1. Introduction

1.1. Classifying cancer, a deeply heterogeneous disease

Cancer is an extremely heterogeneous disease, showing distinct clinical and biological
manifestations between cancer types, within subtypes, and even between patients with the
same subtype. Such heterogeneity results from the pathogenesis of cancer: as somatic
mutations accumulate over time, in a myriad of genes and tissues, a variety of pathways are
dysregulated leading to cell proliferation. Patients of the same cancer type may carry distinct
causative mutations. Indeed, different tumour cells within a patient may also carry distinct
causative mutations. Overall, the myriad combinations of genetic mutations targeting distinct
genes, cells, and tissues generate different clinical courses, survival likelihoods, and
treatment responses between patients.

To deal with such heterogeneity, classification schemes have been developed. By
grouping patients according to common characteristics, broad patterns emerge with patients
sorted according to common prognoses and responses to treatments. Historically, such
classification has relied on histological, morphological, and immunohistochemical
examination of the patient’s tumour cells. Such an approach, however, is lacking in a few
respects. First, different cancer types have been shown to share similar histological,
morphological, and immunohistochemical characteristics in spite of having distinct genetic
causes and treatment responses. As a result, traditional classification systems often fail to
resolve categories at a high enough level precisely because they do not incorporate the
causative genetic changes leading to disease. Second, resulting classes are often difficult to
interpret in the context of the pathways distinguishing diseases, making translation to therapy
more challenging. Indeed, a distinct morphological profile does not immediately suggest a
new therapeutic target. Thus, even when a new class is demarcated, it is often challenging to
directly improve its clinical course. Finally, the clinical insights of some distinct classes have
struggled with widespread relevance and reproducibility. For example, DLBCL was
traditionally classified according to centroblastic, immunoblastic, and anaplastic subtypes
with distinct clinical courses. Such clinical differences, however, have struggled with
reproducibility. Additionally, the morphological subtype with the worst clinical course
(anaplastic) has shown to occur in only 7.4% of cases, making widespread clinical relevance
poor’.

With the advent of more readily available patient samples and cheap sequencing,

classification schemes have been shifting toward resolving cancer on the basis of molecular
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and genetic differences. Throughout, blood cancers have led the way. Indeed, Chronic
Myeloid Leukemia began with morphological characterization®* which then gave way to the
Philadelphia Chromosome and the BCR-ABL mutation as the primary classification
characteristics’. Acute Myeloid Leukaemia then followed with the first identification of a
specific genetic subtype: Acute Promyelocytic Leukaemia® . Both of these categories of
disease, defined by their canonical genetic lesion, now have specific targeted therapies
against this genetic change, radically improving treatment outcomes for those patients. In
solid tumours, Ewing’s Sarcoma was defined by a t(11;22) translocation'’; breast cancer
became defined by ERBB2'""?; and non small cell lung cancers are increasingly defined by
specific kinase mutations'’.

Broadly, genetic and molecular classification approaches share a series of advantages
over traditional approaches. First, these classifications rely on the causative genetic and
molecular changes that underlie cancer. As a result, they are more likely to be clinically
relevant, durable, and reproducible. Even as treatments change, for example, the underlying
genetic structure of cancers are likely to remain the same. Second, genetic classifications
group patients on the basis of pathways rather than morphology, leading to improved
biological insights. By extracting the unique pathways that distinguish patient groups, the
pathogenesis of distinct cancers become clearer. Finally, genetic classifications can improve
clinical prognostication and suggest therapeutic targets. Targeted therapies inhibiting a
specific gene that defines a genetic class can be reserved exclusively for patients of that class,
improving treatment selection. Similarly, when a new patient class emerges that is resistant to
traditional therapies, the pathway dysregulations allowing such resistance can be examined

and new target combinations can be suggested.

1.2. A purely genetic classification for DLBCL

While an effective classification scheme could benefit all cancers, it could especially
benefit DLBCL. Compared to other cancers, DLBCL exhibits a higher degree of genetic
heterogeneity since it derives from Germinal Centre B cells which often have unstable
genomes. Additionally, an effective classification could immediately help clinical outcomes.
30% of DLBCL patients today are not cured by R-CHOP, the front line chemotherapeutic
treatment. These patients subsequently relapse upon which their prognosis suffers
significantly. At present, there is no way to pre-emptively identify these patients in spite of
the fact that they likely exhibit genomic differences that prevent effective R-CHOP treatment.

A classification system that identifies these patients would enable physicians to move them
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toward more aggressive clinical regimens such as stem cell transplantation or experimental
therapies. It could also help develop more targeted clinical trial protocols, in which only
those patients likely to relapse are recruited.

In this study, we propose a novel classification scheme for B-NHLs and DLBCL
based purely on genetic changes. By conducting targeted deep sequencing of 1607 B-NHL
patients and subsequently classifying these patients on the basis of genetics alone, we: (1)
identify novel mutation patterns such as the aberrant splicing of an exon in SGK1, (2)
produce the first ever purely genetic classification of B-NHLs broadly and DLBCL in
particular, (3) unlock previously unknown patterns of co-mutation which shed light on unique
pathogenesis mechanisms, (4) identify novel subclasses of DLBCL, including one with
hallmark SMZL mutations, revealing new insights regarding DLBCL pathogenesis, and (5)
set the stage for a follow up clinical study examining the unique lesions that give 30% of
DLBCL patients poor R-CHOP responses'”, thus shedding light on the critical clinical
question of DLBCL.

Our study occurs in three main stages (Figure 1a). First, we identify driver mutations
in 292 genes implicated in lymphoid and myeloid malignancies across 1607 patients. Second,
we conduct mutational analysis at the landscape level and at the gene-level for DLBCL, FL,
and BL — the primary B-NHLs included in our study. Finally, we utilize Bayesian Dirichlet
Processes — a machine learning classification approach — to classify our samples on the basis
of genetics alone.

