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4. Driver Identification and Genomic Analysis 

 

Our study first sought to understand the landscape of genomic lesions underlying B-

NHLs. To accomplish this goal, we began by identifying driver variants within our list of raw 

sequencing variants. Subsequently, we conducted a genomic landscape analysis and gene-

level mutational profiling.  

 

4.1. The Driver Annotation Pipeline 

 

4.1.1. Methodology 

We began our analysis by extracting a list of somatic driver variants from our raw 

sequencing reads. Broadly, our driver identification pipeline consists of three automated steps 

with a final manual review step to check all variants (Figure 3). Our pipeline first removes 

errors from the list of all sequencing variants (VCF file) to construct a list of all real variants. 

Second, our pipeline identifies somatic variants by annotating polymorphisms. Third, our 

pipeline annotates somatic variants as drivers, passengers, or variants of unknown 

significance. Finally, all variants are manually curated, taking into account the flags set by 

the pipeline.  

First, we removed errors from the list of sequencing variants. We removed errors 

resulting from DNA polymerase slippage by discarding variants that were (1) in 

homopolymeric regions of length greater than 4 and (2) in >10% of individuals. We removed 

variants near the noise thresholds of the CaVEMan and Pindel algorithms by discarding 

variants with a read depth less than 10, less than three reads, or a VAF less than 0.05. For 

context, our study had an average depth of 500x reads per base. Our filters are consistent with 

those used in prior studies143. Nonetheless, we also inspected both the remaining and 

discarded variants with GBrowse. By removing errors in this fashion, we pruned our list of 

sequencing variants to the set of all real variants in our study.  

Second, we identified somatic mutations by flagging polymorphisms within our list of 

variants. Since our tumour samples lacked matched normals, we identified likely 

polymorphisms by flagging variants with a population frequency in ExAC non-TCGA greater 

than 0.001. Since ExAC non-TCGA includes some lymphoid drivers with a high population 

frequency, we kept a whitelist of drivers that would not be annotated as polymorphisms via 

this approach. No variants were removed via this step. The annotation, however, proved 
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helpful for manually curating drivers. Upon completion of this step, we arrived at a list of 

variants, some flagged as likely polymorphisms.  

Third, we annotated driver mutations. We utilized a few computational approaches 

described below. Ultimately, however, all variants were inspected and given a final 

annotation manually. Three independent computational approaches were helpful in flagging 

potential drivers. First, we flagged all mutations that were in a whitelist of known driver 

mutations manually curated from COSMIC and the literature. Second, we flagged variants as 

potential drivers if they were highly recurrent within COSMIC (>3). Finally, we flagged 

variants as potential drivers if their effect in a gene of known function was likely to make 

them drivers. For example, a frameshift or nonsense mutation in a well-characterized tumour 

suppressor gene would be marked as a likely driver. Since this approach requires a functional 

annotation for each gene, it was only applied to a subset of the variants. 

Finally, with a list of potential driver mutations we conducted an extensive manual 

curation to provide a final annotation to variants. In general, we annotated variants 

conservatively, preferring to err on the side of marking a variant as a “Variant of Unknown 

Significance” rather than a driver. Conservative annotation would reduce later errors in 

classification since the Bayesian Dirichlet Process, our classification algorithm, is more 

robust to false negatives (i.e. missing drivers) than to false positives (i.e. passenger mutations 

annotated as drivers). 

 

4.1.2. Limitations of the Driver Annotation Pipeline and Mutations Underrepresented in 

DLBCL NOS  

In general, the driver variants produced via our driver annotation pipeline matched 

expectations from the literature (Sections 4.2, 4.2.1). However, mutations in some DLBCL 

genes were underrepresented (BCL2, BCL6, CIITA, CD79B, PIM1, HIST1H1E, CD58, 

GNA13). Limitations of the data, the driver annotation pipeline, or the sequencing and 

assembly algorithms can account for these discrepancies. 

First, some genes had low mutation levels based on the lack of translocation data or 

copy number analysis. BCL2, for example, was present at a lower proportion than expected 

(34-45% of patients in literature144). However, the majority of BCL2 changes in DLBCL 

result from translocation; therefore, the lower prevalence of BCL2 driver mutations in our 

sans translocation dataset can be explained. The same is true for BCL6 and CIITA (33% and 

38% of patients in literature, respectively144). The addition of translocation and copy number 

analysis to future versions of this study should resolve the above issues.  
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Second, other genes had low mutation levels due to limitations of the computational 

pipeline which will be improved in future iterations. Note that for all genes below, the 

relevant variants were indeed present within our list of real variants but were not flagged as 

drivers. CD79B had a hotspot within our list of real variants at Y197 that was not flagged as a 

driver. Our computational pipeline failed to annotate this hotspot because (1) it was not 

present within our driver whitelist and (2) our sequencing aligned to a distinct transcript of 

CD79B than that used in COSMIC; therefore, our hotspot was present at Y197 rather than 

COSMIC’s hotspot at Y196, meaning the COSMIC recurrence flag did not call it as a 

hotspot. To ensure inclusion of this hotspot in the future, we plan to update the driver 

whitelist, ensure consistency of transcripts between our sequencing pipeline and COSMIC, 

and additionally flag any variants that are highly recurrent within our dataset as likely drivers.  

