural
variant profile enriched for focal chromosomal gains and
losses30. We can only speculate on the biological significance
of this parallel which may allude to specific mutational
mechanisms operative during discrete stages of human
development.

Methods
Patient samples. All tissue samples were obtained after gaining written informed
consent for tumor banking and future research from the patient (or their guardian)
in accordance with the Declaration of Helsinki and appropriate national and local
ethical review processes. German tissue samples were obtained from the following
studies: SIOP93-01/GPOH and SIOP2001/GPOH (Ethikkommission der
Ärztekammer des Saarlandes reference numbers 23.4.93/Ls and 136/01), the
PTT2.0 study (Medical Faculty Heidelberg ethics reference number S-546/2016),
the CWS trials CWS-96 and CWS-2002P (Universitätsklinikum Tübingen Medi-
zinische Fakultät ethics approval, reference numbers 105/95 and 51/2003) and the
SoTiSaR registry (ethics approval reference 158/2009B02). UK patients were
enrolled under ethics approval from National Research Ethics Service Committee
East of England, Cambridge Central (reference 16/EE/0394). Use of UK archival
material was approved by the National Research Ethics Service Committee London
Brent (reference 16/LO/0960). Additional tissue was obtained from the UK Chil-
dren’s Cancer and Leukaemia Group tissue bank.

Sequencing. Tumor DNA and RNA were extracted from fresh frozen tissue that
had been reviewed by reference pathologists. Normal tissue DNA was derived from
blood samples. Whole genome sequencing was performed by 150-bp paired-end
sequencing on the Illumina HiSeq X platform. We followed the Illumina no-PCR
library protocol to construct short insert libraries, prepare flowcells, and generate
clusters. Coverage was at least 30×. Messenger RNA was enriched by polyA-

Table 1 Rearrangements in infant soft tissue tumors

Assay Tumor
type

Subtype Total EGFR-ITD BRAF-ID BRAF-ID+
ETV6-
NTRK3

ETV6-
NTRK3

KIAA1549-
BRAF

LMNA-
NTRK1

EML4-
NTRK3

TPR-
NTRK1

WGS+mRNA
sequencing

CMN Cellular 3 0 2 0 0 0 1 0 0
Classical 10 10 0 0 0 0 0 0 0
Mixed 4 2 0 0 0 1 0 0 1

IFS − 1 0 0 0 0 0 0 1 0
PCR for EGFR-ITD,
BRAF-ID and ETV6-
NTRK3

CMN Cellular 17 2 0 0 13 – – – –
Classical 35 20 0 0 0 – – – –
Mixed 11 9 0 0 0 – – – –

IFS – 26 0 1 2 16 – – – –
WT – 208 0 0 0 0 – – – –
CCSKa – 20 0 0 0 0 – – – –
MRT – 3 0 0 0 0 – – – –
NB – 12 0 0 0 0 – – – –

CMN congenital mesoblastic nephroma, IFS infantile fibrosarcoma,WTWilms tumor, CCSK clear cell sarcoma of the kidney,MRTmalignant rhabdoid tumor, NB nephroblastomatosis,WGS whole genome
sequencing, mRNA messenger RNA, PCR polymerase chain reaction
aNegative for BCOR rearrangement
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selection and sequenced on an Illumina HiSeq 2000 (paired end, 75-bp read
length). DNA and RNA sequencing reads were aligned to the GRCh 37d5 reference
genome using the Burrows−Wheeler transform (BWA-MEM)31 and STAR
(2.0.42)32, respectively.

