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5. Classification Analysis 

 

With all drivers identified, we then proceeded to classify our dataset by identifying 

patterns of co-mutation within the set of drivers. We classified samples of all diagnostic 

subtypes together with the aims of (1) ensuring we could successfully differentiate known 

diagnostic subtypes and (2) utilizing the known classifications to generate a granular and 

accurate classification for DLBCL samples. In particular, we strived to produce a genetic 

classification that could add granularity and accuracy to the classifications already built by 

the WHO and the gene expression based, cell of origin classification for DLBCL.  

We chose to classify all samples at once as opposed to dividing them by subtype and 

then classifying them as such an approach would increase our ability to differentiate between 

DLBCL subtypes. Crucially, DLBCL can either arise de novo or as the transformation of 

various indolent lymphomas. Therefore, the genetic patterns present within a given DLBCL 

cohort are a mixture of the patterns which underlie DLBCL de novo and the patterns which 

underlie various indolent lymphoma. By including both DLBCL samples and samples of 

other lymphomas in the same classification, the Bayesian Dirichlet processes were able to 

robustly extract the genomic patterns of FL and BL more effectively based on those samples 

and then apply those patterns to differentiate among samples marked as DLBCL samples. 

Had DLBCL samples been including in isolation, it would have been substantially more 

difficult to differentiate the genomic patterns of DLBCL samples that had transformed from 

other types.  

Compared to prior classification studies, our project primarily derives its power from 

its scope. First, 1607 B-NHL lymphoma patients were analysed. By comparison, only one 

prior DLBCL study had 1,001 DLBCL samples whereas other prior B-NHL studies were 

about 10X smaller15. Similarly, the depth of our targeted coverage (~500x) substantially 

exceeded that of prior studies, enabling the identification of rarer variants. Combined, such 

scope and power enable the use of powerful classification technologies that would otherwise 

be ineffective.  

Two important features distinguish a genetic classification of DLBCL NOS and 

cancer more broadly. First, while the treatments and clinical course of DLBCL and B-NHL 

patients will change over time as new therapies are introduced, we suspect that the underlying 

genomic patterns that contribute to the pathogenesis of these diseases will remain the same. 

Thereby, a genetic classification is likely to be stable and lasting, simply gaining refinement 

as more driver variants and genetic datasets are added. Second because genomic changes 
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have been well characterized as the cause of various cancer types, classifying cancers on a 

genetic basis reveals the co-mutation patterns that fundamentally cause pathogenesis. 

Thereby, genetic classifications grant unique insight into the mechanistic onset and 

progression of disease which can then ideally be utilized to design new treatments. Overall, 

therefore, we believe that a genetic based classification for DLBCL NOS, and for other 

cancers more generally, is both causal and stable.  

As with the genomic landscape section, this classification section will similarly be 

substantially improved over the next few months via the addition of copy number and 

translocation data. Given the well-characterized importance of copy number alterations and 

translocations in various types of B-NHL lymphoma, we suspect the classification may 

change substantially. While the underlying driver mutations will not change, we suspect class 

defining lesions may be present in the copy number alteration and translocation data that will 

substantially change the grouping. For example, the MYC translocation is a well-known 

hallmark lesion for BL that will likely become class defining once added to our dataset. 

Similarly, BCL2 and MYC double hit patients are known to have a substantially more 

aggressive clinical course182 and we suspect these patients may also form their own cluster. In 

the absence of this data, however, initial conclusions about mutation patterns underlying 

DLBCL and B-NHLs can be drawn.  