Two other genes, PIM1 and HISTIH1E, had numbers of total driver mutations lower 

than expected based on the literature. HIST1H1E has been reported to have a large number of 

missense mutations spread throughout the coding sequence of the gene without any obvious 

hotspots. PIM1 is similar, except a few codons show recurrence > 10 in COSMIC (S97 – 14; 

E79 – 11; and L2 – 10). Our list of real variants indeed contained missense mutations spread 

throughout the coding sequence of these genes consistent with previously reported patterns. 

Since it is unclear, however, which of these specific missense mutations are the driver 

mutations and which are passenger mutations, our pipeline marked these as variants of 

unknown significance with the exception of the recurrently mutated codons (PIM1 S97, E79, 

and L2). By comparison, other studies15 often include these missense mutations which 

explains the disparity in mutation frequency. Annotating missense variants that are not in 

hotspots and lack biological validation as drivers remains a challenge. 

Finally, our variant caller CaVEMan has a statistical limit at calling variants with 

VAF <5%135 which can miss subclonal mutations. A future solution to this problem would 

involve utilizing DeepSNV145, a relatively new variant caller which effectively calls variants 

at VAF < 5% without introducing significant errors. The variant calls resulting from both 

algorithms could then be manually reviewed and merged to create a more accurate set of 

variant calls.  

Any remaining low mutation levels not due to the factors described above are likely 

due to other inherent limitations of our pipeline. The biological effects method requires a 

functional annotation (i.e. oncogene or tumour suppressor gene) which is not always present. 

Manual curation can be challenging, especially for missense variants with low recurrence in 

genes that have not had extensive previous characterization. Overall, however, since multiple 
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independent methods are used to annotate a driver, our results are generally accurate. With 

the exception of the genes described above, the genomic landscape of DLBCL NOS was 

consistent with expectations from the literature. We suspect that future versions of this work 

implementing the changes above will make the genomic landscape fully consistent. 

 

4.1.3. Limitations of the Dataset 

Before proceeding further, it is worth noting the limitations of our genomic landscape 

analysis and gene-level mutational profiling described below. First, the data analysed for this 

manuscript does not incorporate translocations fundamental to the pathogenesis of DLBCL, 

FL, and BL; namely translocations in IGH/BCL2, BCL6, and MYC19. Second, the data did not 

include any copy number analysis. As a result, amplifications and copy number gains that are 

well characterized and important to the pathogenesis of DLBCL were missing: iR-17~92, 

2p16.1, BCL2, and SPIB19. While our targeted sequencing analysis was designed to detect 

changes in copy number, the targeted and unmatched nature of the sequencing data meant 

that traditional copy number analysis algorithms like Ascat146 would not work. At present, a 

custom algorithm is being designed and implemented to detect copy number changes in this 

dataset. Finally, gene expression data was not provided for these samples. As a result, the 

samples could not be clustered into cell of origin clusters (i.e. ABC-DLBCL, GCB-DLBCL) 

which would then have enabled an analysis of genomic landscape differences between these 

subtypes, potentially enabling further resolution and highlighting similarities.  

All of the above data are either present within or can be extracted from our 

collaborators’ full dataset. However, it was either not received or not processed in time for 

this publication. A final analysis of this lymphoma dataset is currently being conducted with 

the aim of incorporating the translocation, copy number, and gene expression data. We 

expect some important changes to result from the addition of this data. For example, all BL 

samples should exhibit a MYC translocation—the hallmark genetic change of the disease19. 

Nonetheless, the broad genetic changes shown within this publication to underlie DLBCL, 

FL, and BL should not change and meaningful conclusions can thus still be drawn. 
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Figure 3 The driver annotation pipeline. The driver annotation pipeline annotates drivers 

from sequencing variants in three steps.   
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4.2. Genomic Landscape of Lymphoma 

After identifying the driver mutations present within each dataset, we sought to gain 

an understanding of the genomic landscape of the B-NHLs within our dataset and of the 

DLBCL NOS subtype more specifically. 

 

4.2.1. The Genomic Landscape of DLBCL NOS 

Looking at the genomic landscape of drivers in just DLBCL NOS (Figure 5c), we 

note that driver mutations generally matched expectations consistent with the literature with a 

few exceptions discussed in Section 4.1.2. At a high level, the genomic landscape of DLBCL 

NOS exhibited a classic long tail distribution, with a small number of genes containing the 

majority of genetic lesions and a large number of genes more rarely mutated but collectively 

responsible for a large proportion of mutations. 

At the gene level, the most prevalent mutations expected from DLBCL were present: 

chromatin modifications (CREBBP, EP300, KMT2D), immune escape (B2M), deregulated 

BCL6 activity (MEF2B), proliferation and apoptosis (MYC), signalling (TNFRSF14, SGK1, 

PTEN), constitutive NF-KB/BCR activity (TNFAIP3, MYD88, CARD11), terminal 

differentiation (PRDM1), the cell cycle checkpoint (CDKN2A), and JAK/STAT activation 

(SOCS1).  