Variant detection. The Cancer Genome Project (Wellcome Trust Sanger Institute)
variant calling pipeline was used to call somatic mutation and includes the fol-
lowing algorithms: CaVEMan (1.11.0)33 for substitutions, an in-house version of
Pindel (2.2.2; github.com/cancerit/cgpPindel)34 for indels, BRASS (5.3.3; github.
com/cancerit/BRASS) for rearrangements, and ASCAT NGS (4.0.0) for copy
number aberrations35. RNA sequences were analyzed with an in-house pipeline
(github.com/cancerit/cgpRna/wiki) which uses HTSeq36 for gene feature counts,
and a combination of TopHat-Fusion (v2.1.0)37, STAR-fusion (v0.1.1)32 and
DeFuse (v0.7.0)38 to detect expressed gene fusions. In addition to filters inherent to
the CaVEMan algorithm, we used the following post-processing filtering criteria
for substitutions: a minimum of two reads in each direction reporting the mutant
allele, at least tenfold coverage at the mutant allele locus, minimum variant allele
fraction 5%; no insertion or deletion called within a read length (150 bp) of the
putative substitution, no soft-clipped reads reporting the mutant allele, and a
median BWA alignment score of the reads reporting the mutant allele ≥140. The
following variants were flagged for additional inspection for potential artifacts,
germline contamination or index-jumping event: any mutant allele reported within
150 bp of another variant, any mutant allele with a population allele frequency >1
in 1000 according to any of five large polymorphism databases (ExAC, 1000
Genomes Project, ESP6500, CG46, Kaviar), variant reported in more than 10% of
the tumor samples and mutant allele reported in >1% of the matched normal reads.
For indels, the inbuilt filters of the Pindel algorithm, as implemented in our
pipeline, were used. In addition, recurrent indels occurring in >2 samples were
flagged for additional inspection.

Mutational signatures were derived using principal component analysis and
non-negative matrix factorization as implemented in the SomaticSignatures
R package39.

Variant validation. The Cancer Genome Project (Wellcome Trust Sanger Insti-
tute) variant calling pipeline has been continually validated and bench-marked40,41.
We confirmed variant calling quality through manual visual inspection of raw
sequencing read for 8% of all variants called. All rearrangements reported were
validated by reconstruction at base pair resolution and by cDNA reads spanning
the breakpoint junction.

Analysis of mutations in cancer genes. We considered variants as potential
drivers if they presented in established cancer genes42. Tumor suppressor coding
variants were considered if they were annotated as functionally deleterious by an
in-house version of VAGrENT (http://cancerit.github.io/VAGrENT/)43 or were
disruptive rearrangement breakpoints or focal (<1Mb) homozygous deletions.
Mutations in oncogenes were considered driver events if they were located at
previously reported canonical hot spots (point mutations) or amplified the intact
gene. Amplifications also had to be focal (<1Mb) and increase the copy number of
oncogenes to a minimum of five copies for a diploid genome. To search for driver
variants in novel cancer genes or in non-coding regions, we employed previously
developed statistical methods that identify significant enrichment of mutations,
taking into account various confounders such as overall mutation burden and local
variation in the mutability of the genomic region44.

Targeted mutation screening. RNA from frozen tumors (1 µg) or corresponding
to approximately 5 cm2 of 10 µm FFPE sections was reverse transcribed using
oligo-dT or random hexamer primers (RevertAid first strand cDNA synthesis kit,
ThermoFisher). PCR screening was performed using primer combinations that
allow amplification of candidate alterations as well as additional control fragments
from the unaffected allele to assess cDNA quality. Amplified fragments were
sequenced by Sanger sequencing (GATC, Konstanz, Germany) using primers
detailed in Supplementary Table 1.

Immunohistochemistry. Immunohistochemical staining for phospho-ERK1/2
(Cell Signaling Technology, clone D13.14.4E) was performed according to standard
protocol (dilution 1:800, pre-treatment with target retrieval TR6.1, Dako). Results
were scored in a semi-quantitative fashion (negative, weak, moderate, strong).

Code availability. The algorithms used to analyze sequencing data are available at
http://cancerit.github.io/.

Data availability. All data supporting the findings of this study are available within
the article and its supplementary files or from the corresponding author on rea-
sonable request. Sequencing data have been deposited at the European Genome-
Phenome Archive (http://www.ebi.ac.uk/ega/) that is hosted by the European
Bioinformatics Institute (accession numbers EGAS00001002534 and
EGAS00001002171).
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Recurrent histone mutations in T-cell acute lymphoblastic
leukaemia

Mutations affecting key modifiable histone type 3 (H3;

Table SI) residues are frequent oncogenic events in certain

solid tumours (Feinberg et al, 2016), and have also recently

been implicated in a subset of acute myeloid leukaemia

(AML) (Lehnertz et al, 2017). Here, we systematically

reviewed the somatic mutations in >20 000 cancer specimens

to identify tumours harbouring H3 mutations. In a subset of

T-cell acute lymphoblastic leukaemia (T-ALL) we identified

non-methionine mutations of the key modifiable H3 resi-

dues, lysine (K) 27 and 36.