 

5.1. Bayesian Dirichlet Processes  

In order to classify the dataset, we used Bayesian Dirichlet Processes, a 

nonparametric and hierarchical clustering approach142. Bayesian Dirichlet Processes work in 

a fashion similar to Mixture Models. Mixture Models operate by creating a fixed set n of 

multivariate distributions, seeing how well these distributions explain the data at present, 

modifying the distributions to explain the data more effectively, and repeating until 

convergence is met. Bayesian Dirichlet Processes function similarly except the number n of 

multivariate distributions is not fixed. In other words, in Bayesian Dirichlet Processes the 

algorithm must learn both the optimal shape and parameters of each distribution as well as 

the optimal number n of distributions that can describe the dataset overall. Bayesian Dirichlet 

Processes accomplish this task by cycling each data point and either assigning the data point 

to (1) an existing cluster or (2) a newly created cluster. The probability of being assigned to 

an existing cluster scales with the number of data points already assigned to that cluster. 

Thereby, the algorithm prevents overfitting: if too many clusters are created that have too few 

points, then in subsequent iterations, the data points in small clusters are likely to be 
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reassigned to larger clusters, thus eliminating the smaller clusters and reducing the number of 

overall clusters.  

By utilizing this nonparametric clustering approach, we can remove bias inherent to 

the classification methodology. Had we instead use a parametric approach, such as the 

mixture models mentioned above, we would have had to define the number of clusters which 

would have artificially biased the classification. By instead leaving the optimal number of 

clusters to be learned, we can produce a classification more representative of the underlying 

dataset.  

 

5.2. Classification on All Subtypes  

Overall, our classification yielded 8 distinct classes within our cohort of B-NHLs. 

(Figure 11). All eight classes within our classification are well defined and meaningfully 

distinct from each other. The genes which denote each class are strongly co-mutated with 

each other but mutually exclusive with mutations in driver genes that define other classes. 

Statistically, this appears as strong patterns of correlation between genes in a given genomic 

class and anti-correlation between genes in different genomic classes. The strength and 

distinctness of these co-mutation patterns give us confidence in the accuracy of our 

classification, even in the absence of incorporating translocation data and copy number 

analysis.  

  



 

 
Figure 11 Co-mutation and mutual exclusivity patterns generate eight distinct classes in FL, BL, and DLBCL. Lower triangle 
depicts pairwise association between lesions in genetic classes. The colour of each tile corresponds to the odds ratio for each pair, 
with brown representing mutual exclusivity and blue indicating co-mutation. Odds ratios are computed by observed co-mutation rates 
compared to expected co-mutation based on each lesion’s gene frequency. Coloured tiles represent significant relationships (p < 0.05), 
asterisks show significant family wise error rates (FWER < 0.05), boxes show false discovery rates < 0.1 (FDR < 0.1). Upper triangle 
depicts absolute occurrences of co-mutation for each pair, coloured on a gradient.
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5.2.1. Class 0 (TET2, TP53) 

Class 0 (TET2; TP53) is an “error” class designated by the Bayesian Dirichlet 

Classification algorithm for outliers (Figure 12b). This class contained 8% of patients, 

emphasizing the heterogeneity of B-NHLs and DLBCL and the challenge that heterogeneity 

poses to effective classification methods. 

 

5.2.2. Class 1 (KMT2D, CREBBP, TNFRSF14, EZH2, ARID1A) 

Class 1 (KMT2D, CREBBP, TNFRSF14, EZH2, and ARID1A) showed a mutational 

pattern consistent with FL, reinforcing the distinctness of the FL genomic landscape and the 

capacity for our Bayesian Dirichlet clustering to extract distinct genomic patterns (Figure 

12c). Most FL lymphoma patients clustered into Class 1 (Figure 13a), and indeed upon 

examination, the predominant lesions defining Class 1 are hallmark lesions of FL. The role of 

KMT2D, CREBBP, EZH2, and EP300 in chromatin remodelling and the pathogenesis of FL 

have been well-described and are present in significant proportions of the Class 1 patient 

population. Some hallmark mutations of FL were indeed missing, namely the t(14;18) 

translocation leading to ectopic expression of BCL219. However, this lesion was missing 

simply because translocation data was not incorporated within the classification analysis 

rather than due to a flaw in analysis or a discrepancy within the dataset. 