 
4.2.2. Comparative Genomic Landscapes of DLBCL NOS, FL, and BL  

To understand how the genomic landscapes of DLBCL NOS, FL, and BL differed, we 

plotted driver mutations across all genes and highlighted which fraction of driver mutations 

within each gene came from which diagnostic subtype (Figure 5a).  
 

4.2.2.1. DLBCL NOS vs. FL  

Comparing the genomic landscape of DLBCL NOS with that of FL (Figure 5c, d) 

reveals telling differences and similarities in the genomic causes of the diseases.  

First at a high level, both FL and DLBCL NOS exhibited classic long tail 

distributions. A small number of genes (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A) 

accounted for a large proportion of driver mutations found in patients. A high number of 

genes then individually had fewer drivers present yet still accounted for a large proportion of 

drivers when taken collectively. While the broad long-tail profile matches that of DLBCL 

NOS, FL had a “tighter tail”: more driver mutations concentrated in a smaller number of 

genes (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A). Collectively, these observations 
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point to the increased genetic heterogeneity of DLBCL compared to FL, a result consistent 

with expectations in the literature19.  

Second, strong similarities occur at the gene level between the DLBCL NOS and FL 

subtypes. Note that for both DLBCL NOS (n=925) and FL (n=566), a small number of genes 

contain the majority of driver mutations: KMT2D, CREBBP, TNFRSF14, TP53, SOCS1, 

B2M, ARID1A, CCND3, TNFAIP3 (constitutive NF-KB activity), and IRF8. This strong 

overlap points to the strong genomic similarities present between DLBCL NOS and FL and 

thus similar mechanistic deregulations that enable the progression of cancer. For example, the 

commonalities in KMT2D, CREBBP, and EZH2 point to the importance of epigenetic 

dysregulation in both FL and DLBCL NOS through similar mechanisms. Similarly, the 

prevalence of driver mutation in SOCS1, TNFRSF14, and TNFAIP3 enable aberrant 

signalling leading to proliferation via the JAK/STAT and NF-KB pathways respectively.  

Third, the prevalence of B2M mutations demonstrate the importance of immune 

escape.  While at a population level, similar genes are mutated in DLBCL NOS and FL, it’s 

worth noting that individual patients within each subtype can still have distinct combinations 

of mutations that distinguish the diseases. Patients of both FL and DLBCL NOS have, on 

average, multiple driver mutations (Figure 4). Therefore, even if two patients share a single 

driver mutation they may differ in the additional driver mutations they have acquired: a 

DLBCL NOS patient could, for example, have driver mutations in KMT2D and CREBBP 

while a FL patient could have driver mutations in KMT2D and TNFRSF14. Because these 

diseases rely on multiple driver mutations and the dysregulation of multiple pathways, 

substantial differences in pathogenesis and treatment response can result. Overall, this result 

reinforces the need for multifactorial classification. While it’s unlikely that most mutations in 

specific genes can be assigned exclusively to DLBCL NOS or FL, it still may be the case that 

specific combinations of mutations occur uniquely in DLBCL NOS vs. FL. Therefore, a 

multifactorial classification system such as the Bayesian Dirichlet Process is needed.  

Finally, important differences between DLBCL NOS and FL nonetheless persist. For 

DLBCL NOS patients, mutations in MYD88, TET2, BTG2, NOTCH2, IRF4, and RHOA 

appear to happen at a higher proportion than for patients with any another subtype. For FL 

patients, mutations in MEF2B and STAT6 appear to happen at a higher proportion than for 

patients with any another subtype. The high prevalence of these mutations within their 

corresponding subtypes point to the importance of those mutations to the unique pathogenesis 

mechanisms inherent to that particular subtype. MYD88, for example, has a well known 

L265P hotspot unique to DLBCL although the precise clinical and pathological significance 
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is unknown147. Similarly, activating mutations in the STAT6 transcription factor are known to 

improve B-cell survival in FL148. From a classification perspective, therefore, we expect 

mutations in these genes to become “class defining” lesions that enable us to distinguish such 

subtypes.  

4.2.2.2. DLBCL NOS vs. BL  

While DLBCL NOS and FL are largely similar with a few distinct class defining 

lesions, BL (Figure 5e) appears to have strong genetic differences with the DLBCL NOS and 

FL subtypes. Note that the genes which contained a high proportion of the driver mutations in 

FL and DLBCL NOS (KMT2D, CREBBP, TNFRSF14, EZH2, TP53, SOCS1, B2M, ARID1A, 

CCND3, TNFAIP3, IRF8) contain a far lower proportion of driver mutations in BL. 