The starting point of our investigation was a search for H3

hotspot mutations in 1020 human cancer cell lines (Table SII).

In two cell lines, both derived from T-ALL, we found lysine-

to-arginine mutations at H3K27 and H3K36 (Table I). One of

the cell lines, LOUCY, is derived from a NOTCH1 wild-type

adult T-ALL (Ben-Bassat et al, 1990). The second, CML-T1,

was derived from the T-lymphoblastic blast crisis of chronic

myeloid leukaemia (Kuriyama et al, 1989). Ten further T-ALL

cell lines lacked coding H3 mutations (Table SIII). In solid

tumours, H3K27 and H3K36 are typically mutated to

methionine (Fig 1) (Feinberg et al, 2016). However, recent

functional studies of H3 lysine-to-isoleucine mutations in

AML demonstrate that the latter also dramatically alter global

H3 methylation and acetylation patterns (Lehnertz et al,

2017). Therefore, we speculated that lysine-to-non-methionine

mutations may also be drivers of a subset of T-ALL.

We next searched for canonical H3 mutations in a pub-

lished targeted sequencing study of 633 epigenetic regulator

genes in >1000 childhood tumours encompassing 21 cancer

subtypes (Huether et al, 2014). Amongst 91 T-ALL speci-

mens, there were two cases with canonical H3 mutations:

H3F3A p.K27R and H3F3A p.K36R (Table I). Both muta-

tions were clonal, with a variant allele fraction (VAF) of 38%

and 55%, respectively. Among the 37 tumours with H3K

mutations, lysine-to-arginine mutations were restricted to T-

ALL (P = 0!001502; Fisher’s exact test).
We then extended our screen for H3 mutations to 18 704

tumours, encompassing >60 cancer types other than T-ALL

(Tables SIV and SV). This dataset comprised 8764 internally

sequenced specimens and 9940 TCGA samples re-analysed

using an in-house variant calling pipeline as previously

described (Martincorena et al, 2017). We identified only one

neomorphic H3 mutation in an acute leukaemia specimen: a

previously reported HIST1H3D p.K27M mutation in an adult

AML case (TCGA-AB2927-03) (Lehnertz et al, 2017).

Finally, we examined an additional T-ALL cohort by capil-

lary sequencing of recurrently mutated modifiable residues

K27, G34, and K36 across four frequently mutated H3 genes

(Tables SVI and SVII). The cohort comprised 38 T-ALL cases

described in detail previously (Maser et al, 2007). One speci-

men from a 30-year-old patient harboured a H3F3A p.K27N

mutation (Figure S1). Interestingly, a H3F3A p.K27N muta-

tion and a H3F3A p.K27T variant were previously identified

in a T-ALL RNA sequencing study (n = 31) (Atak et al,

2013). Collectively, our findings indicate that H3K27 and

H3K36 mutations are recurrent in T-ALL, a result we were

able to reproduce across multiple different cohorts encom-

passing adult and paediatric cases.

This finding is congruent with the fact that mutations in

SETD2 and EZH2, methyltransferases that catalyse trimethyla-

tion (me3) of H3K36 and H3K27, respectively, are frequent

T-ALL drivers (Belver & Ferrando, 2016). Disruptive SETD2

alterations occur in 7!8% of early T cell precursor acute lym-

phoblastic leukaemia (ETP-ALL), an aggressive subtype with

stem cell-like features (Belver & Ferrando, 2016). Interestingly,

both T-ALL specimens with H3K36R mutations originated

from ETP-ALL (Table I). Notably, mutually exclusive SETD2

and H3K36/H3K34 mutations are reported in paediatric high

grade glioma, where both result in reduced H3K36me3 medi-

ated by SETD2 (Feinberg et al, 2016). It is unclear whether a

similar co-mutation pattern exists in T-ALL, as H3 genes have

not been included in targeted sequencing panels used by the

largest T-ALL genomic studies (Belver & Ferrando, 2016).