Not all Class 1 patients were diagnosed as FL patients, however. Indeed, substantial 

proportions of BL patients and DLBCL patients were also assigned to Class 1 (Figure 13a). 

First, we suspect that the DLBCL patients assigned to Class 1 are likely DLBCL whose 

lymphoma initiated as a FL and subsequently transformed to the more aggressive DLBCL. 

Similarly, we suspect that the BL patients within Class 1 may similarly have transformed 

from FL. Although FL generally transforms into DLBCL, cases of transformation into BL 

have also been reported183. Such an explanation is supported by the class composition of BL. 

Indeed the majority of BL samples in our study classified into Class 3 (TP53; CCND3) 

which, as described below, contained the hallmark mutations of BL and could thus represent 

de novo BL. The second major proportion of BL samples classified into Class 1, which may 

have resulted from FL transformation. Future work incorporating MYC translocation data will 

likely resolve this question.  

For both Class 1 DLBCL patients and Class 1 BL patients, the benefits of a genetic 

classification approach are clear: even though these patients have histological characteristics 

consistent with DLBCL and BL, the underlying genetics driving their pathogenesis are 

similar to FL. As a result, these patients may respond differently to current and novel 
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treatments compared to other DLBCL and BL patients. We hope to investigate these 

treatment responses moving forward in the hope of generating novel clinical insights. 

 

5.2.3. Class 2 (MYD88, BTG2, TBL1XR1, CDKN2A, PRDM1, IRF4, NF1, and KDM6A)  

Class 2 (MYD88; BTG2; TBL1XR1; CDKN2A; PRDM1; IRF4; NF1; and KDM6A) 

showed a genomic profile broadly consistent with ABC-DLBCL (Figure 12d). MYD88 

(constitutive NF-KB/BCR activity), CDKN2A (cell cycle checkpoint), and PRDM1 (terminal 

differentiation block) are mutations with well-known pathogenetic functions specific to 

ABC-DLBCL. The clustering of these mutations within Class 2 thereby make it likely to 

contain the majority of ABC-DLBCL cases. Importantly, such a clustering was accomplished 

with mutation data alone. Thereby, both epigenetic and genetic causes could differentiate 

ABC-DLBCL and GCB-DLBCL classes within the cell of origin classification, which up 

until now has predominantly relied on epigenetics to distinguish cell types via gene 

expression patterns.  

The remaining genes mutated within Class 2, though numerous, were mutated in 

substantially smaller proportions than the aforementioned genes. Driver mutations in these 

genes could yield additional heterogeneity within the ABC-DLBCL category, although the 

broad causative drivers remain equivalent.  

Some mutations which define the ABC-DLBCL category were found within other 

classes. Namely, TNFAIP3 (Class 5), CD79A and CD79B (Class 6), and CARD11 (Class 1). 

However these genes, though important to ABC-DLBCL pathogenesis may similarly be 

important to the pathogenesis of other classes. Therefore, although prevalent, they may not be 

class-defining in the same way as MYD88, CDKN2A, and PRDM1. Indeed, these mutations 

provide the unique elements of ABC-DLBCL pathogenesis as distinct from the pathogenesis 

of other subtypes.  

Consistent with the explanation of Class 2 as ABC-DLBCL, the majority of Class 2 

patients were DLBCL patients (Figure 13a).  