Conversely, individual genes that were rarely mutated in FL and DLBCL NOS such as ID3 

and TCF3, now contain high proportions of the driver mutations in BL. From a mechanistic 

level, ID3 and TCF3 are well known mutations specific to the pathogenesis of BL that often 

work in conjunction with the MYC translocation – the hallmark of BL149,150. Combined, these 

observations point to a substantially distinct genetic landscape of BL as compared to DLBCL 

NOS and FL. Therefore, we expect the classification to draw a distinct and separate category 

for BL as separate from DLBCL NOS and FL that is more easily distinguishable than the 

categories drawn between DLBCL NOS and BL. 
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Figure 4 B-NHLs exhibit 3-4 driver mutations/patient. Average number of somatic driver mutation per 
patient across different diagnostic subtypes in this study. (a) Boxplot. Line represents median; hinges represents 
first and third quartile; whiskers represent furthest data point from quartile within 1.5X the interquartile range. 
Individual points represent outliers beyond that range. (b) Violin plot. 
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Figure 4. Genomic Landscape of Lymphoma 
b. Mutations by Diagnostic Subtype: All
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Figure 4. Genomic Landscape of Lymphoma 
c. Mutations by Effect: All
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: DLBCL, NOS
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: FL
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Figure 4. Genomic Landscape of Diagnostic Subtypes 
c. Mutations by Effect: BL
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Figure 5 B-NHL Diagnostic subtypes comprise distinct genomic landscapes. (a) Driver mutations identified 
in all B-NHL subtypes, coloured by diagnostic subtype in which they are identified. (b) Driver mutations 
identified in all B-NHL subtypes, coloured by effect of mutation. (c) Driver mutations identified in DLBCL 
NOS, coloured by effect of mutation. (d) Driver mutations identified in FL, coloured by effect of mutation. (e) 
Driver mutations identified in BL, coloured by effect of mutation.  
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4.3. Gene-Level Mutational Profiling 

 

After analysing the genomic landscape of BL, FL, and DLBCL at a population level, 

we analysed the genetic lesions incurred on each gene within our bait set. Overall, we were 

able to reproduce expected mutation patterns in well-characterized oncogenes and tumour 

suppressor genes. Additionally, we identified new patterns of recurrence and novel driver 

mutations of biological interest.  

 

4.3.1. Recreation of Expected Mutational Profiles  

First, we accurately reproduced expected genetic mutation profiles for key genes in 

DLBCL, FL, and BL.  

 

4.3.1.1. Well-Characterized Tumour Suppressor Genes  

As expected, well-characterized tumour suppressor genes exhibit a range of disrupting 

mutations (frameshift, missense, and nonsense) spread throughout the coding sequence of a 

given gene (Figure 6). The diversity in both type of disrupting mutation and residue targeted 

result from the fact that truncating a protein along its primary sequence, shifting the frame of 

large regions, or even disrupting an amino acid can cause a loss-of-function, regardless of the 

specific residue within which such a change occurs (Figure 6a). Broadly therefore, these 

patterns of disrupting mutation spread throughout the coding sequence of a gene correspond 

to tumour suppressor genes and were identified within our study.  

We identified the following tumour suppressor genes within in our cohort: EP300, 

ARID1A, KTM2D, MGA, PTEN, PTPN6, PTPRC, PTPRD, RB1, TET2, TNFAIP3, ZFP36L1. 

All have been previously characterized as tumour suppressor genes, either in lymphoma or in 

other cancer types. Therefore, our ability to reproduce the genetic mutation profiles for these 

tumour suppressor genes provided a partial validation of the effectiveness of our variant 

calling methodology.  

Additionally, a few tumour suppressor genes demonstrated a small number of highly 

recurrent mutations (Figure 6b). These mutations are likely disrupting critical residues, 

consistent with tumour suppressor activity. First, TBLXR1 exhibited an in-frame deletion 

(S324delS) whose function is unclear. A follow up study determining the function of this 

specific residue could illuminate TBLXR1 activity. Second, SOCS1 exhibited a missense 

mutation at S116 in its SH2 domain which binds JAKs and inhibits their catalytic activity, a 

critical function of the SOCS1 protein151. Finally, SMARCA4 exhibited various recurrent 



 68 

missense mutations in its helicase, superfamily 1/2, ATP-binding domain (T910, P913) and a 

recurrent missense mutation in its helicase, C-terminal domain (R1192). None had been 

previously reported in DLCBL although alternate mutations had been reported in small cell 

carcinoma of the ovary152. SMARCA4 is an ATP-dependent transcriptional activator that 

often acts through the SWI/SNF nucleosome remodelling complex153. Therefore, we suspect 

the T910 and P913 mutations are interfering with phosphorylation/dephosphorylation while 

the R1192 mutations are interfering with specific binding to the transcriptional targets of 

SMARCA4.  