The role of H3K27 modifications in T-ALL pathogenesis is

complex (Belver & Ferrando, 2016). It is plausible that muta-

tions affecting this residue could impact the activity of sev-

eral histone modifiers with established roles in T-ALL

pathogenesis. Loss-of-function mutations in EZH2 or other

core components of Polycomb repressive complex 2 (PRC2)

are found in 42% of ETP-ALL and 25% of T-ALL overall

(Belver & Ferrando, 2016). Impaired PRC2 catalytic activity

in T-ALL is associated with reduced H3K27me3, stemness

and poor prognosis (Belver & Ferrando, 2016). H3F3A

p.K27M mutations appear to act predominantly by blocking

H3K27 di- and trimethylation and increasing H3K27 acetyla-

tion (Feinberg et al, 2016). Recent work demonstrates that

H3K27I mutations in AML are associated with similar

changes in H3 modification patterns (Lehnertz et al, 2017),

suggesting that other non-methionine mutations at modifi-

able H3 residues may influence the activity of PRC2 and
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other histone modifying enzymes. The lysine-specific

demethylases JMJD3 and UTX are further important regula-

tors of H3K27me3 distribution in T-ALL (Belver & Ferrando,

2016), and it is conceivable that these enzymes may also be

affected by H3K27 or H3K36 mutations.

A feature of H3 mutations in solid cancers is their exqui-

site tumour type specificity (Fig 1) (Feinberg et al, 2016). In

this context, it is notable that 5/5 H3 mutations in T-ALL

identified by this survey are lysine-to-non-methionine muta-

tions, and 4/5 are lysine-to-arginine mutations. Out of the

>20 000 tumour specimens screened for H3 variants, only

two other samples harboured H3 lysine-to-arginine muta-

tions, both at low VAF and in tumours with relatively high

coding mutation burdens (TCGA-BT-A20Q-01 and TCGA-

Lymphoid

Childhood brain tumours

MidlineHemispheres

Bone tumours

Osteoblastic
lineage

Chondroblastic
lineage

180 23 3947 141 9132 53 15 77 75N  =
Mutated (%) 10.6 81.7 47.8 92 1.5 11.1 92.5 6.7 94.8 1.33.5

Myeloid

Haematological cancers

615
0.5

Fig 1. Prevalence and amino acid specificity of type 3 histone mutations in different cancer types. Columns indicate cancer types and rows show
key histone type 3 regulatory residues. Tiles are coloured according to amino acid substitution. The percentage of each tumour type affected by
the given class of histone mutation is indicated within the tiles and the overall prevalence of histone mutations is summarised at the bottom of
each column. NBS HGG, non-brain stem high grade glioma; DIPG, diffuse intrinsic pontine glioma; ASTR, astrocytoma; AML, acute myeloid
leukaemia; T-ALL, T cell acute lymphoblastic leukaemia; OS, osteosarcoma; ADM, adamantinoma; GCTB, giant cell tumour of bone; CCC, clear
cell chondrosarcoma; CB, chondroblastoma; CS, chondrosarcoma.

Table I. Type 3 histone mutations in T cell leukaemia.

Sample name Sample type Donor age (years) Donor sex H3 mutation

LOUCY Cell line derived from ETP-ALL 38 Female HIST1H3G p.K36R

CML-T1 Cell line derived from the acute T-lympoblastic

blast crisis of CML

36 Female H3F3A p.K27R

SJTALL174 Primary ETP-ALL specimen Unknown (paediatric) Unknown H3F3A p.K36R

SJTALL080 Primary T-ALL specimen Unknown (paediatric) Unknown H3F3A p.K27R

PD2752a Primary T-ALL specimen 30 Male H3F3A p.K27N

Out of 141 T cell leukaemia specimens screened (12 cell lines and 129 primary samples), 5 (3!5%) harboured a missense mutation at a modifiable

lysine residues K27 or K36. CML, chronic myeloid leukaemia; ETP-ALL, early T cell precursor acute lymphoblastic leukaemia; T-ALL, T cell acute

lymphoblastic leukaemia.
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AN-A0FW-01). Hence, it is possible that lysine-to-arginine

mutations confer particular selective advantage in the context

of T cell leukaemogenesis.

