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1. Introduction 

 

1.1. Classifying cancer, a deeply heterogeneous disease 

Cancer is an extremely heterogeneous disease, showing distinct clinical and biological 

manifestations between cancer types, within subtypes, and even between patients with the 

same subtype. Such heterogeneity results from the pathogenesis of cancer: as somatic 

mutations accumulate over time, in a myriad of genes and tissues, a variety of pathways are 

dysregulated leading to cell proliferation. Patients of the same cancer type may carry distinct 

causative mutations. Indeed, different tumour cells within a patient may also carry distinct 

causative mutations. Overall, the myriad combinations of genetic mutations targeting distinct 

genes, cells, and tissues generate different clinical courses, survival likelihoods, and 

treatment responses between patients.  

To deal with such heterogeneity, classification schemes have been developed. By 

grouping patients according to common characteristics, broad patterns emerge with patients 

sorted according to common prognoses and responses to treatments. Historically, such 

classification has relied on histological, morphological, and immunohistochemical 

examination of the patient’s tumour cells. Such an approach, however, is lacking in a few 

respects. First, different cancer types have been shown to share similar histological, 

morphological, and immunohistochemical characteristics in spite of having distinct genetic 

causes and treatment responses. As a result, traditional classification systems often fail to 

resolve categories at a high enough level precisely because they do not incorporate the 

causative genetic changes leading to disease. Second, resulting classes are often difficult to 

interpret in the context of the pathways distinguishing diseases, making translation to therapy 

more challenging. Indeed, a distinct morphological profile does not immediately suggest a 

new therapeutic target. Thus, even when a new class is demarcated, it is often challenging to 

directly improve its clinical course. Finally, the clinical insights of some distinct classes have 

struggled with widespread relevance and reproducibility. For example, DLBCL was 

traditionally classified according to centroblastic, immunoblastic, and anaplastic subtypes 

with distinct clinical courses. Such clinical differences, however, have struggled with 

reproducibility. Additionally, the morphological subtype with the worst clinical course 

(anaplastic) has shown to occur in only 7.4% of cases, making widespread clinical relevance 

poor1. 

With the advent of more readily available patient samples and cheap sequencing, 

classification schemes have been shifting toward resolving cancer on the basis of molecular 
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and genetic differences. Throughout, blood cancers have led the way. Indeed, Chronic 

Myeloid Leukemia began with morphological characterization2–4 which then gave way to the 

Philadelphia Chromosome and the BCR-ABL mutation as the primary classification 

characteristics5. Acute Myeloid Leukaemia then followed with the first identification of a 

specific genetic subtype: Acute Promyelocytic Leukaemia6–9. Both of these categories of 

disease, defined by their canonical genetic lesion, now have specific targeted therapies 

against this genetic change, radically improving treatment outcomes for those patients. In 

solid tumours, Ewing’s Sarcoma was defined by a t(11;22) translocation10; breast cancer 

became defined by ERBB211,12; and non small cell lung cancers are increasingly defined by 

specific kinase mutations13.  

Broadly, genetic and molecular classification approaches share a series of advantages 

over traditional approaches. First, these classifications rely on the causative genetic and 

molecular changes that underlie cancer. As a result, they are more likely to be clinically 

relevant, durable, and reproducible. Even as treatments change, for example, the underlying 

genetic structure of cancers are likely to remain the same. Second, genetic classifications 

group patients on the basis of pathways rather than morphology, leading to improved 

biological insights. By extracting the unique pathways that distinguish patient groups, the 

pathogenesis of distinct cancers become clearer. Finally, genetic classifications can improve 

clinical prognostication and suggest therapeutic targets. Targeted therapies inhibiting a 

specific gene that defines a genetic class can be reserved exclusively for patients of that class, 

improving treatment selection. Similarly, when a new patient class emerges that is resistant to 

traditional therapies, the pathway dysregulations allowing such resistance can be examined 

and new target combinations can be suggested. 