Finally, two tumour suppressor genes (TNFRSF14 and BTG2) exhibited highly 

recurrent frameshift, nonsense, and nonstop mutations of interest. In addition to showing a 

general genomic landscape of frameshift and nonsense mutations spread throughout the 

coding sequence of the genome, TNFRSF14 exhibited a highly recurrent nonstop mutation at 

W12 and a highly recurrent frameshift mutation at T169fs*65 (Figure 6c). Similarly, BTG2 

displayed a highly recurrent nonsense mutation at Q33 (Figure 6d). While these mutations 

align with the broad theme of disrupting the tumour suppressor activity of TNFRSF14 and 

BTG2, their high recurrence sets them apart from other similar disrupting mutations. We 

suspect the high recurrence of these mutations could either point to regions of the coding 

sequence that are more exposed to mutation generally or these mutations could result from 

unique mutational processes that disproportionately target them. The exact function of both 

of these recurrent mutations, however, is unknown.  
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Figure 6 Gene-level analysis demonstrates tumour suppressor gene mutational profiles and reveals 
recurrent disruptive mutations. Each gene plot shows driver mutations found in the coding sequence, (2) 
protein domains from UniProtKB, and (3) bubbles. Bottom half of plots show bubbles sized according to the 
number of mutations found in COSMIC. (a) Tumour suppressor genes exhibit disrupting mutations spread 
throughout the coding sequence of the gene. ARID1A is shown as a representative example. (b) Highly recurrent 
missense mutations may disrupt a key residue. SOCS1 is shown as a representative example. (c, d) TNFRSF14 
and BTG2 exhibited recurrent nonsense, frameshift, and nonstop mutations.  
 

 

4.3.1.2. Well-Characterized Oncogenes  

Figure 5. Tumour Suppressor
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Similarly, we were able to recreate expected genomic profiles for well-characterized 

oncogenes: strong hotspots of missense mutations that likely cause a gain in function (Figure 

7). Unlike disrupting mutations in tumour suppressor genes, gain of function mutations in 

oncogenes often require more specificity: inactivating a specific self-regulatory domain for 

example or increasing the affinity of a protein for its target, causing constitutive binding. 

Therefore, activating mutations in oncogenes generally occur at specific residues, appearing 

as “hotspots” with significant mutational recurrence within genes. Within our dataset, we 

successfully recreated major hotspots within DLBCL, FL, and BL.  

Broadly, oncogenes within our cohort generated genetic mutation profiles that either 

(1) matched known hotspots and offered no new hotspots, (2) matched known hotspots and 

offered new hotspots, or (3) elucidated mutation profiles not previously described. We 

discuss each sequentially.  

The first category of oncogenes exhibited genetic profiles that recreated their known 

hotspots and did not reveal any new hotspots (Figure 7a): EZH2 (Y646); BRAF (G466, G469, 

N581, D594, L597, V600, K601); WHSC1 (E1099, TT1150)154; XPO1 (E571)155; MEF2B 

(D83)156; STAT6 (D419)148. Broadly, these genes tend to be among the most well 

characterized and in some cases, the most frequently mutated genes in lymphoma. As a 

result, it was unlikely that a study with a larger patient sample size and more coverage depth 

would be likely to uncover new additional hotspots. Regardless, our ability to recreate the 

genomic profiles for these known genes largely validate our approach.  

The second category of oncogenes exhibited genetic profiles that, in addition to 

recreating known hotspots, also revealed new hotspots (Figure 7b). First, the CARD11 gene 

recreated known hotspots at D230, D357, D401, and L251151 while also exhibiting a new 

mutation at Q249. The CARD11 mutations shown above all occur within the coiled domain 

of the protein, the disruption of which is known to cause constitutive NF-KB activation and 

enhanced NF-KB activity, hallmarks of DLBCL158. Second, the MAP2K1 gene recreated 

known hotspots at G203, P124, F53, C121160, while revealing a new recurrent mutation at 

D67. While the above mutations had been reported for melanoma159 and pediatric type 

follicular lymphoma160, we show their presence here in B-NHL samples, previously 

unreported. We suspect the D67 mutation functions through the same mechanism: causing 

constitutive ERK phosphorylation and activity. Third, the MYD88 gene recreated known 

hotspots at L265P, S219C, and V217F while also revealing a new recurrent mutation at 

S251N.69 All mutations are believed to cause constitutive NF-KB and JAK signalling 

although the exact mechanism for such dysregulation is unknown. Fourth, CCND3, 
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previously reported as an oncogene, exhibited missense hot spots at I290 and P284 and 

recurrent frameshift/nonsense mutations at R271 and Q276. While these recurrent mutations 

had been reported before, the degree of recurrence had not been analysed at scale and these 

mutations had not yet been considered strong hot spots. All mutations appear to disrupt the 

Cyclin D domain at the end of the CCND3 protein. Such mutations have been previously 

reported to increase the stability of the CCND3 protein and lead to CCND3 accumulation 

within the cell.20  

Finally, the third category of oncogenes exhibited genetic profiles that had previously 

been undescribed. One oncogene, STAT3, was present within this category (Figure 7c). 