In summary, ~3% of T-ALL harbour non-methionine vari-

ants in H3 genes at key modifiable lysine residues. Given the

role of dysregulated H3K27/H3K36 modification in T-ALL

pathogenesis and the established prognostic significance of

mutations in lysine-specific histone modifiers (Belver & Fer-

rando, 2016), this finding warrants further investigation of the

prevalence, clinical and functional significance of H3 muta-

tions in T-ALL. In light of the recent discovery of oncogenic

H3K37 mutations in AML (Lehnertz et al, 2017), our findings

suggest a broader role for histone mutations in acute leukae-

mias and clearly justify incorporation of H3 genes into haema-

tological cancer sequencing panels.
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Hairy cell leukemia (HCL) is a chronic, incurable B cell
malignancy that presents with splenomegaly, bone marrow
infiltration, and cytopenias [1]. Long remissions are typically
achieved with purine analogs such as cladribine, but most cases
will relapse and require further therapy. The discovery of the
BRAF V600E mutation in almost all cases of HCL [2] has led
to the widespread adoption of the BRAF inhibitor vemurafenib
for treatment of patients relapsing after cladribine [3–5].
Impressive responses are reported; however, relapse is inevi-
table [5, 6] and hematologists are now faced with a growing
number of patients with vemurafenib-resistant HCL. The
optimal management of these patients remains unclear.

The molecular basis of vemurafenib resistance has been
extensively investigated in recent years in patients with
BRAF mutant solid organ malignancies such as melanoma
and colorectal cancer [7]. Resistance to vemurafenib in
melanoma frequently results from reactivation of ERK

pathway signaling by a variety of genetic mechanisms that
include activating mutations of NRAS or KRAS, amplifica-
tion of mutant BRAF, aberrant splicing of BRAF, and acti-
vating mutation of MAP2K1, which encodes the MEK1
protein [7, 8]. ERK-independent mechanisms are less fre-
quent and include activation of PI3K signaling [7]. The
predominance of genetic mechanisms converging on ERK
reactivation has led to the successful use of dual MEK/
BRAF inhibition in melanoma [9]. In colorectal cancer
however, different mechanisms apply; here primary resis-
tance usually results from reduced feedback inhibition upon
upstream receptor tyrosine kinase activity leading to
restoration of ERK activity [10]. In this scenario, combined
BRAF and MEK inhibition has not proved effective [11].

In contrast to our comprehensive understanding in solid
organ cancer, very little is known about the mechanistic
basis of vemurafenib resistance in HCL. Given the diversity
of resistance mechanisms established in other cancers, it is
unclear which, if any, of these might predominate in HCL.
Two acquired subclonal, activating KRAS mutations were
previously reported in a single patient with vemurafenib
resistance [5]. Deletions of NF1 and NF2 have been pro-
posed as an alternative mechanism in another case of pri-
mary resistance [12]. The use of MEK inhibition has been
suggested as a logical therapeutic strategy in patients who
have reactivated ERK signaling. However, the use of MEK
inhibition has never previously been reported in a patient
with HCL and at present there is no consensus on the
optimal management of patients relapsing on vemurafenib.

A 74-year-old patient with HCL had been treated at our
institution with splenectomy, cladribine, and pentostatin.
We previously reported his initial response to vemurafenib
at a dose of 240 mg twice daily [4]. This dose was lower
than used in the initial phase II trial [5], but has since been
shown in several reports to be an effective dosing strategy
for HCL [3, 13, 14]. Vemurafenib was initially stopped after
58 days; however, this was associated with rapid return of
marrow infiltration and thrombocytopenia. Vemurafenib
was restarted at the same dose and cytopenias rapidly
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resolved. Continuous low-dose vemurafenib continued to
sustain his remission for over 3 years, attesting to the effi-
cacy of this dosing schedule. However, 38 months after
restarting vemurafenib, his blood indices deteriorated, and
he required platelet transfusion (Fig. 1a). Bone marrow