Our study draws its effectiveness from its depth and size. We sequence 1607 total
patients spread across a range of B-NHL subtypes, with the largest patient populations for
DLBCL and FL (Figure 1b). Our study is one of only two studies of such scope'” and is
roughly 10X larger than all other previous DLBCL and B-NHL genetic sequencing studies,
allowing us to consider more B-NHL subtypes. Additionally, our targeted sequencing
approach allows us to sequence at greater depth, thus identifying rarer and clinically useful
variants previously missed. Combined, such scope and scale finally allows us to use Bayesian
Dirichlet Processes —a machine learning approach that can effectively delineate co-mutation
patterns with a sufficiently large dataset. While we apply this approach to DLBCL and B-
NHLSs in this study, the broad methodology should hold equally for other cancers. As a result,
we see this as a foundational study for a new paradigm in cancer classification. Additionally,
upon further work which will incorporate gene expression data, copy number changes, and

translocation data, we will be able to (1) compare our classification robustly with the cell of
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origin classification based on gene-expression profiling, potentially providing a surrogate and

(2) present the most integrative classification scheme to date.
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Figure 1 Overview of Study. (a) Process Overview. Targeted Sequencing of 292 genes was conducted on 1607
lymphoma samples. Subsequently, variants were called, filtered into somatic mutations, and annotated as drivers
or passengers. Finally, three analyses were conducted investigating the genomic landscape of B-NHLs,
examining the mutation profiles of crucial lymphoma genes, and creating the first ever purely genetic
classification of B-NHLs and DLBCL in particular. (b) Patient Cohort Overview.
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Overall Sex Age oS Treatment Survival Status
Watch and
M (% Median Not known Not treated  Treated (% wait (% 0 (% 1(%
n (% total) F (% subtype)  subtype) (Range) Median (Range) (% subtype) (% subtype) subtype) subtype) subtype) subtype)
Total 1607 (100%) 771 (47.9%) 832 (51.7%) 66 (3, 98) 2112 (-19, 4655) 69 (4.2%) 125 (7.7%) 1185 (73.7%) 224 (13.9%) 871 (54.2%) 732 (45.5%)
Diagnostic Group WHO
DLBCL-HL intermediate 15 (0.9%) 6 (40%) 9 (60%) 54 (11, 81) 2155 (15, 2533) 0 (0%) 0 (0%) 15 (100%) 0 (0%) 12 (80%) 3 (20%)
Burkitt Lymphoma 39 (2.4%) 6 (15.3%) 33 (84.6%) 38 (3, 86) 2023 (-1, 4623) 1(2.5%) 7 (17.9%) 31(79.4%) 0 (0%) 24 (61.5%) 15(38.4%)
Diffuse large B-cell lymphoma 962 (59.8%) 445 (46.2%) 517 (53.7%) 69 (8, 98) 1819 (-19, 4655) 46 (4.7%) 114 (11.8%) 802 (83.3%) 0 (0%) 439 (45.6%) 523 (54.3%)
Follicular lymphoma 587 (36.5%) 314 (563.4%) 273 (46.5%) 64 (20, 98) 2493 (1, 4655) 22 (3.7%) 4 (0.6%) 337 (567.4%) 224 (38.1%) 396 (67.4%) 191 (32.5%)
Diagnostic Subtype ICDO3
DLBCL-HL intermediate 15 (0.9%) 6 (40%) 9 (60%) 54 (11, 81) 2155 (15, 2533) 0 (0%) 0 (0%) 15 (100%) 0 (0%) 12 (80%) 3 (20%)
Burkitt lymphoma 39 (2.4%) 6 (15.3%) 33(84.6%) 38 (3, 86) 2023 (-1, 4263) 1(2.5%) 7 (17.9%) 31(79.4%) 0(0%) 24 (61.5%) 15(38.4%)
Diffuse large B-cell ymphoma,
NOS 925 (57.5%) 430 (46.4%) 495 (53.5%) 69 (8, 98) 1824 (-19, 4655) 44 (4.7%) 107 (11.5%) 774 (83.6%) 0 (0%) 422 (45.6%) 503 (54.3%)
Follicular lymphoma 566 (35.2%) 305 (53.8%) 261 (46.1%) 64 (20, 98) 2477 (1, 4655) 22 (3.8%) 4 (0.7%) 318 (56.1%) 222 (39.2%) 378 (66.7%) 188 (33.2%)
Follicular lymphoma: large cell 21 (1.3%) 9 (42.8%) 12 (57.1%) 57 (37, 84) 3313 (88, 4589) 0 (0%) 0 (0%) 19 (90.4%) 2 (9.5%) 18 (85.7%) 3 (14.2%)
Intravascular large B-cell
lymphoma 1 (0%) 0 (0%) 1 (100%) 71 (71, 71) 2232 (2232, 2232) 0 (0%) 0 (0%) 1 (100%) 0 (0%) 1 (100%) 0 (0%)
Plasmablastic large B-cell
lymphoma 14 (0.8%) 5 (35.7%) 9 (64.2%) 71 (18, 95) 426.5 (2, 3379) 1(7.1%) 4 (28.5%) 9 (64.2%) 0 (0%) 3 (21.4%) 11 (78.5%)
T-cell/histiocyte-rich large B-
cell lymphoma 22 (1.3%) 10 (45.4%) 12 (54.5%) 65.5(30,89) 1836 (7, 2782) 1 (4.5%) 3 (13.6%) 18 (81.8%) 0 (0%) 13 (59%) 9 (40.9%)
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