 

1.2. A purely genetic classification for DLBCL 

While an effective classification scheme could benefit all cancers, it could especially 

benefit DLBCL. Compared to other cancers, DLBCL exhibits a higher degree of genetic 

heterogeneity since it derives from Germinal Centre B cells which often have unstable 

genomes. Additionally, an effective classification could immediately help clinical outcomes. 

30% of DLBCL patients today are not cured by R-CHOP, the front line chemotherapeutic 

treatment. These patients subsequently relapse upon which their prognosis suffers 

significantly. At present, there is no way to pre-emptively identify these patients in spite of 

the fact that they likely exhibit genomic differences that prevent effective R-CHOP treatment. 

A classification system that identifies these patients would enable physicians to move them 
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toward more aggressive clinical regimens such as stem cell transplantation or experimental 

therapies. It could also help develop more targeted clinical trial protocols, in which only 

those patients likely to relapse are recruited. 

In this study, we propose a novel classification scheme for B-NHLs and DLBCL 

based purely on genetic changes. By conducting targeted deep sequencing of 1607 B-NHL 

patients and subsequently classifying these patients on the basis of genetics alone, we: (1) 

identify novel mutation patterns such as the aberrant splicing of an exon in SGK1, (2) 

produce the first ever purely genetic classification of B-NHLs broadly and DLBCL in 

particular, (3) unlock previously unknown patterns of co-mutation which shed light on unique 

pathogenesis mechanisms, (4) identify novel subclasses of DLBCL, including one with 

hallmark SMZL mutations, revealing new insights regarding DLBCL pathogenesis, and (5) 

set the stage for a follow up clinical study examining the unique lesions that give 30% of 

DLBCL patients poor R-CHOP responses14, thus shedding light on the critical clinical 

question of DLBCL. 

Our study occurs in three main stages (Figure 1a). First, we identify driver mutations 

in 292 genes implicated in lymphoid and myeloid malignancies across 1607 patients. Second, 

we conduct mutational analysis at the landscape level and at the gene-level for DLBCL, FL, 

and BL – the primary B-NHLs included in our study. Finally, we utilize Bayesian Dirichlet 

Processes – a machine learning classification approach – to classify our samples on the basis 

of genetics alone. 

Our study draws its effectiveness from its depth and size. We sequence 1607 total 

patients spread across a range of B-NHL subtypes, with the largest patient populations for 

DLBCL and FL (Figure 1b). Our study is one of only two studies of such scope15 and is 

roughly 10X larger than all other previous DLBCL and B-NHL genetic sequencing studies, 

allowing us to consider more B-NHL subtypes. Additionally, our targeted sequencing 

approach allows us to sequence at greater depth, thus identifying rarer and clinically useful 

variants previously missed. Combined, such scope and scale finally allows us to use Bayesian 

Dirichlet Processes – a machine learning approach that can effectively delineate co-mutation 

patterns with a sufficiently large dataset. While we apply this approach to DLBCL and B-

NHLs in this study, the broad methodology should hold equally for other cancers. As a result, 

we see this as a foundational study for a new paradigm in cancer classification. Additionally, 

upon further work which will incorporate gene expression data, copy number changes, and 

translocation data, we will be able to (1) compare our classification robustly with the cell of 
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origin classification based on gene-expression profiling, potentially providing a surrogate and 

(2) present the most integrative classification scheme to date. 
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Figure 1 Overview of Study. (a) Process Overview. Targeted Sequencing of 292 genes was conducted on 1607 
lymphoma samples. Subsequently, variants were called, filtered into somatic mutations, and annotated as drivers 
or passengers. Finally, three analyses were conducted investigating the genomic landscape of B-NHLs, 
examining the mutation profiles of crucial lymphoma genes, and creating the first ever purely genetic 
classification of B-NHLs and DLBCL in particular. (b) Patient Cohort Overview. 

  

Figure 1. Overview of Study a. Process Overview b. Patient Overview 
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Figure 1. O
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