trephine biopsy confirmed relapse of HCL. A trial of
rituximab with continued vemurafenib led to transient
recovery of hematological indices. However, bone marrow
infiltration did not improve over the next 4 months, and the
patient became anemic, thrombocytopenic, and required
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Fig. 1 a The patient’s peripheral blood indices are shown over time
relative to the first dose of the MEK inhibitor cobimetinib. Vertical red
lines indicate the timing of rituximab dosing. Blue shading indicates
vemurafenib monotherapy 240 mg twice daily (vem mono). Pale pink
shading indicates vemurafenib with cobimetinib 20 mg daily (cobi-20).
Darker pink indicates vemurafenib with cobimetinib 60 mg daily (21/
28 days) (cobi-60). The lower limits of normal reference values are
indicated by horizontal dashed lines. b Schematic of the MEK-ERK
signaling pathway with mutations identified in purified tumor cells

after emergence of resistance to vemurafenib. c Annexin V staining
was used to quantify the induction of apoptosis in tumor cells purified
from the patient and incubated for 48 h ex vivo with inhibitors of
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suppression of ERK activity is seen with MEK inhibition but not with
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further platelet transfusion. A second trial of two doses of
rituximab produced a minimal improvement of platelet
count to 30 × 109/l. The patient became systemically unwell
with B symptoms. Bone marrow trephine biopsy confirmed
99% infiltration with HCL.

To elucidate the mechanism of his resistance we per-
formed whole-genome and deep-targeted sequencing of 292
genes (Supplementary Table 1) of DNA from purified tumor
cells collected prior to starting vemurafenib and again at
relapse. Samples were used with informed written patient
consent in accordance with the Declaration of Helsinki and
appropriate institutional ethical approvals. Sequencing stu-
dies revealed the presence of the known BRAF V600E
mutation and chromosome 7q deletion. Remarkably, we also
identified seven distinct activating mutations in KRAS and
two mutations in MAP2K1 (encoding MEK1) (Fig. 1b and
Supplementary Table 2). These were detectable at relapse
but were not detectable prior to vemurafenib exposure.
Allele frequencies were consistent with the parallel, con-
vergent evolution of multiple clones. Deep-targeted ampli-
con sequencing at multiple time points showed how KRAS
mutations developed early, initially with codon 146 muta-
tions, followed by emergence of the more classical activat-
ing mutations of codons 12 and 61 [15]. MAP2K1 mutations
appeared later with MAP2K1 p.K57T expanding to become
the dominant clone (Fig. 2c and Supplementary Table 2).
The convergent nature of these mutations strongly impli-
cated reactivation of MEK-ERK signaling as the likely
mechanism of resistance. Indeed, immunohistochemistry
confirmed strong pERK activity in all tumor cells (Fig. 2a).
We looked for other mechanisms of resistance reported in
melanoma. Specifically, we found no genetic or protein
evidence of either increased pAKT activity or altered BRAF
splicing (Supplementary Figure 1A & B).

We concluded that reactivation of MEK/ERK activity
was the most likely driver of relapse and hypothesized that
MEK inhibition might be a successful therapeutic strategy.
Expression of the KRAS and MAP2K1 mutants in a lym-
phoid cell line showed that while each mutation was able to
activate ERK in the presence of vemurafenib, all mutations
remained sensitive to MEK inhibition (Fig. 1d). Exposure
of the patient’s purified tumor cells to vemurafenib ex vivo
failed to completely suppress ERK activity and did not
induce apoptosis. In contrast, ERK activity was completely
suppressed and apoptosis induced by exposure to a MEK
inhibitor (Supplementary Figure 1C and Fig. 1c).

Based on our in vitro experiments, we treated the patient
with the MEK inhibitor cobimetinib, initially at 20 mg daily
combined with vemurafenib 240 mg twice daily. Remark-
ably, B symptoms resolved within 1 week, followed by
rapid platelet count recovery. A bone marrow biopsy at
4 months showed complete suppression of ERK activity
(Fig. 2a). However, HCL marrow infiltration persisted, and

therefore cobimetinib dose was increased to 60 mg daily
(taken 21 out of 28 days). The dose was well tolerated and
was associated with further resolution of cytopenias, a
substantial reduction in bone marrow cellularity and HCL
infiltration, ongoing suppression of ERK activity and
restoration of normal hematopoiesis (Fig. 2a, b). Ongoing
treatment was also associated with suppression of mutant
allele frequencies for BRAF, KRAS, andMAP2K1 mutations
(Fig. 2c). At 12 months, the patient remains well and
asymptomatic with continued combination therapy.