 

5.2.4. Class 3 (TP53, CCND3, ID3, TCF3) 

Class 3 (TP53, CCND3, ID3, TCF3, PTEN) displayed a genomic profile largely 

consistent with BL (Figure 12e). The ID3, TCF3, and PTEN mutations in BL are well 

characterized hallmarks which prevent effective regulation of PI3K, thus leading to cell 

proliferation19. The presence of these mutations in Class 3, therefore, indicate a genomic 

landscape consistent with BL. Note, the most important hallmark mutation of BL, the MYC 
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translocation, was missing simply because translocation data was not present within our 

dataset. However, it is also worth noting that the most two prevalently mutated driver genes 

of Class 3 (TP53 and CCND3) have, in the literature, been indicated in lymphomas beyond 

just BL (FL and DLBCL). TP53 is prevalent among various classes (3, 4, 7) and is thus 

discussed below. CCND3, however, is predominantly expressed only in Class 3. In contrast 

with literature which denotes the importance of CCND3 across FL, BL, and DLBCL – and 

similarly in contrast with Figure 13a which points to CCND3 mutations being distributed 

across all three histologies, our classification shows the unique contribution of CCND3 to this 

classification. Class 3 also includes a range of other genes mutated at substantially lower 

rates; these genes could add additional heterogeneity.  

Consistent with the explanation of Class 3 as characteristic of BL, the majority of BL 

patients were classified into Class 3. The second largest proportion of patients were classified 

into Class 1 (Figure 13a); we suspect these patients initially manifested FL which then 

transformed into BL. While their histology would be consistent with BL, their genomic 

landscape would be more similar to FL, thus classifying them into Class 2. 

 

5.2.5. Class 4 (B2M, SOCS1, ZFP36L1, NFKBIE, SGK1, STAT3, IRF1) 

Class 4 (B2M, SOCS1, ZFP36L1, NFKBIE, SGK1, STAT3, and IRF1) denotes a class 

of mutations not previously described (Figure 12f). Indeed, each gene has been independently 

implicated in a variety of lymphoma diseases, however no patterns arise that are consistent 

with any of the subtypes mentioned previously. Interestingly, some of the most prevalent 

mutations within Class 4 are also prevalent in other classes (TP53, TNFAIP3) whereas others 

are prevalent primarily within Class 4 (B2M, SOCS1, NFKBIE, and KLF2). TP53 and 

TNFAIP3 could thus be mutations fundamental to the initiation and progression of various 

lymphomas while the B2M, SOCS1, NFKBIE, and KLF2 mutations could be the mutations 

driving the unique pathogenesis of Class 4. Overall, Class 4 is a relatively rare class, 

accounting for only 6% of the patients, primarily those who did not receive a WHO 

histological classification (Figure 13a). Nonetheless, it’s strong patterns of co-mutation of 

genes within Class 4 and mutual exclusivity between genes of Class 4 and genes of other 

classes mark it as a separate category.  

 

5.2.6. Class 5 (TNFAIP3, FAS, NOTCH2, BCL10, KLF2, SPEN, XPO1, 1KZF1, CXCR4) 

Class 5 (TNFAIP3, FAS, NOTCH2, BCL10, KLF2, SPEN, XPO1, 1KZF1, CXCR4) 

shows a genomic profile consistent with Splenic Marginal Zone Lymphoma (SMZL) (Figure 
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12g). In particular, three hallmark mutations of SMZL (NOTCH2, BCL10, SPEN) were all 

present in Class 5, marking it as a SMZL class184. Conversely, three common SMZL 

mutations were either in different classes or not present within our analysis. NOTCH1 was 

present primarily in Class 6, NFKBIE was present primarily in Class 4, and KLF2 was 

present primarily in Class 2. All three of these lesions, though prevalent in other classes, were 

not the defining or most prevalent genetic lesions of those classes. Moreover, the total 

number of samples attributed to Class 5 (n = 102) was relatively small. Combined, therefore, 

we believe the NOTCH1, KLF2, and NFKBIE mutations are still important to the 

pathogenesis of SMZL and a higher sample size of SMZL patients may have shifted those 

mutations into Class 5.  

