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Abstract

Melanoma is an extremely aggressive malignancy with a poor prognosis in advanced disease.
While GWAS and exome analysis have helped to identify loci linked to the development of the
disease, these studies have explained predisposition to melanoma in only a fraction of cases.
Thus, the majority of the genetic factors that contribute to the pathogenesis of melanoma are
yet to be defined. This project aims at identifying novel genes and pathways involved in the
development of familial melanoma, and also identify loci which predispose individuals to
disease development.

308 individuals from 133 different families previously diagnosed with melanoma were se-
quenced through a mixture of exome or whole genome sequencing. Multiple workflows were
established to analyse the dataset for novel driver mutations. A novel approach of combining
association and linkage analysis was established for the variants in the coding region to iden-
tify genes with high burden of mutations where the variants segregated with the disease within
the pedigrees. The role of non-coding variants and structural variants in melanoma onset was
also investigated through additional workflows in the whole-genome sequenced individuals.

Non-synonymous mutations were found in CDKN2A, BRCAI, POTI and BAPI. Disrup-
tive variants were also observed in novel genes such as EXOS5, TP53AIP and AMERI. An
increased burden on variants in transcription factor binding motifs were observed in genes in-
cluding SYK and SRC. A large deletion upstream of CDKN2A was identified. Genes including
ATR and FATI were identified to have a higher burden of disruptive variants that segregated
with the disease within the cases through the novel combined association-linkage analysis.

Disruptive germline variants that could play a role in familial melanoma development were

identified in multiple genes through a combination of several approaches.
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