The finding of nine activating mutations, all converging
upon the activation of RAS/RAF/MEK/ERK signaling,
underscores the centrality of this pathway in HCL and its
reactivation as a potent mechanism of resistance to
vemurafenib in this disease. This report provides a detailed
analysis of the molecular basis for acquired vemurafenib
resistance in HCL. It is the first reported use of a MEK
inhibitor to treat vemurafenib-resistant HCL. It proposes a
new therapeutic option for such patients and provides
impetus for testing in a formal trial setting.
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Clonal haematopoiesis is not prevalent in survivors of
childhood cancer

Clonal haematopoiesis driven by leukaemia-associated

somatic mutations is a common feature of ageing (Link &

Walter, 2016). This phenomenon, termed clonal haemato-

poiesis of indeterminate potential (CHIP), is associated

with an increased risk of haematological malignancies and

all-cause mortality (Link & Walter, 2016). Recent empirical

evidence and computational models suggest that mutation

acquisition may not be the major rate-limiting factor in the

emergence of CHIP (Altrock et al, 2015; McKerrell et al,

2015; Link & Walter, 2016; Young et al, 2016). Instead, clo-

nal expansion of mutant haematopoietic stem cells (HSCs)

probably reflects the interaction between the effects of dri-

ver mutations and selection pressures prevailing in the bone

marrow microenvironment (Link & Walter, 2016). Notably,

cytotoxic therapies have been shown to favour expansion of

pre-malignant haematopoietic clones (Link & Walter, 2016).

Furthermore, both adult and paediatric cancer patients trea-

ted with intensive chemoradiotherapy display an earlier

onset of ageing-associated morbidities and an elevated risk

of therapy-related myeloid neoplasms (t-MN) and other

secondary malignancies (Rowland & Bellizzi, 2014). A

recent study in adult cancer patients found that CHIP was

more prevalent than in the general population and was

strongly associated with t-MN and overall mortality (Gibson

et al, 2017). Although CHIP is extremely rare in healthy

young individuals, its prevalence and prognostic significance

in paediatric cancer patients has not been studied. We

therefore performed targeted deep sequencing of peripheral

blood DNA from 84 childhood cancer survivors to search

for subclonal mutations common in t-MN and adult clonal

haematopoiesis. No individuals with somatic variants at

these loci were identified. Whilst our findings could be

explained by a rarity of driver mutations, the fact that

human HSCs accrue somatic variants from the first decade

of life (Welch et al, 2012) proposes the alternative possibil-

ity that such mutations may not confer clonal advantage in

the young.

We obtained peripheral blood DNA samples from patients

enrolled on long-term follow-up after treatment for a paedi-

atric malignancy and from three age-matched controls with

no cancer history. Written informed consent was obtained

for sample collection and DNA sequencing from all patients

or their guardian in accordance with the Declaration of Hel-

sinki and protocols approved by the relevant institutional

ethics committees (approval numbers 09REG2015, 1-09/12/

2015). The median age at cancer diagnosis was 4!5 years, and

the commonest malignancies were acute lymphoblastic leu-

kaemia (n = 21), neuroblastoma (n = 17) and non-Hodgkin

lymphoma (n = 10). Nineteen patients had received a HSC

transplant (8 allogeneic and 11 autologous). The median

interval between completion of cancer treatment and blood

sampling was 6 years (range 2–25). Patient characteristics are
summarized in Table SI.

We performed targeted next generation sequencing (NGS)

using multiplex polymerase chain reaction to amplify 32

regions of 14 genes frequently mutated in CHIP or t-MN

(Table I) (McKerrell et al, 2015; Link & Walter, 2016; Gib-

son et al, 2017). For this we extended a previously validated

assay that detected clonal haemopoiesis in 2!6% of unselected

adults (McKerrell et al, 2015), to include all coding exons of

TP53 and PPM1D, genes implicated in t-MN pathogenesis

(Rowland & Bellizzi, 2014; Link & Walter, 2016; Gibson

et al, 2017). Primer design and sequencing was performed as

described previously (McKerrell et al, 2015); see Table SII for

primer sequences. Reads were aligned to human genome

build GRCh37 using the Burrows-Wheeler Aligner (Li &

Durbin, 2010) and analysed for somatic single nucleotide

variants. Allele counts were generated using an in-house

script (https://github.com/cancerit/alleleCount), considering

only loci with ≥1000 reads and minimum base and mapping

quality of 25 and 35, respectively. Somatic mutations with

Table I. Genomic regions sequenced.