The majority of Class 5 patients were considered either DLBCL or BCL Int. patients 

on the basis of histology (Figure 13a). Therefore, we suspect that these patients likely 

originated with undiagnosed SMZL that had transformed into DLBCL by the time of 

histological diagnosis. Crucially, SMZL has both a distinct clinical course and distinct 

treatment options than DLBCL. A substantial proportion of SMZL patients display few 

symptoms and are thus handled as “watch and wait cases” at a higher proportion than the 

more aggressive DLBCL counterpart184. Similarly, SMZL offers a wider variety of treatment 

options (splenectomy, &c.) than DLBCL184. We suspect, therefore, that Class 5 patients may 

respond to different types of novel therapeutic compared to other DLBCL subtypes. 

 

5.2.7. Class 6 (58 distinguishing genes) 

Class 6 contains 58 distinguishing genes, all mutated in a relatively low proportion of 

the patients (Figure 12h). Additionally, Class 6 had the weakest co-mutation and mutual 

exclusivity patterns among all classes in our classification analysis. Finally, the 58 genes that 

compose Class 6 are among the rarest genes mutated in lymphomas. Overall, the weak 

patterns of co-mutation and large size of Class 6 indicate that it is likely composed of 

multiple classes that could not be resolved by our study. However, resolution of these classes 

would likely require a substantially higher sample size due to the rare nature of mutations 

within these genes and also the rare assignments of patients to this class.  

Class 6 samples came from BL, DLBCL, and FL lymphoma subtypes. We suspect 

these samples, in practice, reflect a variety of rare mechanisms that can cause the 

pathogenesis of each disease. Importantly, the distinct genome profiles of Class 6 DLBCL 

and Class 6 BL patients compared to DLCBL patients in other classes and Class 3 BL 
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patients suggest that Class 6 patients could have their lymphoma arise de novo as opposed to 

resulting from the transformation of an indolent lymphoma.  

 

5.2.8. Class 7 (DNMT3A, MGA) 

Class 7 (DNMT3A, MGA) exhibits a genomic profile not previously described (Figure 

12i). Drivers in the DNMT3A gene have been implicated in AML, AITL, and T-ALL. Drivers 

in the MGA gene have been implicated in CLL. No immediate pattern emerges tying these 

two genes together, however, the high comutation between these genes and mutual 

exclusivity with mutations in other genes renders them an important. Overall, however, this 

class is extremely rare (1% of patients).  
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Figure 12 Each class shows a distinct mutational signature profile. (a) Number of driver mutations across all 
classes, coloured by proposed class assignment for patient with that mutation. (b-i) Mutational signature of each 
class. Numbers next to class show number and fraction of patients assigned to that class. Each bar shows the 
median posterior probability of a given lesion with error bars corresponding to the 2.5 and 97.5 quantiles.  
  



 99 

  

12c
12a 

12d
12c



 100 

 

12e
12c

12f



 101 

 

12g
12e

12h
12e



 102 

  

12i



 103 

5.3. Classification of Histological Subtypes 

Concurrent with the co-mutation based classification analysis, we analysed what 

proportion of samples from each histological subtype were assigned to each class (Figure 

13a). While FL was primarily assigned to Class 1, BL was assigned primarily to Class 1 and 

Class 3. Interpretations for both of these are discussed in the Class 1 and Class 3 sections 

above. DLBCL had patients split across all seven classes. Crucially, this result highlights the 

heterogeneity inherent to DLBCL demonstrating that even within the established WHO 

histological classification, substantially more granularity can be resolved which represents 

unique and distinct pathogenesis mechanisms. Similarly, this analysis sheds light on the 

mechanisms that likely cause DLBCL pathogenesis de novo rather than as a result of 

transformation from an indolent lymphoma. While DLBCL patients assigned to Classes 1, 3, 

and 5 may have DLBCL that transformed from FL, BL, and SMZL respectively, DLBCL 

patients assigned to classes 2, 4, 6, and 7 may have either de novo DLBCL or DLBCL 

transforming from indolent lymphomas whose genomic landscapes have either not been 

adequately characterized or were not identified within this study. 