STAT3 is a transcription factor, shown to be constitutively activated in many cancers, with a 

variety of downstream targets which regulate cell proliferation. Crucially, the activation of 

STAT3 relies on phosphorylation of Y705 which in turn requires docking with tyrosine 

kinases which is modulated by the SH2 domain161. This SH2 domain similarly affects the 

interaction of STAT3 with its transcriptional targets, thus affecting its ability to effectively 

regulate their expression. We found two recurrent mutations in STAT3: a E616 in-frame 

deletion and a Y640 missense mutation, both within the SH2 domain. We believe that by 

modulating the activation of STAT3 and the ability of STAT3 to repress or activate its 

transcriptional targets, these mutations are generating a cancerous phenotype. As an example, 

STAT3 has also been shown to activate the expression of matrix metalloproteinase-2 

(MMP2), a crucial protein which shows elevated levels in cases of tumour invasion, 

angiogenesis, and metastasis162. The E616 and Y640 mutations therefore could either be 

keeping STAT3 in a constitutively activated form or within STAT3 proteins that are 

transiently activated, activating MMP2 transcription more effectively.  

Crucially, the above mechanisms are new within the context of B-NHL and DLBCL 

in particular. Indeed, the only reported mechanism for STAT3-based pathogenesis in ABC-

DLBCL involves the dysregulation of STAT3 by BCL6 which directly represses STAT3. In 

this scenario, dysregulation of the BCL6 pathway leads to elevated STAT3 levels. The 

reported mechanism here, if biologically validated, would provide an alternative mechanism 

for STAT3-based pathogenesis. 



 73 

 

 

Figure 6. Oncogene

6a

6b

7a 

7b 



 74 

 
Figure 7 Gene-level analysis demonstrates known and novel oncogene hot spots. (a) Oncogenes exhibit 
missense hot spots. XPO1 is shown as a representative example. (b) We additionally identified novel hotspots in 
known oncogenes. CARD11 is shown as a representative example. (c) We created the mutational profile for 
STAT3, a known but uncharacterized oncogene.  
 

 

4.3.1.3. Oncogene/Tumour Suppressor Genes  

While most genes exhibited mutation profiles consistent with oncogenes and tumour 

suppressor genes, a set of genes (TP53, CREBBP, and FOXO1) exhibited mutational profiles 

with characteristics of both: disrupting mutations spread across the coding sequence of the 

genome with a few missense hotspots (Figure 8). We suspect that these genes are acting as 

tumour suppressor genes in a subset of the patients shown here but oncogenes in another 

subset of patients. The ability of these genes to function as both oncogenes and tumour 

suppressors had been previously described for other malignancies but not for B-NHLs.  

Figure 6. Oncogene

6c7c 
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Figure 8 Gene-level analysis shows the potential for genes to serve as both tumour suppressors and 
oncogenes. TP53 is shown as a representative example.  
 

 

4.3.2. Mutational Patterns 

 

4.3.2.1. Targets of Aberrant Somatic Hypermutation 

The role of aberrant somatic hypermutation (SHM) is well documented as 

contributing to DLBCL pathogenesis by either causing gain of function mutations in 

oncogenes or contributing to genome instability163. Crucially, SHM generally targets a 2kb 

region downstream of the transcriptional start site163. Therefore, genes targeted by SHM tend 

to display a high proportion of mutations near the N-terminal end of the gene’s coding 

sequence. Other criteria also exist to identify SHM within a gene, namely considering the 

percentage of single nucleotide variants (SNVs) within specific hot spots and the ratio of C:G 

mutations to A:T mutations163. Based on these rules, roughly 44 genes have been identified as 

SHM targets. While we have not yet applied this full rule set to identify all SHM-targeted 

genes within our cohort and thus characterize a more extensive set of SHM targets, we did 

indeed find evidence of SHM causing mutation within our study.  

B2M, RHOA, and MYC all demonstrated a proclivity toward missense mutations near 

the N-terminal end of the gene’s coding sequence (Figure 9). Additionally, these missense 

Figure 7. TSG/Oncogene
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mutations showed great variety in the residue targeted and the resulting change. While the 

mechanism of SHM in MYC is well-defined as resulting from translocation of MYC with the 

IGH locus, the mechanism of SHM in B2M and RHOA may result from either translocation 

or simply aberrant targeting of non-IGV loci. The specific mechanism is currently unknown. 

 

 
Figure 9 Gene-level analysis shows patterns of aberrant somatic hypermutation. B2M is shown as a 

representative example. 
 

 

4.3.2.2. Disrupting Mutations Clustered in Specific Domains 

Finally, we observed a set of genes with disrupting mutations clustered in specific 

domains (Figure 10). We suspect such mutations may be working to inactivate specific 

domains, such as regulatory or binding domains, that thereby cause a gain of function of the 

gene.  

 

4.3.2.2.1. BCL10 

BCL10 is a well-characterized oncogene primarily prevalent in SMZL and FL164,165. 

Rather than presenting a standard oncogene genomic profile, however, with a hotspot of 

missense mutations, BCL10 instead exhibits a cluster of frameshift and nonsense mutations 

primarily toward the C-terminal end of the gene (Figure 10a). In previous studies, in-frame 

Figure 8. Somatic hypermutation

89 



 77 

deletions near the C-terminal end of the BCL10 gene had been previously reported in a small 

subset of FL and DLBCL patients and postulated to contribute to the function of BCL10 in 

lymphomagenesis165. Our cohort, however, did not replicate these in-frame deletions. The 

specific pattern of frameshift and nonsense deletions clusters we present here have not been 

previously reported.  