Gene Chromosome Target codon/exon

NRAS 1 p.G12

SF3B1 2 p.K666; p.K700

DNMT3A 2 p.R882

IDH1 2 p.R132

KIT 4 exon 17

NPM1 5 exon 12

JAK2 9 p.V617

KRAS 12 p.G12

IDH2 15 p.R140; p.R172

PPM1D 17 exons 1–6
TP53 17 exons 1–12
SRSF2 17 p.P95

ASXL1 20 exon 12

U2AF1 21 p.S34; p.Q157
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variant allele frequency (VAF) ≥0!008 (McKerrell et al, 2015)

were sought and examined visually and by interrogation with

the Shearwater algorithm (https://github.com/mg14/dee

pSNV) (Gerstung et al, 2014).

The median sequencing depth across regions of interest

was 5!3 9 103. No somatic mutations with VAF ≥ 0!008
were observed in any of our patients or controls, demon-

strating that CHIP driven by mutations at these loci is not

prevalent in young individuals who have received cytotoxic

treatment. By contrast, Gibson et al (2017) identified post-

chemotherapy CHIP (VAF > 0!02) in 29!9% of 401 adult

lymphoma patients. Notably, mutations in PPM1D, a regula-

tor of TP53, were the commonest CHIP drivers (Gibson

et al, 2017). Similarly, several smaller studies have demon-

strated clonal expansion in older patients undergoing

chemoradiotherapy for other cancers (Link & Walter, 2016).

An investigation of haematopoietic clonal dynamics in 15

adult acute myeloid leukaemia patients found that, after

induction chemotherapy, five had marked expansion of

clones unrelated to their leukaemia (Link & Walter, 2016).

Most clones carried canonical leukaemia mutations and con-

tinued to expand years after remission (Link & Walter,

2016). In a study exploring the clonal origins of t-MN,

TP53-mutated clones expanded dramatically after cytotoxic

treatment, whereas the same mutations demonstrated very

modest clonal advantage in healthy individuals (Link & Wal-

ter, 2016). In light of the above, our findings have two plau-

sible explanations: (i) that somatic driver mutations are very

uncommon in young individuals even after exposure to

chemotherapy or (ii) that accrual of such mutations is insuf-

ficient to trigger clonal expansion in this age group. The lat-

ter is supported by findings that oncogenic mutations begin

accumulating early in life (Welch et al, 2012) and that can-

cer-associated mutations are less able to drive clonal expan-

sion in young compared to old stem cells (Zhu et al, 2016).

The fact that bona-fide driver mutations do not always lead

to haematopoietic clonal expansion, even after several years,

was highlighted by Young et al (2016), using ultra-sensitive

sequencing. Therefore our results should not be taken to

reflect absence of potentially oncogenic HSC mutations in

young cancer survivors. Rather, it is possible that even

canonical leukaemogenic mutations may not commonly drive

clonal outgrowth in children and young adults despite expo-

sure to extreme haematopoietic stress, implicating age-related

changes in HSCs and/or their microenvironment as key

determinants of relative fitness. More sensitive DNA sequenc-

ing methods may enable detection of very rare cells harbour-

ing known CHIP drivers mutations in similar patient

cohorts, which would lend support to this hypothesis. Stud-

ies of larger numbers of paediatric cancer survivors are

needed to identify rare individuals with CHIP after chemora-

diotherapy, whose particular characteristics may offer insights

into factors facilitating clonal outgrowth of mutated HSCs.

Furthermore, in view of the shifting patterns of mutations

driving CHIP in different adult age groups (McKerrell et al,

2015), selective pressures particular to a less mature bone

marrow environment may confer clonal advantage on a dis-

tinct spectrum of somatic variants in the very young.

Although a much broader screening approach is required to

identify such mutations, the potential role for CHIP as a bio-

marker for patient risk-stratification (Gibson et al, 2017)

may render this a worthwhile endeavour.
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