 

5.4. Comparison with Gene Expression, Cell of Origin Classification 

While we lack the gene expression data to definitively assign patient samples 

according to the cell of origin classification and then compare those assignments with our 

classification, we can nonetheless draw conclusions about the genomic characteristics of 

suspected ABC-DLBCL and GCB-DLBCL patients. 

First, note that Class 2 shared genetic characteristics largely consistent with those 

expected from ABC-DLBCL. Upon incorporation of gene expression data, therefore, we will 

hopefully be able to – on the basis of genetic mutation alone – identify the cell of origin of 

these lymphomas. 

Second, the genetic lesions that characterize GCB-DLBCL were spread across 

multiple classes, suggesting that GCB-DLBCL can likely be broken into further 

subcategories with distinct pathogenesis mechanisms. Lesions common to GCB-DLBCL 

were found in Class 1 (TNFRSF14, EZH2), Class 3 (PTEN), Class 4 (SGK1), and Class 6 

(GNAS). While the mutations in Class 1 and 3 (TNFRSF14, EZH2, and PTEN) are common 

across a range of lymphomas, the mutations in Class 4 and Class 6 (SGK1 and GNAS) are 

found with less prevalence. We suspect therefore, that GCB-DLCBL patients may have been 

split across Classes 4 and 6 which would then form subclasses of the GCB-DLBCL category. 
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Ultimately, however, gene expression and translocation data will need to be 

incorporated to generate a definite cell of origin classification that can then be superimposed 

on this classification to understand the patterns inherent to ABC-DLBCL and GCB-DLBCL. 

Such an analysis would yield valuable insights into the precise pathogenesis of GCB-DLBCL 

which is, at present, not well-understood.  

 

5.5. Preliminary Survival Analysis 

After classifying patients according to their genetic profiles, we also conducted a 

preliminary survival analysis (Figure 13b). Due to time constraints, this analysis is 

incomplete and has not accounted for confounding factors. In particular, the contributions of 

age, treatment, date of diagnosis, and centre of treatment to overall survival have not been 

accounted for. Individually, each of these factors could skew the survival curves of any class. 

For example, if Class 1 had a disproportionately younger set of patients compared to the 

other classes, we would expect an improved survival outlook. A full survival analysis 

accounting for the above factors will be completed after submission of this publication. 

Nonetheless, preliminary results are presented here. 

Overall, the survival analysis generated survival outlooks consistent with our prior 

interpretations of the genetic classes. As expected, Class 1 which is primarily composed of 

FL showed the most favourable survival outlook. FL is generally an indolent disease and has 

the least aggressive clinical course19 of the subtypes represented; therefore, the result was 

consistent with expectation. Conversely, Class 2 suffered the worst overall survival outlook. 

As discussed above, we suspect Class 2 is primarily composed of ABC-DLBCL samples 

which are known to have a more aggressive clinical course than GCB-DLBCL samples19. 

Therefore, this result was also consistent with expectation. Finally, BL showed a survival 

outlook intermediate between DLBCL and FL, again consistent with expectation.  

Upon completion of a more robust survival analysis, accounting for the confounding 

factors above, additional insights will be drawn about the categories specified above. In 

particular if any class shows a particularly aggressive clinical course that is previously 

unknown or a lack of response to R-CHOP, patients within this class could potentially be put 

on an experimental clinical trial with more aggressive treatments. Similarly, discovery of 

such a class would then allow us to identify the specific pathogenesis mechanisms unique to 

that class which made it more aggressive than other classes. Thereby, meaningful biological 

insight into the progression of lymphoma would result. Additionally, novel targets for 

potential drugs could be discovered. 
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Figure 13 Classes show distinct subtype compositions and survival outlooks. (a, b) Patient assignment to 

WHO diagnostic groups or subtypes compared to patient assignment to proposed classes. (c) Kaplan-Meier plot 

for proposed classes. 

13a 13b 
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