We suspect these mutations are causing lymphomagenesis by leading to an activation 

of the NF-KB pathway by dysregulation of the CARD11-MALT1-BCL10 signalling 

complex. Generally, BCL10 forms a complex with CARD11, and MALT1 in order to 

activate NF-KB as a result of either an upstream CD40 or BCR stimulus166. An upstream 

stimulus is thought to phosphorylate CARD11, causing a conformational change which 

allows recruitment of BCL10-MALT1 which are believed to be constitutively 

associated166,167. Subsequently, CARD11 is thought to cause BCL10 to oligomerize into 

helical filamentous structures, and BCL10 and MALT1 are then ubiquitinated, ultimately 

allowing the translocation of NF-KB dimers from the cytoplasm to the nucleosome where 

they induce transcription. The BCL10 mutations reported here near the C-terminal end of the 

gene could therefore either (1) increase the affinity of BCL10-MALT1 for CARD11, 

bypassing the CARD11 conformational change usually necessary for association and thus 

activation of the NF-KB pathway, (2) cause BCL10 to oligomerize in the absence of 

CARD11, thus encouraging ubiquitination of the BCL10-MALT1 complex and allowing for 

NF-KB translocation to the nucleus in the absence of a stimulus, or (3) interfere with de-

phosphorylation and de-ubiquitination events necessary to reduce the response inherent to the 

prior pathways.  

We also suspect an independent mechanism could be acting. In particular, the C-

terminal end of BCL10 is also thought to enable the interaction between BCL10 and MALT1. 

Disruption of the C-terminal end of BCL10 could therefore lead to a CARD11-BCL10 

complex assembling without MALT1. It is additionally known that MALT1 is a caspase 

which generally cleaves BCL10. Therefore, these mutations could prevent effective cleavage 

of BCL10. The downstream pathogenetic effects of such a chain are uncertain; BCL10 

cleavage by MALT1 has not been shown to activate KF-KB though it has been shown to 

allow T-cells to adhere to fibronectin168. Ultimately, the effect of such a change on the 
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pathogenesis of FL and SMZL is unclear.  

 
Figure 10 Gene-level analysis reveals disrupting mutations clustered in highly specific domains. (a) 
BCL10, (b) IRF8, (c) FAS, (d) ARID1B, (e) NOTCH1, (f) NOTCH2, (g) KLF2, (h) TCF3, (i) SMARCB1. 

 

 

4.3.2.2.2. IRF8 

IRF8 exhibits a high number of frameshift and nonsense mutations at the C-terminal 

end of the gene, primarily in the SMAD/FHA domain (Figure 10b). Previous studies have 

postulated that overexpression of IRF8 in lymphoma via an IGH-IRF8 gene fusion could lead 

to oncogenesis through various pathways169. However, to our knowledge, we are the first to 

report specific frameshift and nonsense mutations in the C-terminal end of the IRF8 gene 

which potentially confer gain of function. This independent mechanism for oncogenic 

activity of IRF8 could provide an alternative target for therapies.  

Historically, IRF8 has been considered a tumour suppressor gene in both DLBCL and 

FL170 however more recent studies have considered it an oncogene169. Based on our results, 

the high clustering of disrupting mutations in the SMAD/FHA domain suggests that IRF8 is 

an oncogene in which the disruption of the SMAD/FHA domain confers a gain of function. 

In DLBCL, knockdown of IRF8 has been shown to decrease phosphorylation of p38 and 

ERK MAP, proteins critical to B lymphocyte proliferation169. Therefore, a gain of function in 

IRF8 via these mutations may instead stimulate B lymphocyte proliferation. Additionally, 

IRF8 has been shown to regulate MDM2 and TP53 in germinal center B cells, thus 

Figure 9. Disrupting
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preventing apoptosis169. Therefore, gain of function in IRF8 could additionally allow DLBCL 

and FL to evade apoptosis. 

 

 

 

4.3.2.2.3. FAS 

FAS exhibits a pattern of frameshift and missense mutations once again clustered near 

the C-terminal end of the gene, in the Death and Death-like domains (Figure 10c). FAS has 

been identified as a tumour suppressor gene in FL, DLBCL, and BL171. Biologically, FAS 

serves as a membrane receptor in the tumour necrosis factor receptor (TNFR) super family. 

FAS molecules on the cell surface spontaneously preassociate into homotrimers. Upon 

activation via ligand binding, interaction between the death domains of FAS lead to the 

recruitment of CASP8, a procaspase which activates the caspase cascade eventually leading 

to apoptosis172. The high proportion of frameshift and missense mutations in the death 

domain of FAS therefore are likely preventing homotypic interaction between death domains 

in the FAS homotrimer. Thereby, CD95-based apoptosis of B cells via FAS is being inhibited 

and cells with these mutations are allowed to proliferate.  

Overall, while hot spot mutations in the intracellular signalling domains of FAS have 

been identified previously172, frameshift and missense mutations affecting the death domains 

have not been previously identified. Specifically, mutations involving the SP, CRD1, CRD2, 

CRD3, and TM domains of FAS have been identified as important to the pathogenesis of T-

Figure 9. Disrupting
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cell lymphoblastic lymphoma172. However, to our knowledge, the specific disrupting 

mutations in the death domain for FL, BL, and DLBCL patients in our cohort have not been 

identified. Moreover, the absence of the SP, CRD1, CRD2, CRD3, and TM mutations 

identified for T-cell lymphoblastic lymphoma in our cohort suggest that the FAS gene could 

be functioning via distinct oncogenic mechanisms depending on the condition. Overall, our 

mutational profile suggests an independent and previously unreported mechanism for FAS 

mutations to induce cancerous proliferation in B-NHL.  

 

 

 

4.3.2.2.4. ARID1B 

ARID1B is a member of the SWI/SNF chromatin remodelling complex and is 

involved in cell cycle regulation. Broadly, ARID1B mutations in B-NHLs have not been 

previously characterized though mutations distinct from those mentioned here have been 

found for other diseases173–177. In our study, ARID1B exhibited a tight cluster of disrupting 

mutations (frameshift mutations, nonsense mutations, and proline insertion mutations) 

between amino acids 176-274 and 410-488 (Figure 10d). The clustering of these mutations 

near the N-terminal end of the coding sequence implies aberrant somatic hypermutation as a 

potential mechanism for the introduction of these mutations. The exact functions of these 

regions are currently unknown for ARID1B, however, they are likely breaking the alpha-

Figure 9. Disrupting
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helices crucial to ARID1B folding and thus disrupting overall activity.  

 

 

 

4.3.2.2.5. NOTCH1/NOTCH2 

NOTCH1 and NOTCH2 are Type I transmembrane proteins that transduce signals 

across the cellular membrane. Both NOTCH1 and NOTCH2 exhibit clusters of frameshift and 

nonsense mutations at the C-terminal end of their gene in the same domain (DUF3545) 

(Figure 10e, f). Both mutations imply loss of function in the DUF3545 domain, which is an 

intracellular domain. While the exact effects of these losses on NOTCH-based signalling are 

unclear, we suspect they are removing the site of recognition for the E3 ligase FBW7 that 

targets NOTCH1 for ubiquitin-mediated proteasomal degradation178. Indeed in mantle cell 

lymphoma, disrupting and truncating mutations near the C-terminal end of the NOTCH gene 

have been shown to dysregulate NOTCH signalling through such a mechanism.  
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4.3.2.2.6. KLF2  

KLF2 is a zinc finger protein that plays a transcriptional activation role. Additionally, 

KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma179. 

KLF2 exhibited a series of missense mutations near the C-terminal end of its gene in or near 

its zinc finger domains (Figure 10g). Such mutations are likely inhibiting the ability of KLF2 
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to accurately recognize its transcriptional targets and are therefore disrupting mutations. Such 

inactivating mutations likely have a pathogenic role: in SMZL, for example, KLF2 deficiency 

causes follicular B cells to migrate to the splenic marginal zone180. For DLBCL, however, the 

exact pathogenesis mechanism of KLF2 is unknown.  

 

 

 

 

4.3.2.2.7. TCF3 

TCF3 is a helix-loop-helix transcription factor critical to B cell development whose 

dysregulation is implicated in BL pathogenesis. In our study, TCF3 exhibited missense 

mutations clustered in the Myc-type, basic helix-loop-helix (bHLH) domain, replicating those 

seen previously in BL samples20 (Figure 10h). Here, as in the previously reported BL cases, 

we suspect these mutations are disrupting the bHLH domain and thereby disrupting TCF3 

function and tonic B-cell receptor signalling more broadly20.  
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4.3.2.2.8. SMARCB1 

SMARCB1 is part of the SWI/SNF complex, enabling transcriptional machinery to 

access its targets. In our B-NHL cohort, we found a cluster of frameshift, nonsense, and 

missense mutations near the C-terminal end of the SMARCB1 gene (Figure 10i). SMARCB1 

mutations have been primarily found in multiple meningiomas181 and epitheloid sarcomas153, 

where the gene is present as a tumour suppressor gene. Indeed, knockouts have been shown 

to generate tumour growth153. Unfortunately, it is unclear whether these mutations are 

ultimately activating or disruptive. However if they are indeed disruptive, then a key question 

arises surrounding why disrupting mutations are found only in the C-terminal end of the gene 

but not in earlier parts of the coding sequence. 
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4.3.2.2.9. SGK1 

SGK1 carried a very specific set of mutations that affected essential splice sites. 

Twelve essential splice site mutations were found at Chr6:134495648 and thirty-four 

essential splice site mutations were found at Chr6:134495725. These two mutations flanked 

the 5’ and 3’ end of a single exon within SGK1 and thus likely cause aberrant splicing of that 

exon. Previous studies have suggested SGK1 is a tumour suppressor gene on the basis of the 

splice site mutations53, but the high degree of clustering of these at a single exon (not 

previously evident due to the small numbers of patients), coupled with the absence of 

nonsense and frameshift mutations, suggests these might be gain-of-function mutations. 
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